Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus
Abstract
:1. Introduction
2. Results
2.1. The Structural Models of TIM and RmAChE1
2.2. Validation of the Modeled Structures
2.3. Active Site Prediction
2.4. Interaction Pattern of Virtual Hits
2.5. Results of ADMET Calculation
2.6. Density Functional Theory (DFT) Results
3. Discussion
4. Method and Materials
4.1. Preparation of TIM and the Homology Model of RmAChE1
4.2. Prediction of the Active Site
4.3. Ligands Searching and Database Preparation
4.4. Docking Analysis
4.5. Ligand Interaction Calculations
4.6. ADMET and Drug-Likeness Evaluation
4.7. DFT Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- de la Fuente, J.; Kocan, K.M.; Almazan, C.; Blouin, E.F. Targeting the tick-pathogen interface for novel control strategies. Front. Biosci. 2008, 13, 6947–6956. [Google Scholar] [CrossRef] [PubMed]
- Rosario-Cruz, R.; Guerrero, F.D.; Miller, R.J.; Rodriguez-Vivas, R.I.; Dominguez-Garcia, D.I.; Cornel, A.J.; Hernandez-Ortiz, R.; George, J.E. Roles played by esterase activity and by a sodium channel mutation involved in pyrethroid resistance in populations of Boophilus microplus (Acari: Ixodidae) collected from Yucatan, Mexico. J. Med. Entomol. 2005, 42, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Klafke, G.; Webster, A.; Agnol, B.D.; Pradel, E.; Silva, J.; de La Canal, L.H.; Becker, M.; Osório, M.F.; Mansson, M.; Barreto, R. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks Tick-Borne Dis. 2017, 8, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Castro-Janer, E.; Martins, J.R.; Mendes, M.C.; Namindome, A.; Klafke, G.M.; Schumaker, T.T. Diagnoses of fipronil resistance in Brazilian cattle ticks (Rhipicephalus (Boophilus) microplus) using in vitro larval bioassays. Vet. Parasitol. 2010, 173, 300–306. [Google Scholar] [CrossRef]
- Moraes, J.; Arreola, R.; Cabrera, N.; Saramago, L.; Freitas, D.; Masuda, A.; da Silva Vaz, I., Jr.; Tuena de Gomez-Puyou, M.; Perez-Montfort, R.; Gomez-Puyou, A.; et al. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus. Insect Biochem. Mol. Biol. 2011, 41, 400–409. [Google Scholar] [CrossRef]
- Campos, E.; Moraes, J.; Facanha, A.R.; Moreira, E.; Valle, D.; Abreu, L.; Manso, P.P.; Nascimento, A.; Pelajo-Machado, M.; Lenzi, H.; et al. Kinetics of energy source utilization in Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae) embryonic development. Vet. Parasitol. 2006, 138, 349–357. [Google Scholar] [CrossRef]
- Moraes, J.; Galina, A.; Alvarenga, P.H.; Rezende, G.L.; Masuda, A.; da Silva Vaz, I., Jr.; Logullo, C. Glucose metabolism during embryogenesis of the hard tick Boophilus microplus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 528–533. [Google Scholar] [CrossRef]
- Aguilera, E.; Varela, J.; Birriel, E.; Serna, E.; Torres, S.; Yaluff, G.; de Bilbao, N.V.; Aguirre-Lopez, B.; Cabrera, N.; Diaz Mazariegos, S.; et al. Potent and Selective Inhibitors of Trypanosoma cruzi Triosephosphate Isomerase with Concomitant Inhibition of Cruzipain: Inhibition of Parasite Growth through Multitarget Activity. ChemMedChem 2016, 11, 1328–1338. [Google Scholar] [CrossRef]
- Maithal, K.; Ravindra, G.; Balaram, H.; Balaram, P. Inhibition of plasmodium falciparum triose-phosphate isomerase by chemical modification of an interface cysteine: Electrospray ionization mass spectrometric analysis of differential cysteine reactivities. J. Biol. Chem. 2002, 277, 25106–25114. [Google Scholar] [CrossRef]
- Banner, D.W.; Bloomer, A.C.; Petsko, G.A.; Phillips, D.C.; Pogson, C.I.; Wilson, I.A.; Corran, P.H.; Furth, A.J.; Milman, J.D.; Offord, R.E.; et al. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature 1975, 255, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Téllez-Valencia, A.; Olivares-Illana, V.; Hernández-Santoyo, A.; Pérez-Montfort, R.; Costas, M.; Rodríguez-Romero, A.; López-Calahorra, F.; de Gómez-Puyou, M.T.; Gómez-Puyou, A. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J. Mol. Biol. 2004, 341, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; He, H.; Chen, A.C.; Ivie, G.W.; George, J.E.; Wagner, G.G. Cloning and sequencing of a putative acetylcholinesterase cDNA from Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 1999, 36, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Mutero, A.; Pralavorio, M.; Bride, J.M.; Fournier, D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA 1994, 91, 5922–5926. [Google Scholar] [CrossRef]
- Temeyer, K.B.; Pruett, J.H.; Untalan, P.M.; Chen, A.C. Baculovirus expression of Bm AChE3, a cDNA encoding an acetylcholinesterase of Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 2006, 43, 707–712. [Google Scholar] [CrossRef]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef]
- Gupta, R.C. Carbamate pesticides. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 661–664. [Google Scholar]
- Zhou, X.; Xia, Y. Cloning of an acetylcholinesterase gene in Locusta migratoria manilensis related to organophosphate insecticide resistance. Pestic. Biochem. Physiol. 2009, 93, 77–84. [Google Scholar] [CrossRef]
- Li, M.; Gao, X.; Lan, M.; Liao, X.; Su, F.; Fan, L.; Zhao, Y.; Hao, X.; Wu, G.; Ding, X. Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase. Pestic. Biochem. Physiol. 2020, 170, 104701. [Google Scholar] [CrossRef]
- Karmakar, A.; Ambure, P.; Mallick, T.; Das, S.; Roy, K.; Begum, N.A. Exploration of synthetic antioxidant flavonoid analogs as acetylcholinesterase inhibitors: An approach towards finding their quantitative structure–activity relationship. Med. Chem. Res. 2019, 28, 723–741. [Google Scholar] [CrossRef]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). Biochem. Mol. Biol. Plants 2000, 24, 1250–1319. [Google Scholar]
- Wink, M. Phytochemical diversity of secondary metabolites. In Encyclopedia of Plant and Crop Science; Routledge: New York, NY, USA, 2004; pp. 915–919. [Google Scholar]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [PubMed]
- Empereur-Mot, C.; Guillemain, H.; Latouche, A.; Zagury, J.F.; Viallon, V.; Montes, M. Predictiveness curves in virtual screening. J. Cheminform. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Marsh, L.; Shah, K. A novel inhibitor of Mammalian triosephosphate isomerase found by an in silico approach. Int. J. Med. Chem. 2014, 2014, 469125. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.B.; Gupta, M.K.; Singh, D.V.; Singh, S.K.; Misra, K. Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: A molecular drug target against malaria. Interdiscip. Sci. 2013, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Miresmailli, S.; Bradbury, R.; Isman, M.B. Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag. Sci. 2006, 62, 366–371. [Google Scholar] [CrossRef]
- Jain, P.; Satapathy, T.; Pandey, R.K. Rhipicephalus microplus: A parasite threatening cattle health and consequences of herbal acaricides for upliftment of livelihood of cattle rearing communities in Chhattisgarh. Biocatal. Agric. Biotechnol. 2020, 26, 101611. [Google Scholar] [CrossRef]
- De Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Bandara, K.M.U.J.; Karunaratne, S.H.P.P. Mechanisms of acaricide resistance in the cattle tick Rhipicephalus (Boophilus) microplus in Sri Lanka. Pestic. Biochem. Physiol. 2017, 139, 68–72. [Google Scholar] [CrossRef]
- Ghosh, S.; Tiwari, S.S.; Srivastava, S.; Kumar, S.; Sharma, A.K.; Nagar, G.; Kumar, K.G.; Kumar, R.; Rawat, A.K. In vitro acaricidal properties of Semecarpus anacardium fruit and Datura stramonium leaf extracts against acaricide susceptible (IVRI-I line) and resistant (IVRI-V line) Rhipicephalus (Boophilus) microplus. Res. Vet. Sci. 2015, 101, 69–74. [Google Scholar] [CrossRef]
- Conceição, R.S.; de A. Carneiro, M.M.A.; Reis, I.M.A.; Branco, A.; Vieira, I.J.C.; Braz-Filho, R.; Botura, M.B. In vitro acaricide activity of Ocotea aciphylla (Nees) Mez.(Lauraceae) extracts and identification of the compounds from the active fractions. Ticks Tick-Borne Dis. 2017, 8, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.H.; Orhan, I.; Şenol, F.S.; Kartal, M.; Şener, B.; Dvorská, M.; Šmejkal, K.; Šlapetová, T. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem.-Biol. Interact. 2009, 181, 383–389. [Google Scholar] [CrossRef]
- Senol, F.S.; Ankli, A.; Reich, E.; Orhan, I.E. HPTLC fingerprinting and cholinesterase inhibitory and metal-chelating capacity of various Citrus cultivars and Olea europaea. Food Technol. Biotechnol. 2016, 54, 275. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, A.; Arumugam, M.; George, S. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. Int. J. Biol. Macromol. 2017, 95, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cao, J.; Zhao, T.; Liu, Y.; Khan, A.; Cheng, G. The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int. J. Mol. Sci. 2021, 22, 962. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004, 96, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Drug antioxidant effects. A basis for drug selection? Drugs 1991, 42, 569–605. [Google Scholar] [CrossRef]
- Xie, P.-J.; Huang, L.-X.; Zhang, C.-H.; Zhang, Y.-L. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Foods 2015, 16, 460–471. [Google Scholar] [CrossRef]
- Pegu, D.; Deb, J.; Van Alsenoy, C.; Sarkar, U. Theoretical investigation of electronic, vibrational, and nonlinear optical properties of 4-fluoro-4-hydroxybenzophenone. Spectrosc. Lett. 2017, 50, 232–243. [Google Scholar] [CrossRef]
- Hind, C. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Plaza, M.; Pozzo, T.; Liu, J.; Gulshan Ara, K.Z.; Turner, C.; Nordberg Karlsson, E. Substituent Effects on in Vitro Antioxidizing Properties, Stability, and Solubility in Flavonoids. J. Agric. Food Chem. 2014, 62, 3321–3333. [Google Scholar] [CrossRef]
- Ishihara, K.; Nakajima, N. Structural aspects of acylated plant pigments: Stabilization of flavonoid glucosides and interpretation of their functions. J. Mol. Catal. B Enzym. 2003, 23, 411–417. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
No. | Name | PubChem CID | IUPAC Names | Compound Structures | Plant Source | Docking Scores (Kcal/mol) | Targeted Protein |
---|---|---|---|---|---|---|---|
1. | Methylenebisphloridzin | - | - | Eupatorium adenophorum | −11.0455 | Acetylcholinesterase of Rhipicephalus microplus (RmAChE1) | |
2. | Thearubigin | 100945367 | 7-[2-carboxy-1-[(2R,3R)-5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-chromen-2-yl]ethyl]-5-[(2R,3R)-5,7-dihydroxy-3-(3,4,5-trihydroxybenzoyl)oxy-3,4-dihydro-2H-chromen-2-yl]-2-hydroxy-3-oxocyclohepta-1,4,6-triene-1-carboxylic acid | Camellia sinensis, Camellia assamica | −9.0071 | RmAChE1 | |
3. | Fortunellin | 5317385 | 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chromen-4-one | Fortunella japonica, Fortunella margarita, Fortunella crassifolia, and Fortunella hindsii | −8.9384 | RmAChE1 | |
4. | Quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside) 1 | - | - | Eupatorium adenophorum | −8.6203 | RmAChE1 | |
5. | Quercetagetin-7-O-(6-O-p-coumaroyl-β-glucopyranoside) | - | - | Eupatorium adenophorum | −8.5624 | RmAChE1 | |
6. | Rutin | 5280805 | 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one | Ruta graveolens and Morus alba | −8.5489 | RmAChE1 | |
7. | Kaempferol 3-neohesperidoside | 531876 | 3-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one | Daphniphyllum calycinum, Amygdalus persica | −8.2550 | RmAChE1 | |
8. | Quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside) 2 | - | quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside | Eupatorium adenophorum | −9.8855 | Triose-phosphate isomerase of R. microplus (RmTIM) | |
9. | Isorhamnetin | 5281654 | 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one | Calendula officinalis | −7.6324 | RmTIM | |
10. | Liquiritin | 503737 | (2S)-7-hydroxy-2-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-2,3-dihydrochromen-4-one | Glycyrrhiza glabra | −7.5141 | RmTIM |
No. | Compounds Name | MW (g/mol) | Log P | HBD | HBA | TPSA | No. of Violations | BBB | PAINS Alerts |
---|---|---|---|---|---|---|---|---|---|
1. | Methylenebisphloridzn | 884.83 | 1.18 | 14 | 20 | 354.28 | 3 | No | 0 |
2. | Thearubigin | 902.72 | 0.56 | 13 | 22 | 385.26 | 3 | No | 1 |
3. | Fortunellin | 592.55 | 2.13 | 7 | 14 | 217.97 | 3 | No | 0 |
4. | Quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside) 1 | 788.66 | 1.42 | 12 | 20 | 336.19 | 3 | No | 1 |
5. | Quercetagetin-7-O-(6-O-p-coumaroyl-β-glucopyranoside) | 626.52 | 2.76 | 9 | 15 | 257.04 | 3 | No | 1 |
6. | Rutin | 610.52 | 0.46 | 16 | 16 | 269.43 | 3 | No | 1 |
7. | Kaempferol 3-neohesperidoside | 594.52 | 0.96 | 9 | 15 | 249.2 | 3 | No | 0 |
8. | Quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside) 2 | 788.66 | 1.42 | 12 | 20 | 336.19 | 3 | No | 1 |
9. | Isorhamnetin | 316.26 | 2.35 | 4 | 7 | 120.36 | 0 | No | 0 |
10. | Liquiritin | 418.39 | 1.46 | 5 | 9 | 145.91 | 0 | No | 0 |
Description | eV HOMO | eV LUMO | Energy Gap |
---|---|---|---|
* Liquiritin | −0.33641 | −0.20637 | 0.15773 |
** Isorhamnetin | −0.32355 | −0.31813 | 0.00542 |
*** ISOalanine | −0.27184 | −0.20810 | 0.06374 |
*** ISOproline | −0.27471 | −0.21139 | 0.06332 |
*** LIQphenylalanine | −0.28800 | −0.20662 | 0.08138 |
*** LIQleucine | −0.29611 | −0.20819 | 0.08792 |
*** LIQlysine | −0.29590 | −0.20821 | 0.08769 |
S. No. | 3D-Structures | HOMO-LUMO | Band Gap |
---|---|---|---|
(A) | 0.00542 | ||
(B) | 0.06332 | ||
(C) | 0.06374 |
S. No. | 3D-Structures | HOMO-LUMO | Energies |
---|---|---|---|
(A) | 0.15773 | ||
(B) | 0.08792 | ||
(C) | 0.08769 | ||
(D) | 0.08138 |
No. | Compound Name | 3D Structure | HOMO-LOMO |
---|---|---|---|
1. | Methylenebisphloridzin | ||
2. | Thearubigin | ||
3. | Fortunellin | ||
4. | Quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside) 1 | ||
5. | Quercetagetin-7-O-(6-O-p-coumaroyl-β-glucopyranoside) | ||
6. | Rutin | ||
7. | Kaempferol 3-neohesperidoside | ||
8. | Quercetagetin-7-O-(6-O-caffeoyl-β-d-glucopyranoside) 2 | ||
9. | Isorhamnetin | ||
10. | Liquiritin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malak, N.; Alotaibi, B.S.; Khan, A.; Khan, A.; Ullah, S.; Nasreen, N.; Niaz, S.; Chen, C.-C. Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus. Molecules 2023, 28, 3606. https://doi.org/10.3390/molecules28083606
Malak N, Alotaibi BS, Khan A, Khan A, Ullah S, Nasreen N, Niaz S, Chen C-C. Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus. Molecules. 2023; 28(8):3606. https://doi.org/10.3390/molecules28083606
Chicago/Turabian StyleMalak, Nosheen, Bader S. Alotaibi, Afshan Khan, Adil Khan, Shakir Ullah, Nasreen Nasreen, Sadaf Niaz, and Chien-Chin Chen. 2023. "Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus" Molecules 28, no. 8: 3606. https://doi.org/10.3390/molecules28083606
APA StyleMalak, N., Alotaibi, B. S., Khan, A., Khan, A., Ullah, S., Nasreen, N., Niaz, S., & Chen, C. -C. (2023). Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus. Molecules, 28(8), 3606. https://doi.org/10.3390/molecules28083606