Optimization of Extraction Method of Anthocyanins from Red Cabbage
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Obtaining and Processing Raw Materials
3.2. Obtaining Red Cabbage Extracts
3.3. Characterization of Extracts
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Oliveira, C.F.D.; da Costa, J.P.V.; Vendruscolo, F. Maltose Syrup Residue as the Substrate for Monascus Pigments Production. Biocatal. Agric. Biotechnol. 2019, 18, 101101. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Crit. Rev. Food Sci. Nutr. 2021, 61, 805–835. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. Natural Food Pigments and Colorants. Curr. Opin. Food Sci. 2016, 7, 20–26. [Google Scholar] [CrossRef]
- Alves de Oliveira, E.N.; da Costa Santos, D.; Gomes, J.P.; Rocha, A.P.T.; da Silva, W.P. Physicochemical Stability of Diet Umbu-Caja Jams Stored under Ambient Conditions: Physicochemical Stability of Diet Umbu-Caja Jams. J. Food Process. Preserv. 2015, 39, 70–79. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef]
- Luzardo-Ocampo, I.; Ramírez-Jiménez, A.K.; Yañez, J.; Mojica, L.; Luna-Vital, D.A. Technological Applications of Natural Colorants in Food Systems: A Review. Foods 2021, 10, 634. [Google Scholar] [CrossRef]
- Potera, C. Diet and nutrition: The Artificial Food Dye Blues. Environ. Health Perspect. 2010, 118, 428–431. [Google Scholar] [CrossRef]
- Gould, K.; Davies, K.M.; Winefield, C. Anthocyanins Biosynthesis, Functions, and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Le, X.T.; Huynh, M.T.; Pham, T.N.; Than, V.T.; Toan, T.Q.; Bach, L.G.; Trung, N.Q. Optimization of Total Anthocyanin Content, Stability and Antioxidant Evaluation of the Anthocyanin extract from Vietnamese Carissa Carandas L. Fruits. Processes 2019, 7, 468. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Liu, X. Characterization of Acylated Anthocyanins in Red Cabbage via Comprehensive Two-Dimensional High Performance Liquid Chromatography and HPLC-MS: Analysis of Anthocyanins in Red Cabbage by 2DLC. J. Food Process. Preserv. 2017, 41, e13129. [Google Scholar] [CrossRef]
- Labuschagne, P. Impact of Wall Material Physicochemical Characteristics on the Stability of Encapsulated Phytochemicals: A Review. Food Res. Int. 2018, 107, 227–247. [Google Scholar] [CrossRef]
- Vergara, L.P.; Oliveira, R.M.; Franzon, R.C.; Chim, J.F.; Zambiazi, R.C. Effect of retention of bioactive compounds and sensory profile in chewable candies made with blend pulp/effect of retention of bioactive compounds and sensory profile in chewable candies made with blend pulp. BJD 2020, 6, 90148–90159. [Google Scholar] [CrossRef]
- Barbosa, D.R.R.; Boyarski, D.R.S.; Macena, T.F.S.; Clemente, R.C. Quantification of phenolic compounds, antioxidant power and sugar content in infusion and soluble extract of Hibiscus sabdarifa L. Desafios Interdiscip. J. Fed. Univ. Tocantins 2020, 7, 108–123. [Google Scholar] [CrossRef]
- Huarancca-Huarcaya, E.; Paredes-Quiroz, L.R.; Pilares-Estrada, N.M.; Barragán-Condori, M.; Huamaní-Meléndez, V.J. Cinética Da Degradação Térmica de Antocianinas de Alaybilí (Vaccinium Floribundum Kunth) e Macha-Macha (Gaultheria Glomerata (Cav.) Sleumer). Braz. J. Food Technol. 2022, 25, e2021106. [Google Scholar] [CrossRef]
- Moura, S.C.S.R.; Hubinger, M.D.; Alvim, I.D.; Germer, S.P.M.; Souza, E.C.G.; Berling, C.L. Characterization and quantification of hibiscus (Hibiscus sabdarifa L.) bioactive compounds. In Proceedings of the XXV Brazilian Congress of Food Science and Technology, Electronic Proceedings, Gramado, Brazil, 24–27 October 2016. [Google Scholar]
- Silva, L.F.; Silva, M.M.; Ribeiro, D.S. Antioxidant activity and anthocyanin content of hydroalcoholic extracts of pomace of red grapes grown in the agreste region of Pernambuco. REBRAGO 2017, 7, 248–253. [Google Scholar]
- Wang, F.; Zhang, S.; Deng, G.; Xu, K.; Xu, H.; Liu, J. Extracting Total Anthocyanin from Purple Sweet Potato Using an Effective Ultrasound-Assisted Compound Enzymatic Extraction Technology. Molecules 2022, 27, 4344. [Google Scholar] [CrossRef]
- Oliveira, L.M.d.; Antelo, F. Thermostability of the Visual Color and Anthocyanins from Rio-Grande-Cherry (Eugenia Involucrata DC). Braz. J. Food Technol. 2020, 23, e2019140. [Google Scholar] [CrossRef]
- Remini, H.; Dahmoune, F.; Sahraoui, Y.; Madani, K.; Kapranov, V.N.; Kiselev, E.F. Recent Advances on Stability of Anthocyanins. RUDN J. Agron. Anim. Ind. 2018, 13, 257–286. [Google Scholar] [CrossRef]
- Rigolon, T.C.B.; Stringheta, P.C. Prediction of total anthocyanins, total phenolics and antioxidant capacity using colorimetric parameters for strawberry, raspberry and juçara. In Teaching, Research and Extension in Food Engineering; Pires, C.V., Ed.; Even3 Publications: Recife, Brazil, 2021; pp. 96–109. [Google Scholar] [CrossRef]
- Barretto, F.J.d.F.P.; Clemente, H.A.; Santana, A.L.B.D.; Vasconcelo, M.A.d.S. Stability of Encapsulated and Non-Encapsulated Anthocyanin in Yogurt Produced with Natural Dye Obtained from Solanum melongena L. Bark. Rev. Bras. Frutic. 2020, 42, e137. [Google Scholar] [CrossRef]
- Thuy, N.M.; Tien, V.Q.; Tuyen, N.N.; Giau, T.N.; Minh, V.Q.; Tai, N.V. Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules 2022, 27, e8570. [Google Scholar] [CrossRef]
- Mendonça, A.P.; Silva, L.M.M.; Sousa, F.C.; Silva, J.R.; Rosa, J.C. Mathematical modeling of the drying curves of seeds of two andiroba species. Eng. Agric. 2019, 27, 293–303. [Google Scholar] [CrossRef]
- Madalão, M.C.M.; Lima, E.M.F.; Benincá, D.B.; Saraiva, S.H.; Carvalho, R.V.d.; Silva, P.I. Extraction of Bioactive Compounds from Juçara Pulp (Euterpe edulis M.) Is Affected by Ultrasonic Power and Temperature. Ciênc. Agrotec. 2021, 45, e024820. [Google Scholar] [CrossRef]
- Silva, M.I.; Martins, J.N.; Alves, J.E.A.; Costa, F.F.P. Physical-chemical characterization of umbu pulp in foam layer. Rev. Sem. Visu 2015, 3, 82–91. [Google Scholar] [CrossRef]
- Nazaré, R.F.R.; Oliveira, M.S.P.D.; Carvalho, J.E.U.D. Evaluation of açaí tree progenies as a source of natural dyes for food. In Proceedings of the Brazilian Congress of Fruit Culture, Belém, PA, USA, 17 November 2002; SBF: Bethlehem, PA, USA, 2002. [Google Scholar]
- Francis, F.J. Analysis of anthocyanins in foods. In Anthocyanins as Food Colors; Markakis, P., Ed.; Academic Press: New York, NY, USA, 1982; pp. 181–207. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A Guide for Its Bootstrap Procedures in Multiple Comparisons. Ciênc. Agrotec. 2014, 38, 109–112. [Google Scholar] [CrossRef]
Solvent: Water | Extracts 1 | |||||||
---|---|---|---|---|---|---|---|---|
Anthocyanins (mg/100 g) | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 |
34.33 ± 0.02 e | 44.24 ± 0.10 b | 38.77 ± 0.02 c | 49.21 ± 0.02 a | 24.67 ± 0.07 g | 29.91 ± 0.02 f | 37.99 ± 0.13 d | 44.53 ± 0.05 b | |
Solvent: Alcohol 25% | Extracts 2 | |||||||
Anthocyanins (mg/100 g) | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
96.47 ± 0.05 c | 45.68 ± 0.02 f | 191.37 ± 0.40 a | 48.35 ± 0.05 d | 35.52 ± 0.09 h | 44.35 ± 0.05 g | 171.34 ± 0.06 b | 46.92 ± 0.14 e | |
Solvent: Alcohol 70% | Extracts 3 | |||||||
Anthocyanin (mg/100 g) | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
44.86 ± 0.05 d | 31.71 ± 0.04 g | 48.06 ± 0.02 b | 48.73 ± 0.04 a | 40.24 ± 0.02 e | 26.35 ± 0.02 h | 45.16 ± 0.05 c | 32.60 ± 0.11 f |
Solvent: Water | Colorimetric Parameters 1 | ||||
---|---|---|---|---|---|
Extracts | L* | a* | b* | Chroma | °hue |
01 | 20.880 ± 0.19 b | 20.400 ± 0.49 b | 7.660 ± 0.46 c | 21.90 ± 0.07 b | 20.579 ± 0.03 ab |
02 | 17.743 ± 0.11 d | 11.413 ± 0.02 e | 2.733 ± 0.04 e | 11.736 ± 0.07 e | 13.467 ± 0.11 c |
03 | 23.826 ± 0.18 a | 24.433 ± 0.17 a | −2.46 ± 0.05 b | 24.557 ± 0.05 a | 5.765 ± 0.05 d |
04 | 19.296 ± 0.02 c | 16.370 ± 0.03 dc | 5.176 ± 0.06 d | 17.169 ± 0.07 c | 17.548 ± 0.04 bc |
05 | 19.543 ± 0.28 c | 15.136 ± 0.17 d | 1.010 ± 0.11 fe | 15.170 ± 0.11 d | 3.8147 ± 0.05 d |
06 | 19.406 ± 0.71 c | 1.826 ± 0.04 g | 0.856 ± 0.21 f | 2.024 ± 0.07 g | 24.999 ± 0.04 a |
07 | 20.586 ± 0.09 b | 17.623 ± 0.48 c | −5.530 ± 0.16 a | 18.470 ± 0.07 c | 17.420 ± 0.05 bc |
08 | 17.370 ± 0.08 d | 8.356 ± 0.02 f | 1.940f ± 0.04 e | 8.578 ± 0.04 f | 13.069 ± 0.03 c |
Solvent: Alcohol 25% | Colorimetric Parameters 2 | ||||
Extracts | L* | a* | b* | Chroma | °hue |
09 | 14.576 ± 0.04 h | 0.3566 ± 0.12 g | 1.993 ± 0.09 d | 2.028 ± 0.03 g | 79.763 ± 0.02 a |
10 | 20.610 ± 0.09 b | 18.910 ± 0.12 b | 4.060 ± 0.04 c | 19.341 ± 0.02 b | 12.118 ± 0.02 dc |
11 | 17.880 ± 0.06 f | 7.826 ± 0.05 d | 0.636 ± 0.04 e | 7.852 ± 0.11 d | 4.649 ± 0.03 e |
12 | 19.550 ± 0.01 c | 16.520 ± 0.04 c | 5.456 ± 0.02 b | 17.397 ± 0.02 c | 18.278 ± 0.11 b |
13 | 16.750 ± 0.06 g | 2.290 ± 0.03 f | 0.540 ± 0.03 e | 2.353 ± 0.04 f | 13.275 ± 0.03 c |
14 | 19.283 ± 0.03 d | 7.640 ± 0.07 d | 1.846 ± 0.03 d | 7.860 ± 0.02 d | 13.590 ± 0.04 c |
15 | 22.473 ± 0.04 a | 20.336 ± 0.05 a | −3.013 ± 0.04 a | 20.558 ± 0.04 a | 8.428 ± 0.02 ed |
16 | 18.176 ± 0.06 e | 7.276 ± 0.13 e | 2.050 ± 0.01 d | 7.559 ± 0.03 e | 15.735 ± 0.02 cb |
Solvent: Alcohol 70% | Colorimetric Parameters 3 | ||||
Extracts | L* | a* | b* | Chroma | °hue |
17 | 18.356 ± 0.02 c | 18.483 ± 0.07 c | 7.053 ± 0.02 a | 19.783 ± 0.07 c | 20.887 ± 0.02 a |
18 | 16.663 ± 0.01 h | 10.396 ± 0.09 g | 2.866 ± 0.07 d | 10.784 ± 0.01 g | 15.417 ± 0.07 c |
19 | 19.783 ± 0.02 b | 21.713 ± 0.20 a | 6.146 ± 0.06 b | 22.566 ± 0.03 a | 15.806 ± 0.01 cd |
20 | 17.160 ± 0.01 g | 14.143 ± 0.02 d | 4.113 ± 0.03 c | 14.729 ± 0.07 d | 16.216 ± 0.05 b |
21 | 17.753 ± 0.02 d | 11.326 ± 0.04 f | 2.470 ± 0.04 e | 11.592 ± 0.02 f | 12.302 ± 0.07 e |
22 | 17.410 ± 0.02 f | 7.670 ± 0.07 h | 1.963 ± 0.04 f | 7.917 ± 0.07 h | 14.358 ± 0.02 d |
23 | 20.036 ± 0.03 a | 21.050 ± 0.03 b | 0.340 ± 0.02 g | 21.052 ± 0.07 b | 0.925 ± 0.02 g |
24 | 17.626 ± 0.03 e | 12.426 ± 0.16 e | 1.853 ± 0.04 f | 12.564 ± 0.05 e | 8.481 ± 0.03 f |
Solvent | Codification | Raw Material | pH Range | Processing Temperature (°C) |
---|---|---|---|---|
Water | 01 | In natura | 4.0 | 75 |
02 | 70 °C/1 h | 4.0 | 75 | |
03 | In natura | 4.0 | 25 | |
04 | 70 °C/1 h | 4.0 | 25 | |
05 | In natura | 6.0 | 75 | |
06 | 70 °C/1 h | 6.0 | 75 | |
07 | In natura | 6.0 | 25 | |
08 | 70 °C/1 h | 6.0 | 25 | |
Alcohol 25% | 09 | In natura | 4.0 | 75 |
10 | 70 °C/1 h | 4.0 | 75 | |
11 | In natura | 4.0 | 25 | |
12 | 70 °C/1 h | 4.0 | 25 | |
13 | In natura | 6.0 | 75 | |
14 | 70 °C/1 h | 6.0 | 75 | |
15 | In natura | 6.0 | 25 | |
16 | 70 °C/1 h | 6.0 | 25 | |
Alcohol 70% | 17 | In natura | 4.0 | 75 |
18 | 70 °C/1 h | 4.0 | 75 | |
19 | In natura | 4.0 | 25 | |
20 | 70 °C/1 h | 4.0 | 25 | |
21 | In natura | 6.0 | 75 | |
22 | 70 °C/1 h | 6.0 | 75 | |
23 | In natura | 6.0 | 25 | |
24 | 70 °C/1 h | 6.0 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, A.C.d.; Gomes, J.P.; Silva, F.B.d.; Nunes, J.S.; Santos, F.S.d.; Silva, W.P.d.; Ferreira, J.P.d.L.; Queiroz, A.J.d.M.; Figueirêdo, R.M.F.d.; Lima, G.S.d.; et al. Optimization of Extraction Method of Anthocyanins from Red Cabbage. Molecules 2023, 28, 3549. https://doi.org/10.3390/molecules28083549
Araújo ACd, Gomes JP, Silva FBd, Nunes JS, Santos FSd, Silva WPd, Ferreira JPdL, Queiroz AJdM, Figueirêdo RMFd, Lima GSd, et al. Optimization of Extraction Method of Anthocyanins from Red Cabbage. Molecules. 2023; 28(8):3549. https://doi.org/10.3390/molecules28083549
Chicago/Turabian StyleAraújo, Auryclennedy Calou de, Josivanda Palmeira Gomes, Francilânia Batista da Silva, Jarderlany Sousa Nunes, Francislaine Suelia dos Santos, Wilton Pereira da Silva, João Paulo de Lima Ferreira, Alexandre José de Melo Queiroz, Rossana Maria Feitosa de Figueirêdo, Geovani Soares de Lima, and et al. 2023. "Optimization of Extraction Method of Anthocyanins from Red Cabbage" Molecules 28, no. 8: 3549. https://doi.org/10.3390/molecules28083549
APA StyleAraújo, A. C. d., Gomes, J. P., Silva, F. B. d., Nunes, J. S., Santos, F. S. d., Silva, W. P. d., Ferreira, J. P. d. L., Queiroz, A. J. d. M., Figueirêdo, R. M. F. d., Lima, G. S. d., Soares, L. A. d. A., Rocha, A. P. T., & Lima, A. G. B. d. (2023). Optimization of Extraction Method of Anthocyanins from Red Cabbage. Molecules, 28(8), 3549. https://doi.org/10.3390/molecules28083549