LiNi0.6Co0.2Mn0.2O2 Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Details
3.1. Preparation Method of Solid Electrolyte
3.2. Materials Characterizations
3.3. Electrochemical Characterizations
3.4. Microcavity Electrode Preparation and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Evadoption. EV Sales Forecasts. Available online: https://evadoption.com/ev-sales/ev-sales-forecasts/ (accessed on 9 November 2022).
- Cano, P.Z.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Mukhan, O.; Umirov, N.; Lee, B.M.; Yun, J.S.; Choi, J.H.; Kim, S.S. A Facile Carbon Coating on Mg-Embedded SiOx Alloy for Fabrication of High-Energy Lithium-Ion Batteries. Adv. Mater. Interfaces 2022, 9, 2201426. [Google Scholar] [CrossRef]
- Sang, L.; Haasch, R.T.; Gewirth, A.A.; Nuzzo, R.G. Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. Chem. Mater. 2017, 29, 3029–3037. [Google Scholar] [CrossRef]
- Sun, Y.K. Promising All-Solid-State Batteries for Future Electric Vehicles. ACS Energy Lett. 2020, 5, 3221–3223. [Google Scholar] [CrossRef]
- Bhalothia, D.; Yan, C.; Hiraoka, N.; Ishii, H.; Liao, Y.F.; Chen, P.C.; Wang, K.W.; Chou, J.P.; Dai, S.; Chen, T.Y. Pt-Mediated Interface Engineering Boosts the Oxygen Reduction Reaction Performance of Ni Hydroxide-Supported Pd Nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 16177–16188. [Google Scholar] [CrossRef]
- Subramanian, Y.; Rajagopal, R.; Ryu, K.S. Synthesis, air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6-xPS5-xCl1.0Brx) for all-solid-state lithium batteries. J. Power Sources 2022, 520, 230849. [Google Scholar] [CrossRef]
- Rajagopal, R.; Cho, J.U.; Subramanian, Y.; Jung, Y.J.; Kang, S.; Ha, Y.C.; Ryu, K.S. Preparation of highly conductive metal doped/substituted Li7P2S8Br(1-x)Ix type lithium superionic conductor for all-solid-state lithium battery applications. Chem. Eng. J. 2022, 428, 132155. [Google Scholar] [CrossRef]
- Lee, Y.; Jeong, J.; Lim, H.D.; Kim, S.O.; Jung, H.G.; Chung, K.Y.; Yu, S. Superionic Si-Substituted Lithium Argyrodite Sulfide Electrolyte Li6+xSb1–xSixS5I for All-Solid-State Batteries. ACS Sustain. Chem. Eng. 2021, 9, 120–128. [Google Scholar] [CrossRef]
- Deng, Z.; Lin, X.; Huang, Z.; Meng, J.; Zhong, Y.; Ma, G.; Zhou, Y.; Shen, Y.; Ding, H.; Huang, Y. Recent Progress on Advanced Imaging Techniques for Lithium-Ion Batteries. Adv. Energy Mater. 2020, 11, 2000806. [Google Scholar] [CrossRef]
- Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B.T.; Ohnishi, T.; Osada, M.; Sasaki, T. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion. 2012, 225, 594–597. [Google Scholar] [CrossRef]
- Ando, K.; Yamada, Y.; Nishikawa, K.; Matsuda, T.; Imamura, D.; Kanamura, K. Degradation Analysis of LiNi0.8Co0.15Al0.05O2 for Cathode Material of Lithium-Ion Battery Using Single-Particle Measurement. ACS Appl. Energy Mater. 2018, 1, 4536–4544. [Google Scholar] [CrossRef]
- Heubner, C.; Langklotz, U.; Lammel, C.; Schneider, M.; Michaelis, A. Electrochemical single-particle measurements of electrode materials for Li-ion batteries: Possibilities, insights and implications for future development. Electrochim. Acta 2020, 330, 135160. [Google Scholar] [CrossRef]
- Nishikawa, K.; Zettsu, N.; Teshima, K.; Kanamura, K. Intrinsic electrochemical characteristics of one LiNi0.5Mn1.5O4 spinel particle. J. Electroanal. Chem. 2017, 799, 468–472. [Google Scholar] [CrossRef]
- Umirov, N.; Yamada, Y.; Munakata, H.; Kim, S.-S.; Kanamura, K. Analysis of intrinsic properties of Li4Ti5O12 using single-particle technique. J. Electroanal. Chem. 2019, 855, 113514. [Google Scholar] [CrossRef]
- Rajagopal, R.; Subramanian, Y.; Jung, Y.J.; Kang, S.; Ryu, K.S. Rapid Synthesis of Highly Conductive Li6PS5Cl Argyrodite-Type Solid Electrolytes Using Pyridine Solvent. ACS Appl. Energy Mater. 2022, 5, 9266–9272. [Google Scholar] [CrossRef]
- Arnold, W.; Buchberger, D.A.; Li, Y.; Sunkara, M.; Druffel, T.; Wang, H. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X = Cl, Br, I) superionic conductors. J. Power Sources 2020, 464, 228158. [Google Scholar] [CrossRef]
- Ryu, H.-H.; Park, K.-J.; Yoom, C.S.; Sun, Y.-K. Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? Chem. Mater. 2018, 30, 1155–1163. [Google Scholar] [CrossRef]
- Dokko, K.; Nakata, N.; Suzuki, Y.; Kanamura, K. High-Rate Lithium Deintercalation from Lithiated Graphite Single-Particle Electrode. J. Phys. Chem. C 2010, 114, 8646–8650. [Google Scholar] [CrossRef]
- Chae, J.E.; Annak, K.; Hong, K.; Lee, S.-I.; Munakata, H.; Kim, S.-S.; Kanamura, K. Electrochemical Characterization of Phosphorous-doped Soft Carbon using Single Particle for Lithium Battery Anode. Electrochim. Acta 2014, 130, 60–65. [Google Scholar] [CrossRef]
- Kim, J.S.; Lim, S.; Munakata, H.; Kim, S.-S.; Kanamura, K. Understanding the relationship of electrochemical properties and structure of microstructure-controlled core shell gradient type Ni-rich cathode material by single particle measurement. Electrochim. Acta 2021, 390, 138813. [Google Scholar] [CrossRef]
- de Oliveir, F.M.; Guedes, T.d.J.; Lim, A.B.; Da Silva, L.M.; dos Santos, W.T.P. Alternative method to obtain the Tafel plot for simple electrode reactions using batch injection analysis coupled with multiple-pulse amperometric detection. Electrochim. Acta 2017, 242, 180–186. [Google Scholar] [CrossRef]
- Tateyama, Y.; Gao, B.; Jalem, R.; Haruyama, J. Theoretical picture of positive electrode–solid electrolyte interface in all-solid-state battery from electrochemistry and semiconductor physics viewpoints. Curr. Opin. Electrochem. 2019, 17, 149–157. [Google Scholar] [CrossRef]
- Lim, S.; Kim, J.-H.; Yamada, Y.; Munakata, H.; Lee, Y.-S.; Kim, S.-S.; Kanamura, K. Improvement of rate capability by graphite foam anode for Li secondary batteries. J. Power Sources 2017, 355, 164–170. [Google Scholar] [CrossRef]
- Li, F.; Liu, Z.; Shen, J.; Xu, X.; Zeng, L.; Li, Y.; Zhang, D.; Zuo, S.; Liu, J. Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries. Nanomaterials 2020, 10, 2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Tang, S.; Lei, T.; Deng, S.; Xue, L.; Cao, G.; Zhu, J. Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J. Power Sources 2018, 395, 403–413. [Google Scholar] [CrossRef]
- Ding, H.; Wang, X.; Wang, J.; Zhang, H.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Morphology-controllable synthesis and excellent electrochemical performance of Ni-rich layered NCM622 as cathode materials for lithium-ion batteries via glycerin-assisted solvothermal method. J. Power Sources 2023, 553, 232307. [Google Scholar] [CrossRef]
- Fu, J.; Mu, D.; Wu, B.; Bi, J.; Liu, X.; Peng, Y.; Li, Y.; Wu, F. Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate. Electrochim. Acta 2017, 246, 27–34. [Google Scholar] [CrossRef]
- Noh, H.J.; Youn, S.; Yoon, C.S.; Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 2013, 233, 121–130. [Google Scholar] [CrossRef]
- Zuo, T.T.; Rueb, R.; Pan, R.; Walther, F.; Rohnke, M.; Hori, S.; Kanno, R.; Schroder, D.; Janek, J. A mechanistic investigation of the Li10GeP2S12|LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nat. Commun. 2021, 12, 6669. [Google Scholar] [CrossRef]
Electrode-Electrolyte System | Charge Transfer Resistance (RCT) (Ω cm2) | Diffusion Coefficient (D) (cm2 s−1) | Ref. |
---|---|---|---|
NCM622-LiPF6 | 5–10 | -- | [18] |
Ni-rich NCM622 | 207 | 2.03 × 10−8 | [25] |
NCM622-LiPF6 | 50.64 | 10−10 to 10−13 | [26] |
NCM622 | 104.67 | 4.9 × 10−16 | [27] |
NCM622-LiPF6 | 698.2 | -- | [28] |
Li[NixCoyMnz]O2 (x = 1/4, 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) | -- | 10−8 to 10−12 | [29] |
LGPS|NCM | 15–200 | 10−11 to 10−13 | [30] |
NCM622-Li6PS5Cl | 800–4000 | 10−10 to 10−13 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingole, R.S.; Rajagopal, R.; Mukhan, O.; Kim, S.-S.; Ryu, K.-S. LiNi0.6Co0.2Mn0.2O2 Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode. Molecules 2023, 28, 3537. https://doi.org/10.3390/molecules28083537
Ingole RS, Rajagopal R, Mukhan O, Kim S-S, Ryu K-S. LiNi0.6Co0.2Mn0.2O2 Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode. Molecules. 2023; 28(8):3537. https://doi.org/10.3390/molecules28083537
Chicago/Turabian StyleIngole, Rahul S., Rajesh Rajagopal, Orynbassar Mukhan, Sung-Soo Kim, and Kwang-Sun Ryu. 2023. "LiNi0.6Co0.2Mn0.2O2 Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode" Molecules 28, no. 8: 3537. https://doi.org/10.3390/molecules28083537
APA StyleIngole, R. S., Rajagopal, R., Mukhan, O., Kim, S. -S., & Ryu, K. -S. (2023). LiNi0.6Co0.2Mn0.2O2 Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode. Molecules, 28(8), 3537. https://doi.org/10.3390/molecules28083537