A Novel Strategy of Combined Pulsed Electro-Oxidation and Electrolysis for Degradation of Sulfadiazine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Operating Parameters on SND Degradation Rates
2.2. Compare of Different Systems
2.3. Identification of Radicals in PEF/PMS System
2.4. Degradation Pathway of SND in PEF/PMS System
3. Materials and Methods
3.1. Chemicals
3.2. Experimental Setup
3.3. Analysis Methods and Instruments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Barret, J.P.; Dziewulski, P.; Ramzy, P.I.; Wolf, S.E.; Desai, M.H.; Herndon, D.N. Biobrane versus 1% Silver Sulfadiazine in Second-Degree Pediatric Burns. Plast. Reconstr. Surg. 2000, 105, 62–65. [Google Scholar] [CrossRef]
- Tsipouras, N.; Rix, C.; Brady, P. Solubility of Silver Sulfadiazine in Physiological Media and Relevance to Treatment of Thermal Burns with Silver Sulfadiazine Cream. Clin. Chem. 1995, 41, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Algahtani, M.S.; Ahmad, M.Z.; Shaikh, I.A.; Abdel-Wahab, B.A.; Nourein, I.H.; Ahmad, J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules 2021, 26, 3863. [Google Scholar] [CrossRef] [PubMed]
- Bjurling, P.; Baxter, G.A.; Caselunghe, M.; Jonson, C.; O’Connor, M.; Persson, B.; Elliott, C.T. Biosensor Assay of Sulfadiazine and Sulfamethazineresidues in Pork. Analyst 2000, 125, 1771–1774. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Chen, Y.; Hassan, M.; Zhang, X.; Zhang, B.; Gin, K.Y.-H.; He, Y. Multi-Phase Distribution, Spatiotemporal Variation and Risk Assessment of Antibiotics in a Typical Urban-Rural Watershed. Ecotoxicol. Environ. Saf. 2020, 206, 111156. [Google Scholar] [CrossRef]
- Adewuyi, Y.G.; Khan, M.A.; Sakyi, N.Y. Kinetics and Modeling of the Removal of Nitric Oxide by Aqueous Sodium Persulfate Simultaneously Activated by Temperature and Fe2+. Ind. Eng. Chem. Res. 2014, 53, 828–839. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Transition Metal/UV-Based Advanced Oxidation Technologies for Water Decontamination. Appl. Catal. B Environ. 2004, 54, 155–163. [Google Scholar] [CrossRef]
- Criquet, J.; Leitner, N.K.V. Degradation of Acetic Acid with Sulfate Radical Generated by Persulfate Ions Photolysis. Chemosphere 2009, 77, 194–200. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Pourzamani, H.; Jafari, E.; Rozveh, M.S.; Mohammadi, H.; Rostami, M.; Mengelizadeh, N. Degradation of Ciprofloxacin in Aqueous Solution by Activating the Proxymonosulfate Using Graphene Based on CoFe2O4. Desalination Water Treat. 2019, 167, 156–169. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Arbabi, M.; Shahsavan, S.; Sadeghi, M.; Fadae, A.; Hemati, S. Evaluation of Sulfadiazine (SDZ) Removal from Wastewater by Persulfate Activated with Iron Sulfate. Desalination Water Treat. 2018, 113, 160–164. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical Generation by the Interaction of Transition Metals with Common Oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Cai, H.; Zou, J.; Lin, J.; Li, J.; Huang, Y.; Zhang, S.; Yuan, B.; Ma, J. Sodium Hydroxide-Enhanced Acetaminophen Elimination in Heat/Peroxymonosulfate System: Production of Singlet Oxygen and Hydroxyl Radical. Chem. Eng. J. 2022, 429, 132438. [Google Scholar] [CrossRef]
- Che, H.; Che, G.; Jiang, E.; Liu, C.; Dong, H.; Li, C. A Novel Z-Scheme CdS/Bi3O4Cl Heterostructure for Photocatalytic Degradation of Antibiotics: Mineralization Activity, Degradation Pathways and Mechanism Insight. J. Taiwan Inst. Chem. Eng. 2018, 91, 224–234. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ge, Y.; Li, H.; Ji, H.; Xu, H.; Zhang, Q.; Li, H.; Li, M. Novel Visible-Light-Driven CQDs/Bi2WO6 Hybrid Materials with Enhanced Photocatalytic Activity toward Organic Pollutants Degradation and Mechanism Insight. Appl. Catal. B Environ. 2015, 168–169, 51–61. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.; Gao, J.; Dionysiou, D.D.; Zhou, D. Manipulation of Persistent Free Radicals in Biochar To Activate Persulfate for Contaminant Degradation. Environ. Sci. Technol. 2015, 49, 5645–5653. [Google Scholar] [CrossRef]
- Song, H.; Yan, L.; Jiang, J.; Ma, J.; Zhang, Z.; Zhang, J.; Liu, P.; Yang, T. Electrochemical Activation of Persulfates at BDD Anode: Radical or Nonradical Oxidation? Water Res. 2018, 128, 393–401. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, W.; Yu, H.; Chen, S.; Quan, X. Electrochemical Activation of Peroxymonosulfate in Cathodic Micro-Channels for Effective Degradation of Organic Pollutants in Wastewater. J. Hazard. Mater. 2020, 398, 122879. [Google Scholar] [CrossRef]
- Wang, M.; Kang, J.; Li, S.; Zhang, J.; Tang, Y.; Liu, S.; Liu, J.; Tang, P. Electro-Assisted Heterogeneous Activation of Peroxymonosulfate by g-C3N4 under Visible Light Irradiation for Tetracycline Degradation and Its Mechanism. Chem. Eng. J. 2022, 436, 135278. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, H.; Zhao, C.; Wang, T.; Wang, P.; Dionysiou, D.D. Electrochemical Activation of Peroxymonosulfate with ACF Cathode: Kinetics, Influencing Factors, Mechanism, and Application Potential. Water Res. 2019, 159, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Li, R.; Zhao, M.; Hou, Q.; Rao, T.; Zhou, M.; Ma, X. Membrane Electrodes for Electrochemical Advanced Oxidation Processes: Preparation, Self-Cleaning Mechanisms and Prospects. Chem. Eng. J. 2023, 451, 138907. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical Advanced Oxidation Processes: A Review on Their Application to Synthetic and Real Wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Periyasamy, S.; Muthuchamy, M. Electrochemical Oxidation of Paracetamol in Water by Graphite Anode: Effect of PH, Electrolyte Concentration and Current Density. J. Environ. Chem. Eng. 2018, 6, 7358–7367. [Google Scholar] [CrossRef]
- Roy, S. Mass Transfer Considerations during Pulse Plating. Trans. IMF 2008, 86, 87–91. [Google Scholar] [CrossRef]
- Larson, C.; Farr, J.P.G. Recent Advances in Pulsed Current Electrodeposition: A Brief Review. Trans. IMF 2010, 88, 237–242. [Google Scholar] [CrossRef]
- Besenhard, J.O. Comprehensive Treatise of Electrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 1982, 137, 400–401. [Google Scholar] [CrossRef]
- Bockris, J.O.M. AKN Reddy. In Modern Electrochemistry; Springer: Berlin, Germany, 1970. [Google Scholar]
- Davis, J.; Baygents, J.C.; Farrell, J. Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochim. Acta 2014, 150, 68–74. [Google Scholar] [CrossRef]
- Matzek, L.W.; Tipton, M.J.; Farmer, A.T.; Steen, A.D.; Carter, K.E. Understanding Electrochemically Activated Persulfate and Its Application to Ciprofloxacin Abatement. Environ. Sci. Technol. 2018, 52, 5875–5883. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-Situ Chemical Oxidation: Principle and Applications of Peroxide and Persulfate Treatments in Wastewater Systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Pesco, A.M.; Cheh, H.Y. Modern Aspects of Electrochemistry 19; Plenum Press: New York, NY, USA, 1989. [Google Scholar]
- Cheh, H.Y. Electrodeposition of Gold by Pulsed Current. J. Electrochem. Soc. 1971, 118, 551. [Google Scholar] [CrossRef]
- Takahashi, K.; Nakano, H.; Sato, H. A Polarizable Molecular Dynamics Method for Electrode–Electrolyte Interfacial Electron Transfer under the Constant Chemical-Potential-Difference Condition on the Electrode Electrons. J. Chem. Phys. 2020, 153, 054126. [Google Scholar] [CrossRef] [PubMed]
- Panizza, M.; Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Yu, C.; He, J.; Lan, S.; Guo, W.; Zhu, M. Enhanced Utilization Efficiency of Peroxymonosulfate via Water Vortex-Driven Piezo-Activation for Removing Organic Contaminants from Water. Environ. Sci. Ecotechnol. 2022, 10, 100165. [Google Scholar] [CrossRef]
- Cañizares, P.; Sáez, C.; Sánchez-Carretero, A.; Rodrigo, M.A. Synthesis of Novel Oxidants by Electrochemical Technology. J. Appl. Electrochem. 2009, 39, 2143–2149. [Google Scholar] [CrossRef]
- Junye, M.; Daisuke, M.; Kevin, O.; Lu, B.; Dionysios, D.; Richard, S.; Ruiyang, X.; Zongsu, W. Determination and Environmental Implications of Aqueous-Phase Rate Constants in Radical Reactions. Water Res. 2021, 190, 116746. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, Y.; Zhou, Y.; Liu, X.; Wang, C.; Lan, Y.; Li, Y. Co3O4-MnO2 Nanoparticles Moored on Biochar as a Catalyst for Activation of Peroxymonosulfate to Efficiently Degrade Sulfonamide Antibiotics. Sep. Purif. Technol. 2022, 281, 119935. [Google Scholar] [CrossRef]
- Lu, H.; Feng, W.; Li, Q. Degradation Efficiency Analysis of Sulfadiazine in Water by Ozone/Persulfate Advanced Oxidation Process. Water 2022, 14, 2476. [Google Scholar] [CrossRef]
- Bockris, J.O.; Conway, B.E.; Meek, R.L. Modern Aspects of Electrochemistry No. 6. J. Electrochem. Soc. 1972, 119, 169C. [Google Scholar] [CrossRef]
- Guo, H.-G.; Gao, N.-Y.; Chu, W.-H.; Li, L.; Zhang, Y.-J.; Gu, J.-S.; Gu, Y.-L. Photochemical Degradation of Ciprofloxacin in UV and UV/H2O2 Process: Kinetics, Parameters, and Products. Environ. Sci. Pollut. Res. 2013, 20, 3202–3213. [Google Scholar] [CrossRef] [PubMed]
- Neafsey, K.; Zeng, X.; Lemley, A. Degradation of Sulfonamides in Aqueous Solution by Membrane Anodic Fenton Treatment. J. Agric. Food Chem. 2010, 58, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Maraschky, A.; Akolkar, R. Pulsed Current Plating Does Not Improve Microscale Current Distribution Uniformity Compared to Direct Current Plating at Equivalent Time-Averaged Plating Rates. J. Electrochem. Soc. 2021, 168, 062507. [Google Scholar] [CrossRef]
- Farhat, A.; Keller, J.; Tait, S.; Radjenovic, J. Removal of Persistent Organic Contaminants by Electrochemically Activated Sulfate. Environ. Sci. Technol. 2015, 49, 14326–14333. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Moholkar, V.S. Sulfadiazine Degradation Using Hybrid AOP of Heterogeneous Fenton/Persulfate System Coupled with Hydrodynamic Cavitation. Chem. Eng. J. 2020, 386, 121294. [Google Scholar] [CrossRef]
- Sukul, P.; Lamshöft, M.; Zühlke, S.; Spiteller, M. Sorption and Desorption of Sulfadiazine in Soil and Soil-Manure Systems. Chemosphere 2008, 73, 1344–1350. [Google Scholar] [CrossRef]
- 49. Ting, L.; Kun, W.; Meng, W.; Jing, C.-Y.; Chen, Y.-Y.; Yang, S.-J.; Jin, P.-K. Performance and mechanisms of sulfadiazine removal using persulfate activated by Fe3O4@CuOx hollow spheres. Chemosphere 2021, 262, 127845. [Google Scholar] [CrossRef]
- Sukul, P.; Lamshöft, M.; Zühlke, S.; Spiteller, M. Photolysis of 14C-Sulfadiazine in Water and Manure. Chemosphere 2008, 71, 717–725. [Google Scholar] [CrossRef]
- Dirany, A.; Sirés, I.; Oturan, N.; Özcan, A.; Oturan, M.A. Electrochemical Treatment of the Antibiotic Sulfachloropyridazine: Kinetics, Reaction Pathways, and Toxicity Evolution. Environ. Sci. Technol. 2012, 46, 4074–4082. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Keller, J.; Brillas, E.; Radjenovic, J. Removal of Organic Contaminants from Secondary Effluent by Anodic Oxidation with a Boron-Doped Diamond Anode as Tertiary Treatment. J. Hazard. Mater. 2015, 283, 551–557. [Google Scholar] [CrossRef]
- Osiński, Z.; Patyra, E.; Kwiatek, K. HPLC-FLD-Based Method for the Detection of Sulfonamides in Organic Fertilizers Collected from Poland. Molecules 2022, 27, 2031. [Google Scholar] [CrossRef]
- Lin, T.; Yu, S.; Chen, W. Occurrence, Removal and Risk Assessment of Pharmaceutical and Personal Care Products (PPCPs) in an Advanced Drinking Water Treatment Plant (ADWTP) around Taihu Lake in China. Chemosphere 2016, 152, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.-H.; Huang, Y.; Wang, H. Comprehensive Evaluation of Pharmaceuticals and Personal Care Products (PPCPs) in Typical Highly Urbanized Regions across China. Environ. Pollut. 2015, 204, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Wacławek, S.; Lutze, H.V.; Sharma, V.K.; Xiao, R.; Dionysiou, D.D. Revisit the Alkaline Activation of Peroxydisulfate and Peroxymonosulfate. Curr. Opin. Chem. Eng. 2022, 37, 100854. [Google Scholar] [CrossRef]
pH | Voltage (V) | PMS Concentration (g/L) | Predicted Value (%) | Experimental Value (%) |
---|---|---|---|---|
4.73 | 6.44 | 0.63 | 71.72 | 72.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Zhang, B.; Hu, X. A Novel Strategy of Combined Pulsed Electro-Oxidation and Electrolysis for Degradation of Sulfadiazine. Molecules 2023, 28, 3620. https://doi.org/10.3390/molecules28083620
Ma D, Zhang B, Hu X. A Novel Strategy of Combined Pulsed Electro-Oxidation and Electrolysis for Degradation of Sulfadiazine. Molecules. 2023; 28(8):3620. https://doi.org/10.3390/molecules28083620
Chicago/Turabian StyleMa, Dong, Bo Zhang, and Xiaomin Hu. 2023. "A Novel Strategy of Combined Pulsed Electro-Oxidation and Electrolysis for Degradation of Sulfadiazine" Molecules 28, no. 8: 3620. https://doi.org/10.3390/molecules28083620
APA StyleMa, D., Zhang, B., & Hu, X. (2023). A Novel Strategy of Combined Pulsed Electro-Oxidation and Electrolysis for Degradation of Sulfadiazine. Molecules, 28(8), 3620. https://doi.org/10.3390/molecules28083620