Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = microcavity electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8404 KB  
Article
Measurement of Zinc Ions in Seawater Samples Using a Microfluidic System Based on the GR/CeO2/Nafion Material
by Wei Tao, Zexi Zeng, Chengjun Qiu, Wei Qu, Yuan Zhuang, Yang Gu, Huili Hao and Zizi Zhao
Molecules 2024, 29(12), 2867; https://doi.org/10.3390/molecules29122867 - 16 Jun 2024
Viewed by 4120
Abstract
Considering that heavy-metal contamination of seawater is getting worse, building a quick, accurate and portable device for detecting trace zinc in seawater in real time would be very beneficial. In this work, a microfluidic system was developed that includes a planar disc electrode, [...] Read more.
Considering that heavy-metal contamination of seawater is getting worse, building a quick, accurate and portable device for detecting trace zinc in seawater in real time would be very beneficial. In this work, a microfluidic system was developed that includes a planar disc electrode, a micro-cavity for detection, an electrochemical workstation, a computer, a container for waste liquid reprocessing, an external pipeline and other components as well as a graphene/cerium oxide/nano-cerium oxide/Nafion composite membrane was used to modify the planar disc electrode (GR/CeO2/Nafion/Au) to investigate the electrochemical behaviour of Zn(II) using cyclic voltammetry, square-wave voltammetry and orthogonal test methods. Under optimal experimental conditions, the peak reaction current of Zn(II) showed a good linear relationship with the concentration of Zn(II) in the range of 1–900 μg/L with a correlation coefficient of 0.998, and the detection limit of the method was 0.87 μg/L. In addition, the microfluidic system had good stability, reproducibility and anti-interference. The system was used for determining zinc ions in real seawater samples, and the results were very similar to those of inductively coupled plasma–emission spectrometry, demonstrating the practicality of the system for the detection of trace zinc. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

13 pages, 3715 KB  
Article
A Conductive Microcavity Created by Assembly of Carbon Nanotube Buckypapers for Developing Electrochemically Wired Enzyme Cascades
by Itthipon Jeerapan, Yannig Nedellec and Serge Cosnier
Nanomaterials 2024, 14(6), 545; https://doi.org/10.3390/nano14060545 - 20 Mar 2024
Cited by 3 | Viewed by 2048
Abstract
We describe the creation of a conductive microcavity based on the assembly of two pieces of carbon nanotube buckypaper for the entrapment of two enzymes, horseradish peroxidase (HRP) and glucose oxidase (GOx), as well as a redox mediator: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS). [...] Read more.
We describe the creation of a conductive microcavity based on the assembly of two pieces of carbon nanotube buckypaper for the entrapment of two enzymes, horseradish peroxidase (HRP) and glucose oxidase (GOx), as well as a redox mediator: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS). The hollow electrode, employing GOx, HRP, and the mediator, as an electrochemical enzyme cascade model, is utilized for glucose sensing at a potential of 50 mV vs. Ag/AgCl. This bienzyme electrode demonstrates the ability to oxidize glucose by GOx and subsequently convert H2O2 to water via the electrical wiring of HRP by ABTS. Different redox mediators (ABTS, potassium hexacyanoferrate (III), and hydroquinone) are tested for HRP wiring, with ABTS being the best candidate for the electroenzymatic reduction of H2O2. To demonstrate the possibility to optimize the enzyme cascade configuration, the enzyme ratio is studied with 1 mg HRP combined with variable amounts of GOx (1–4 mg) and 2 mg GOx combined with variable amounts of HRP (0.5–2 mg). The bienzyme electrode shows continuous operational stability for over a week and an excellent storage stability in phosphate buffer, with a decay of catalytic current by only 29% for 1 mM glucose after 100 days. Full article
Show Figures

Figure 1

17 pages, 9913 KB  
Article
Hollow Microcavity Electrode for Enhancing Light Extraction
by Seonghyeon Park, Byeongwoo Kang, Seungwon Lee, Jian Cheng Bi, Jaewon Park, Young Hyun Hwang, Jun-Young Park, Ha Hwang, Young Wook Park and Byeong-Kwon Ju
Micromachines 2024, 15(3), 328; https://doi.org/10.3390/mi15030328 - 27 Feb 2024
Cited by 1 | Viewed by 2727
Abstract
Luminous efficiency is a pivotal factor for assessing the performance of optoelectronic devices, wherein light loss caused by diverse factors is harvested and converted into the radiative mode. In this study, we demonstrate a nanoscale vacuum photonic crystal layer (nVPCL) for light extraction [...] Read more.
Luminous efficiency is a pivotal factor for assessing the performance of optoelectronic devices, wherein light loss caused by diverse factors is harvested and converted into the radiative mode. In this study, we demonstrate a nanoscale vacuum photonic crystal layer (nVPCL) for light extraction enhancement. A corrugated semi-transparent electrode incorporating a periodic hollow-structure array was designed through a simulation that utilizes finite-difference time-domain computational analysis. The corrugated profile, stemming from the periodic hollow structure, was fabricated using laser interference lithography, which allows the precise engineering of various geometrical parameters by controlling the process conditions. The semi-transparent electrode consisted of a 15 nm thick Ag film, which acted as the exit mirror and induced microcavity resonance. When applied to a conventional green organic light-emitting diode (OLED) structure, the optimized nVPCL-integrated device demonstrated a 21.5% enhancement in external quantum efficiency compared to the reference device. Further, the full width at half maximum exhibited a 27.5% reduction compared to that of the reference device, demonstrating improved color purity. This study presents a novel approach by applying a hybrid thin film electrode design to optoelectronic devices to enhance optical efficiency and color purity. Full article
Show Figures

Figure 1

16 pages, 5653 KB  
Article
Multiscale Fabrication Process Optimization of DFB Cavities for Organic Laser Diodes
by Amani Ouirimi, Alex Chamberlain Chime, Nixson Loganathan, Mahmoud Chakaroun, Quentin Gaimard and Alexis P. A. Fischer
Micromachines 2024, 15(2), 260; https://doi.org/10.3390/mi15020260 - 10 Feb 2024
Cited by 1 | Viewed by 1770
Abstract
In the context of the quest for the Organic Laser Diode, we present the multiscale fabrication process optimization of mixed-order distributed-feedback micro-cavities integrated in nanosecond-short electrical pulse-ready organic light-emitting diodes (OLEDs). We combine ultra-short pulsed electrical excitation and laser micro-cavities. This requires the [...] Read more.
In the context of the quest for the Organic Laser Diode, we present the multiscale fabrication process optimization of mixed-order distributed-feedback micro-cavities integrated in nanosecond-short electrical pulse-ready organic light-emitting diodes (OLEDs). We combine ultra-short pulsed electrical excitation and laser micro-cavities. This requires the integration of a highly resolved DFB micro-cavity with an OLED stack and with microwave electrodes. In a second challenge, we tune the cavity resonance precisely to the electroluminescence peak of the organic laser gain medium. This requires precise micro-cavity fabrication performed using e-beam lithography to pattern gratings with a precision in the nanometer scale. Optimal DFB micro-cavities are obtained with 300 nm thick hydrogen silsesquioxane negative-tone e-beam resist on 50 nm thin indium tin oxide anode exposed with a charge quantity per area (i.e., dose) of 620 µC/cm2, developed over 40 min in tetramethylammonium hydroxide diluted in water. We show that the integration of the DFB micro-cavity does not hinder the pulsed electrical operability of the device, which exhibits a peak current density as high as 14 kA/cm2. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Micromachines 2023)
Show Figures

Figure 1

10 pages, 2854 KB  
Article
LiNi0.6Co0.2Mn0.2O2 Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode
by Rahul S. Ingole, Rajesh Rajagopal, Orynbassar Mukhan, Sung-Soo Kim and Kwang-Sun Ryu
Molecules 2023, 28(8), 3537; https://doi.org/10.3390/molecules28083537 - 17 Apr 2023
Cited by 4 | Viewed by 2373
Abstract
Due to the limitations of organic liquid electrolytes, current development is towards high performance all-solid-state lithium batteries (ASSLBs). For high performance ASSLBs, the most crucial is the high ion-conducting solid electrolyte (SE), with a focus on interface analysis between SE and active materials. [...] Read more.
Due to the limitations of organic liquid electrolytes, current development is towards high performance all-solid-state lithium batteries (ASSLBs). For high performance ASSLBs, the most crucial is the high ion-conducting solid electrolyte (SE), with a focus on interface analysis between SE and active materials. In the current study, we successfully synthesized the high ion-conductive argyrodite-type (Li6PS5Cl) solid electrolyte, which has 4.8 mS cm−1 conductivity at room temperature. Additionally, the present study suggests the quantitative analysis of interfaces in ASSLBs. The measured initial discharge capacity of a single particle confined in a microcavity electrode was 1.05 nAh for LiNi0.6Co0.2Mn0.2O2 (NCM622)-Li6PS5Cl solid electrolyte materials. The initial cycle result shows the irreversible nature of active material due to the formation of the solid electrolyte interphase (SEI) layer on the surface of the active particle; further second and third cycles demonstrate high reversibility and good stability. Furthermore, the electrochemical kinetic parameters were calculated through the Tafel plot analysis. From the Tafel plot, it is seen that asymmetry increases gradually at high discharge currents and depths, which rise asymmetricity due to the increasing of the conduction barrier. However, the electrochemical parameters confirm the increasing conduction barrier with increased charge transfer resistance. Full article
(This article belongs to the Special Issue Recent Progress in Nanomaterials in Electrochemistry)
Show Figures

Figure 1

7 pages, 1262 KB  
Article
Hollow Bioelectrodes Based on Buckypaper Assembly. Application to the Electroenzymatic Reduction of O2
by Paulo Henrique M. Buzzetti, Anastasiia Berezovska, Yannig Nedellec and Serge Cosnier
Nanomaterials 2022, 12(14), 2399; https://doi.org/10.3390/nano12142399 - 14 Jul 2022
Cited by 6 | Viewed by 2241
Abstract
A new concept of hollow electrode based on the assembly of two buckypapers creating a microcavity which contains a biocatalyst is described. To illustrate this innovative concept, hollow bioelectrodes containing 0.16–4 mg bilirubin oxidase in a microcavity were fabricated and applied to electroenzymatic [...] Read more.
A new concept of hollow electrode based on the assembly of two buckypapers creating a microcavity which contains a biocatalyst is described. To illustrate this innovative concept, hollow bioelectrodes containing 0.16–4 mg bilirubin oxidase in a microcavity were fabricated and applied to electroenzymatic reduction of O2 in aqueous solution. For hemin-modified buckypaper, the bioelectrode shows a direct electron transfer between multi-walled carbon nanotubes and bilirubin oxidase with an onset potential of 0.77 V vs. RHE. The hollow bioelectrodes showed good storage stability in solution with an electroenzymatic activity of 30 and 11% of its initial activity after 3 and 6 months, respectively. The co-entrapment of bilirubin oxidase and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) in the microcavity leads to a bioelectrode exhibiting mediated electron transfer. After 23 h of intermittent operation, 5.66 × 10−4 mol of O2 were electroreduced (turnover number of 19,245), the loss of catalytic current being only 54% after 7 days. Full article
(This article belongs to the Special Issue Next-Generation Energy Nanomaterials)
Show Figures

Graphical abstract

8 pages, 2341 KB  
Article
Mechanically Contacted Distributed-Feedback Optical Microcavity
by Yue Liu, Miao Liu, Jingyun Hu, Jiajun Li and Xinping Zhang
Nanomaterials 2022, 12(11), 1883; https://doi.org/10.3390/nano12111883 - 31 May 2022
Cited by 2 | Viewed by 2296
Abstract
We report a construction of distributed-feedback (DFB) optical microcavities, which is realized through mechanical contact between a high-quality planar thin film of a polymeric semiconductor and a large-area homogeneous nanograting. Using poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT) as the active medium for the planar layer, we [...] Read more.
We report a construction of distributed-feedback (DFB) optical microcavities, which is realized through mechanical contact between a high-quality planar thin film of a polymeric semiconductor and a large-area homogeneous nanograting. Using poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3] thiadiazol-4,8-diyl)] (F8BT) as the active medium for the planar layer, we achieve strong amplified spontaneous emission from such a microcavity with a low threshold. This not only simplifies largely the fabrication techniques for DFB microcavities, but also avoids the unexpected chemical interactions during solution processing between the organic semiconductors and the nanograting materials. Furthermore, high-quality polymer thin films with high surface smoothness and high thickness homogeneity are employed without any modulations for constructing the microcavities. This also suggests new designs of microcavity light-emitting diodes, or even for realizing electrically pumped polymer lasers, simply by metallizing the dielectric nanogratings as the electrodes. Full article
(This article belongs to the Topic Optoelectronic Materials)
Show Figures

Figure 1

17 pages, 6326 KB  
Article
Enhancement of Binding Kinetics on Affinity Substrates Using Asymmetric Electroosmotic Flow on a Sinusoidal Bipolar Electrode
by Yupan Wu, Bowen Hu, Xun Ma, Yucheng Wang, Wei Li and Shaoxi Wang
Micromachines 2022, 13(2), 207; https://doi.org/10.3390/mi13020207 - 28 Jan 2022
Cited by 7 | Viewed by 2251
Abstract
In the context of the COVID-19 epidemic, enhancing the transport of analyte to a sensor surface is crucial for rapid detection of biomolecules since common conditions, including low diffusion coefficients, cause inordinately long detection times. Integrated microfluidic immunoassay chips are receiving increasing attention [...] Read more.
In the context of the COVID-19 epidemic, enhancing the transport of analyte to a sensor surface is crucial for rapid detection of biomolecules since common conditions, including low diffusion coefficients, cause inordinately long detection times. Integrated microfluidic immunoassay chips are receiving increasing attention for their low sample volume and fast response time. We herein take advantage of asymmetric ICEO flow at a bipolar sinusoidal electrode to improve the rate of antibody binding to the reaction surface based on finite element modeling. Three different microfluidic cavities are proposed by changing the positions of the surface reaction area. We further investigate the relationship between binding enhancement and reaction surface positions, Damkohler number, and the voltage and frequency of the AC signal applied to the driving electrodes. Furthermore, the influence of the AC signal applied to the sinusoidal bipolar electrode on antigen–antibody-binding performance is studied in detail. Above all, the simulation results demonstrate that the microfluidic immune-sensor with a sinusoidal bipolar electrode could not only significantly improve the heterogeneous immunoassays but also enable efficient enhancement of assays in a selected reaction region within the micro-cavity, providing a promising approach to a variety of immunoassay applications, such as medical diagnostics and environmental and food monitoring. Full article
Show Figures

Figure 1

17 pages, 8863 KB  
Article
Deionized Water Electrochemical Machining Hybridized with Alumina Powder Polishing for Microcavity of M-333 Mold Steel
by Albert Wen-Jeng Hsue and Zih-Yuan Huang
Processes 2022, 10(1), 152; https://doi.org/10.3390/pr10010152 - 13 Jan 2022
Cited by 4 | Viewed by 2516
Abstract
An electrochemical machining (ECM) process for microcavity fabrication with deionized water (DI-water) and an ECM polishing hybrid with alumina powder of 1.0 μm grains on a single micro-EDM machine are proposed. The process adopts tungsten carbide as tool electrode and M-333 tool steel [...] Read more.
An electrochemical machining (ECM) process for microcavity fabrication with deionized water (DI-water) and an ECM polishing hybrid with alumina powder of 1.0 μm grains on a single micro-EDM machine are proposed. The process adopts tungsten carbide as tool electrode and M-333 tool steel as the mold material. It reveals that employing the 30 μm/min feed rate with 50 mA and 0.2 ms of pulse-width is suitable for DI-water electrochemical machining. The DI-water ECM process can achieve an excellent surface roughness at Ra 0.169 µm on a semispherical round cavity. Combining the ECM with hybrid polishing with the alumina powder can achieve a better profile for a much deeper cavity than pure electrolytic discharge machining. The hybrid ECM polishing can efficiently finish a micro square insert of 0.6 mm length at 64 μm depth. Such ECM milling can achieve an S-shaped microchannel of radius 1.0 mm and a slot of 1.0 × 0.5 mm2 with 110 μm depth, demonstrating its feasibility and the surface integrity with accurate profile and roughness of Ra 0.227 μm. This study provides a cost-effective scheme for micro mold fabrication with a conventional micro-EDM machine tool and an intuitive and convenient optional process. However, some micro-electrical discharges occurred due to the breakdown of insulation, which creates micro craters on the surface of the parts. Full article
(This article belongs to the Special Issue New Frontiers in Magnetic Polishing and Electrochemical Technology)
Show Figures

Figure 1

9 pages, 2776 KB  
Article
Self-Patterned Stretchable Electrode Based on Silver Nanowire Bundle Mesh Developed by Liquid Bridge Evaporation
by Eun Young An, Siyoung Lee, Seung Goo Lee, Eunho Lee, Jeong Ju Baek, Gyojic Shin, Kyung Ho Choi, Jeong Ho Cho and Geun Yeol Bae
Nanomaterials 2021, 11(11), 2865; https://doi.org/10.3390/nano11112865 - 27 Oct 2021
Cited by 3 | Viewed by 5562
Abstract
A new strategy is required to realize a low-cost stretchable electrode while realizing high stretchability, conductivity, and manufacturability. In this study, we fabricated a self-patterned stretchable electrode using a simple and scalable process. The stretchable electrode is composed of a bridged square-shaped (BSS) [...] Read more.
A new strategy is required to realize a low-cost stretchable electrode while realizing high stretchability, conductivity, and manufacturability. In this study, we fabricated a self-patterned stretchable electrode using a simple and scalable process. The stretchable electrode is composed of a bridged square-shaped (BSS) AgNW bundle mesh developed by liquid bridge evaporation and a stretchable polymer matrix patterned with a microcavity array. Owing to the BSS structure and microcavity array, which effectively concentrate the applied strain on the deformable square region of the BSS structure under tensile stretching, the stretchable electrode exhibits high stretchability with a low ΔR/R0 of 10.3 at a strain of 40%. Furthermore, by exploiting the self-patterning ability—attributable to the difference in the ability to form liquid bridges according to the distance between microstructures—we successfully demonstrated a stretchable AgNW bundle mesh with complex patterns without using additional patterning processes. In particular, stretchable electrodes were fabricated by spray coating and bar coating, which are widely used in industry for low-cost mass production. We believe that this study significantly contributes to the commercialization of stretchable electronics while achieving high performance and complex patterns, such as stretchable displays and electronic skin. Full article
(This article belongs to the Special Issue Preparation, Characterization and Application of Nanowires)
Show Figures

Figure 1

14 pages, 3625 KB  
Article
Color-Tunable Organic Light Emitting Diodes for Deep Blue Emission by Regulating the Optical Micro-Cavity
by Jixin Jiang, Weiye Zheng, Junfei Chen, Zheng Xu, Dandan Song, Bo Qiao and Suling Zhao
Molecules 2020, 25(12), 2867; https://doi.org/10.3390/molecules25122867 - 22 Jun 2020
Cited by 10 | Viewed by 3739
Abstract
Nowadays, most blue organic light emitting diodes (OLEDs) are fabricated by using sky-blue emitters which are more easily synthesized when compared with other deep blue emitters. Herein, we put forward a new idea of using an optical micro-cavity based on metal electrodes to [...] Read more.
Nowadays, most blue organic light emitting diodes (OLEDs) are fabricated by using sky-blue emitters which are more easily synthesized when compared with other deep blue emitters. Herein, we put forward a new idea of using an optical micro-cavity based on metal electrodes to regulate electroluminance (EL) spectra of sky-blue organic light emitting diodes to obtain a saturated deep blue emission with a narrowed full-width at half-maximum (FWHM). First, we simulate micro-cavity OLEDs and find that the transmission of the anode plays an important role in the forward emission. Meanwhile, the optical path of micro-cavity OLEDs as well as the phase shifting from electrodes influence the EL spectra and induce the extra intensity enhancement. The results show that when the resonant cavity optical path is regulated by changing the thickness of emitting layer (EML) from 25 nm to 75 nm in the micro-cavity, the EL peak of blue OLEDs has a redshift from 479 nm to 493 nm with FWHM shifting from 69.8 nm to 83.2 nm, when compared to the device without the micro-cavity, whose approximate EL peak and FWHM are 487 nm and 87 nm, respectively. However, the efficiency of electroluminescence decreases in micro-cavity OLEDs. We speculate that this is on account of the ohmic contact between ITO and Ag, the surface plasma effect and the rough morphology induced by Ag electrodes. Full article
(This article belongs to the Special Issue Organic Light Emitting Diodes II)
Show Figures

Figure 1

13 pages, 3056 KB  
Article
Transparent Ultrathin Metal Electrode with Microcavity Configuration for Highly Efficient TCO-Free Perovskite Solar Cells
by Fengqin He, Hailong You, Xueyi Li, Dazheng Chen, Shangzheng Pang, Weidong Zhu, He Xi, Jincheng Zhang and Chunfu Zhang
Materials 2020, 13(10), 2328; https://doi.org/10.3390/ma13102328 - 19 May 2020
Cited by 1 | Viewed by 2943
Abstract
Optical microcavity configuration is one optical strategy to enhance light trapping in devices using planar electrodes. In this work, the potential application of optical microcavity configuration with ultrathin metal electrodes in highly efficient perovskite solar cells (PSCs) was investigated. By comparing with the [...] Read more.
Optical microcavity configuration is one optical strategy to enhance light trapping in devices using planar electrodes. In this work, the potential application of optical microcavity configuration with ultrathin metal electrodes in highly efficient perovskite solar cells (PSCs) was investigated. By comparing with the device with conventional indium-tin-oxide (ITO) electrodes, it is shown that by carefully designing the Ag/dielectric planar electrode, a device with an optical microcavity structure can achieve comparable—or even higher—power conversion efficiency than a conventional device. Moreover, there is a relative high tolerance for the Ag film thickness in the optical microcavity structure. When the thickness of the Ag film is increased from 8 to 12 nm, the device still can attain the performance level of a conventional device. This gives a process tolerance to fabricate devices with an optical microcavity structure and reduces process difficulty. This work indicates the great application potential of optical microcavities with ultrathin metal electrodes in PSCs; more research attention should be paid in this field. Full article
(This article belongs to the Special Issue Materials for Organic and Perovskite Solar Cells)
Show Figures

Figure 1

12 pages, 2090 KB  
Article
Research on a Dual-Mode Infrared Liquid-Crystal Device for Simultaneous Electrically Adjusted Filtering and Zooming
by Zhonglun Liu, Mingce Chen, Zhaowei Xin, Wanwan Dai, Xinjie Han, Xinyu Zhang, Haiwei Wang and Changsheng Xie
Micromachines 2019, 10(2), 137; https://doi.org/10.3390/mi10020137 - 19 Feb 2019
Cited by 15 | Viewed by 3177
Abstract
A new dual-mode liquid-crystal (LC) micro-device constructed by incorporating a Fabry–Perot (FP) cavity and an arrayed LC micro-lens for performing simultaneous electrically adjusted filtering and zooming in infrared wavelength range is presented in this paper. The main micro-structure is a micro-cavity consisting of [...] Read more.
A new dual-mode liquid-crystal (LC) micro-device constructed by incorporating a Fabry–Perot (FP) cavity and an arrayed LC micro-lens for performing simultaneous electrically adjusted filtering and zooming in infrared wavelength range is presented in this paper. The main micro-structure is a micro-cavity consisting of two parallel zinc selenide (ZnSe) substrates that are pre-coated with ~20-nm aluminum (Al) layers which served as their high-reflection films and electrodes. In particular, the top electrode of the device is patterned by 44 × 38 circular micro-holes of 120 μm diameter, which also means a 44 × 38 micro-lens array. The micro-cavity with a typical depth of ~12 μm is fully filled by LC materials. The experimental results show that the spectral component with needed frequency or wavelength can be selected effectively from incident micro-beams, and both the transmission spectrum and the point spread function can be adjusted simultaneously by simply varying the root-mean-square value of the signal voltage applied, so as to demonstrate a closely correlated feature of filtering and zooming. In addition, the maximum transmittance is already up to ~20% according the peak-to-valley value of the spectral transmittance curves, which exhibits nearly twice the increment compared with that of the ordinary LC-FP filtering without micro-lenses. Full article
(This article belongs to the Special Issue Optical MEMS)
Show Figures

Figure 1

21 pages, 4448 KB  
Review
Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells
by Kyu-Tae Lee, L. Jay Guo and Hui Joon Park
Molecules 2016, 21(4), 475; https://doi.org/10.3390/molecules21040475 - 11 Apr 2016
Cited by 63 | Viewed by 14519
Abstract
In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite “islands” and transparent electrodes—the latter of which include thin metallic films, [...] Read more.
In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite “islands” and transparent electrodes—the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency—are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells. Full article
(This article belongs to the Special Issue Perovskite Solar Cells)
Show Figures

Figure 1

15 pages, 2036 KB  
Article
System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells
by Cheng-Hsin Chuang, Yao-Wei Huang and Yao-Tung Wu
Sensors 2011, 11(11), 11021-11035; https://doi.org/10.3390/s111111021 - 23 Nov 2011
Cited by 30 | Viewed by 8984
Abstract
This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 [...] Read more.
This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). Full article
(This article belongs to the Special Issue Biochips)
Show Figures

Back to TopTop