Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Best Performers and General Trends
2.2. Results for Most Used and Most Suggested (MUMS) Functionals
2.3. Results for Functionals Divided by “Ingredients”
- Group 0: LDA, HF, LC, SE—local spin density approximations, Hartree-Fock, low-cost methods, and semiempirical methods (15 methods).
- Group 1: GGA—generalized gradient approximations and nonseparable gradient approximations (63 methods).
- Group 2: mGGA—meta-GGA and meta-NGA functionals (46 methods).
- Group 3: GH-GGA—global hybrid GGA and NGA functionals (43 methods).
- Group 4: GH-mGGA—global hybrid meta-GGA and meta-NGA functionals (43 methods).
- Group 5: RSH—range-separated hybrid functionals (28 methods).
- Group 6: DH—double-hybrid functionals (12 methods).
2.4. Discussion on Reference Energies and Chemical Accuracy for Transition Metals
2.5. Recommendations for Users and Final Remarks
- Avoid LDA, Hartree-Fock, and semiempirical methods (Group 0).
- Avoid functionals containing PT2-like correlation, such as double-hybrids (Group 6).
- Avoid range-separated hybrids (Group 5).
- Prefer semilocal functionals (Group 1 and Group 2) for spin states and other purely electronic properties.
- Among hybrid functionals in Group 3 and Group 4, prefer those with a percentage of exact exchange below 30%.
- For all other properties—including thermochemistry—prefer functionals that scored a grade of A or B in this study (Group 3 and Group 4) and are highly transferable to other systems across chemistry, as established in other benchmark studies. Some suitable suggestions are (our grades are in parenthesis, and high transferability is indicated in bold font):
- (1)
- Semilocal functionals: MN15-L (A), GAM (A), revM06-L (A), M06-L (A), r2SCAN-D4 (A).
- (2)
- Global hybrids: r2SCANh-D4 (A), M06 (B), PBE0-D3(BJ) (B).
3. Materials and Methods
3.1. Software and Settings
3.2. The Por21 Database
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meunier, B.; de Visser, S.P.; Shaik, S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev. 2004, 104, 3947–3980. [Google Scholar] [CrossRef]
- Shaik, S.; Kumar, D.; de Visser, S.P.; Altun, A.; Thiel, W. Theoretical Perspective on the Structure and Mechanism of Cytochrome P450 Enzymes. Chem. Rev. 2005, 105, 2279–2328. [Google Scholar] [CrossRef] [PubMed]
- Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem. Rev. 2010, 110, 949–1017. [Google Scholar] [CrossRef]
- Radoń, M.; Pierloot, K. Binding of CO, NO, and O2 to Heme by Density Functional and Multireference Ab Initio Calculations. J. Phys. Chem. A 2008, 112, 11824–11832. [Google Scholar] [CrossRef] [PubMed]
- Feldt, M.; Phung, Q.M.; Pierloot, K.; Mata, R.A.; Harvey, J.N. Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. J. Chem. Theory Comput. 2019, 15, 922–937. [Google Scholar] [CrossRef]
- Sauri, V.; Serrano-Andrés, L.; Shahi, A.R.M.; Gagliardi, L.; Vancoillie, S.; Pierloot, K. Multiconfigurational Second-Order Perturbation Theory Restricted Active Space (RASPT2) Method for Electronic Excited States: A Benchmark Study. J. Chem. Theory Comput. 2011, 7, 153–168. [Google Scholar] [CrossRef]
- Berryman, V.E.J.; Boyd, R.J.; Johnson, E.R. Balancing Exchange Mixing in Density-Functional Approximations for Iron Porphyrin. J. Chem. Theory Comput. 2015, 11, 3022–3028. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.A.; Pachter, R. Ground State Electronic Structures and Spectra of Zinc Complexes of Porphyrin, Tetraazaporphyrin, Tetrabenzoporphyrin, and Phthalocyanine: A Density Functional Theory Study. J. Chem. Phys. 2001, 114, 10757–10767. [Google Scholar] [CrossRef]
- Zhou, C.; Gagliardi, L.; Truhlar, D.G. Multiconfiguration Pair-Density Functional Theory for Iron Porphyrin with CAS, RAS, and DMRG Active Spaces. J. Phys. Chem. A 2019, 123, 3389–3394. [Google Scholar] [CrossRef]
- Chen, H.; Lai, W.; Shaik, S. Multireference and Multiconfiguration Ab Initio Methods in Heme-Related Systems: What Have We Learned So Far? J. Phys. Chem. B 2011, 115, 1727–1742. [Google Scholar] [CrossRef]
- Pierloot, K.; Phung, Q.M.; Domingo, A. Spin State Energetics in First-Row Transition Metal Complexes: Contribution of (3s3p) Correlation and Its Description by Second-Order Perturbation Theory. J. Chem. Theory Comput. 2017, 13, 537–553. [Google Scholar] [CrossRef]
- Cramer, C.J.; Truhlar, D.G. Density Functional Theory for Transition Metals and Transition Metal Chemistry. Phys. Chem. Chem. Phys. 2009, 11, 10757–10816. [Google Scholar] [CrossRef]
- Yang, K.; Peverati, R.; Truhlar, D.G.; Valero, R. Density Functional Study of Multiplicity-Changing Valence and Rydberg Excitations of p-Block Elements: Delta Self-Consistent Field, Collinear Spin-Flip Time-Dependent Density Functional Theory (DFT), and Conventional Time-Dependent DFT. J. Chem. Phys. 2011, 135, 044118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janet, J.P.; Kulik, H.J. Predicting Electronic Structure Properties of Transition Metal Complexes with Neural Networks. Chem. Sci. 2017, 8, 5137–5152. [Google Scholar] [CrossRef] [Green Version]
- Wilbraham, L.; Verma, P.; Truhlar, D.G.; Gagliardi, L.; Ciofini, I. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost. J. Phys. Chem. Lett. 2017, 8, 2026–2030. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Varga, Z.; Klein, J.E.M.N.; Cramer, C.J.; Que, L.; Truhlar, D.G. Assessment of Electronic Structure Methods for the Determination of the Ground Spin States of Fe(II), Fe(III) and Fe(IV) Complexes. Phys. Chem. Chem. Phys. 2017, 19, 13049–13069. [Google Scholar] [CrossRef]
- Taylor, M.G.; Yang, T.; Lin, S.; Nandy, A.; Janet, J.P.; Duan, C.; Kulik, H.J. Seeing Is Believing: Experimental Spin States from Machine Learning Model Structure Predictions. J. Phys. Chem. A 2020, 124, 3286–3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, P.; Truhlar, D.G. Status and Challenges of Density Functional Theory. Trends Chem. 2020, 2, 302–318. [Google Scholar] [CrossRef]
- Gagliardi, L.; Truhlar, D.G.; Li Manni, G.; Carlson, R.K.; Hoyer, C.E.; Bao, J.L. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. Acc. Chem. Res. 2017, 50, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Mok, D.K.W.; Neumann, R.; Handy, N.C. Dynamical and Nondynamical Correlation. J. Phys. Chem. 1996, 100, 6225–6230. [Google Scholar] [CrossRef]
- Cohen, A.J.; Handy, N.C. Dynamic Correlation. Mol. Phys. 2001, 99, 607–615. [Google Scholar] [CrossRef]
- Polo, V.; Kraka, E.; Cremer, D. Some Thoughts about the Stability and Reliability of Commonly Used Exchange Correlation Functionals: Coverage of Dynamic and Nondynamic Correlation Effects. Theor. Chem. Acc. 2002, 107, 291–303. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. Thirty Years of Density Functional Theory in Computational Chemistry: An Overview and Extensive Assessment of 200 Density Functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef] [Green Version]
- Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017, 19, 32184–32215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.S.; He, X.; Li, S.L.; Truhlar, D.G. MN15: A Kohn–Sham Global-Hybrid Exchange–Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions. Chem. Sci. 2016, 7, 5032–5051. [Google Scholar] [CrossRef] [Green Version]
- Dohm, S.; Hansen, A.; Steinmetz, M.; Grimme, S.; Checinski, M.P. Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. J. Chem. Theory Comput. 2018, 14, 2596–2608. [Google Scholar] [CrossRef]
- Maurer, L.R.; Bursch, M.; Grimme, S.; Hansen, A. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. J. Chem. Theory Comput. 2021, 17, 6134–6151. [Google Scholar] [CrossRef]
- Rappoport, D.; Crawford, N.R.M.; Furche, F.; Burke, K. Approximate Density Functionals: Which Should I Choose? In Encyclopedia of Inorganic Chemistry; King, R.B., Crabtree, R.H., Lukehart, C.M., Atwood, D.A., Scott, R.A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2009; p. ia615. [Google Scholar] [CrossRef]
- Morgante, P.; Peverati, R. The Devil in the Details: A Tutorial Review on Some Undervalued Aspects of Density Functional Theory Calculations. Int. J. Quantum Chem. 2020, 120, e26332. [Google Scholar] [CrossRef]
- Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew. Chem. Int. Ed. 2022, 61, e202205735. [Google Scholar] [CrossRef]
- Goerigk, L.; Mehta, N. A Trip to the Density Functional Theory Zoo: Warnings and Recommendations for the User. Aust. J. Chem. 2019, 72, 563. [Google Scholar] [CrossRef] [Green Version]
- Najibi, A.; Goerigk, L. The Nonlocal Kernel in van Der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. J. Chem. Theory Comput. 2018, 14, 5725–5738. [Google Scholar] [CrossRef] [PubMed]
- Peverati, R.; Truhlar, D.G. Quest for a Universal Density Functional: The Accuracy of Density Functionals across a Broad Spectrum of Databases in Chemistry and Physics. Phil. Trans. R. Soc. A 2014, 372, 20120476. [Google Scholar] [CrossRef] [PubMed]
- Cirera, J.; Ruiz, E. Assessment of the SCAN Functional for Spin-State Energies in Spin-Crossover Systems. J. Phys. Chem. A 2020, 124, 5053–5058. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, S.R.; Kepp, K.P. Spin Propensities of Octahedral Complexes From Density Functional Theory. J. Phys. Chem. A 2015, 119, 4041–4050. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Goerigk, L.; Grimme, S. A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions—Assessment of Common and Reparameterized (Meta-)GGA Density Functionals. J. Chem. Theory Comput. 2010, 6, 107–126. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Schröder, H.; Creon, A.; Schwabe, T. Reformulation of the D3(Becke–Johnson) Dispersion Correction without Resorting to Higher than C 6 Dispersion Coefficients. J. Chem. Theory Comput. 2015, 11, 3163–3170. [Google Scholar] [CrossRef]
- Smith, D.G.A.; Burns, L.A.; Patkowski, K.; Sherrill, C.D. Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. J. Phys. Chem. Lett. 2016, 7, 2197–2203. [Google Scholar] [CrossRef]
- Goerigk, L.; Grimme, S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Goerigk, L. Treating London-Dispersion Effects with the Latest Minnesota Density Functionals: Problems and Possible Solutions. J. Phys. Chem. Lett. 2015, 6, 3891–3896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 Dispersion Coefficient Model. J. Chem. Phys. 2017, 147, 034112. [Google Scholar] [CrossRef] [PubMed]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef]
- Najibi, A.; Goerigk, L. DFT -D4 Counterparts of Leading Meta-Generalized-gradient Approximation and Hybrid Density Functionals for Energetics and Geometries. J. Comput. Chem. 2020, 41, 2562–2572. [Google Scholar] [CrossRef]
- Austin, A.; Petersson, G.A.; Frisch, M.J.; Dobek, F.J.; Scalmani, G.; Throssell, K. A Density Functional with Spherical Atom Dispersion Terms. J. Chem. Theory Comput. 2012, 8, 4989–5007. [Google Scholar] [CrossRef]
- Hartree, D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Math. Proc. Camb. Phil. Soc. 1928, 24, 89–110. [Google Scholar] [CrossRef]
- Hartree, D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Math. Proc. Camb. Phil. Soc. 1928, 24, 111–132. [Google Scholar] [CrossRef]
- Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 1930, 61, 126–148. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Kurth, S.; Zupan, A.; Blaha, P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Phys. Rev. Lett. 1999, 82, 2544–2547. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [Green Version]
- Henderson, T.M.; Izmaylov, A.F.; Scuseria, G.E.; Savin, A. Assessment of a Middle-Range Hybrid Functional. J. Chem. Theory Comput. 2008, 4, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Henderson, T.M.; Janesko, B.G.; Scuseria, G.E. Generalized Gradient Approximation Model Exchange Holes for Range-Separated Hybrids. J. Chem. Phys. 2008, 128, 194105. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Truhlar, D.G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. J. Phys. Chem. A 2005, 109, 5656–5667. [Google Scholar] [CrossRef]
- Karton, A.; Gruzman, D.; Martin, J.M.L. Benchmark Thermochemistry of the CnH2n+2 Alkane Isomers (n = 2−8) and Performance of DFT and Composite Ab Initio Methods for Dispersion-Driven Isomeric Equilibria. J. Phys. Chem. A 2009, 113, 8434–8447. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Weintraub, E.; Henderson, T.M.; Scuseria, G.E. Long-Range-Corrected Hybrids Based on a New Model Exchange Hole. J. Chem. Theory Comput. 2009, 5, 754–762. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Rohrdanz, M.A.; Martins, K.M.; Herbert, J.M. A Long-Range-Corrected Density Functional That Performs Well for Both Ground-State Properties and Time-Dependent Density Functional Theory Excitation Energies, Including Charge-Transfer Excited States. J. Chem. Phys. 2009, 130, 054112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Exchange-Correlation Functional with Broad Accuracy for Metallic and Nonmetallic Compounds, Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2005, 123, 161103. [Google Scholar] [CrossRef]
- Hujo, W.; Grimme, S. Performance of the van Der Waals Density Functional VV10 and (Hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 3866–3871. [Google Scholar] [CrossRef]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2006, 2, 364–382. [Google Scholar] [CrossRef]
- Reiher, M.; Salomon, O.; Artur Hess, B. Reparameterization of Hybrid Functionals Based on Energy Differences of States of Different Multiplicity. Theor. Chem. Acc. 2001, 107, 48–55. [Google Scholar] [CrossRef]
- Furness, J.W.; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Construction of Meta-GGA Functionals through Restoration of Exact Constraint Adherence to Regularized SCAN Functionals. J. Chem. Phys. 2022, 156, 034109. [Google Scholar] [CrossRef]
- Furness, J.W.; Kaplan, A.D.; Ning, J.; Perdew, J.P.; Sun, J. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem. Lett. 2020, 11, 8208–8215. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Ehlert, S.; Huniar, U.; Ning, J.; Furness, J.W.; Sun, J.; Kaplan, A.D.; Perdew, J.P.; Brandenburg, J.G. R2SCAN-D4: Dispersion Corrected Meta-Generalized Gradient Approximation for General Chemical Applications. J. Chem. Phys. 2021, 154, 061101. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-Functional Approximation for the Correlation-Energy of the Inhomogeneous Electron-Gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Bursch, M.; Neugebauer, H.; Ehlert, S.; Grimme, S. Dispersion Corrected r2SCAN Based Global Hybrid Functionals: R2SCANh, r2SCAN0, and r2SCAN50. J. Chem. Phys. 2022, 156, 134105. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. V. Systematic Optimization of Exchange-Correlation Functionals. J. Chem. Phys. 1997, 107, 8554–8560. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A 2006, 110, 13126–13130. [Google Scholar] [CrossRef]
- Patra, A.; Jana, S.; Samal, P. A Way of Resolving the Order-of-Limit Problem of Tao–Mo Semilocal Functional. J. Chem. Phys. 2020, 153, 184112. [Google Scholar] [CrossRef]
- Hamprecht, F.A.; Cohen, A.J.; Tozer, D.J.; Handy, N.C. Development and Assessment of New Exchange-Correlation Functionals. J. Chem. Phys. 1998, 109, 6264–6271. [Google Scholar] [CrossRef]
- Wang, Y.; Verma, P.; Jin, X.; Truhlar, D.G.; He, X. Revised M06 Density Functional for Main-Group and Transition-Metal Chemistry. Proc. Natl. Acad. Sci. USA 2018, 115, 10257–10262. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Truhlar, D.G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125, 194101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Jin, X.; Yu, H.S.; Truhlar, D.G.; He, X. Revised M06-L Functional for Improved Accuracy on Chemical Reaction Barrier Heights, Noncovalent Interactions, and Solid-State Physics. Proc. Natl. Acad. Sci. USA 2017, 114, 8487–8492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.J.; Bradley, T.J.; Tozer, D.J. Hybrid Exchange-Correlation Functional Determined from Thermochemical Data and Ab Initio Potentials. J. Chem. Phys. 2001, 115, 9233–9242. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Wang, Y.; Ghosh, S.; He, X.; Truhlar, D.G. Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties. J. Phys. Chem. A 2019, 123, 2966–2990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, W. Comment on “Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1998, 80, 890. [Google Scholar] [CrossRef]
- Keal, T.W.; Tozer, D.J. Semiempirical Hybrid Functional with Improved Performance in an Extensive Chemical Assessment. J. Chem. Phys. 2005, 123, 121103. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4, 1849–1868. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. J. Phys. Chem. Lett. 2011, 2, 2810–2817. [Google Scholar] [CrossRef]
- Burns, L.A.; Mayagoitia, Á.V.; Sumpter, B.G.; Sherrill, C.D. Density-Functional Approaches to Noncovalent Interactions: A Comparison of Dispersion Corrections (DFT-D), Exchange-Hole Dipole Moment (XDM) Theory, and Specialized Functionals. J. Chem. Phys. 2011, 134, 084107. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. J. Phys. Chem. Lett. 2012, 3, 117–124. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wellendorff, J.; Lundgaard, K.T.; Jacobsen, K.W.; Bligaard, T. mBEEF: An Accurate Semilocal Bayesian Error Estimation Density Functional. J. Chem. Phys. 2014, 140, 144107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boese, A.D.; Martin, J.M.L. Development of Density Functionals for Thermochemical Kinetics. J. Chem. Phys. 2004, 121, 3405–3416. [Google Scholar] [CrossRef] [Green Version]
- Peverati, R.; Truhlar, D.G. An Improved and Broadly Accurate Local Approximation to the Exchange-Correlation Density Functional: The MN12-L Functional for Electronic Structure Calculations in Chemistry and Physics. Phys. Chem. Chem. Phys. 2012, 14, 13171–13174. [Google Scholar] [CrossRef]
- Mardirossian, N.; Pestana, L.R.; Womack, J.C.; Skylaris, C.-K.; Head-Gordon, T.; Head-Gordon, M. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals. J. Phys. Chem. Lett. 2017, 8, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Constantin, L.A.; Sun, J. Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry. Phys. Rev. Lett. 2009, 103, 026403. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. Mapping the Genome of Meta-Generalized Gradient Approximation Density Functionals: The Search for B97M-V. J. Chem. Phys. 2015, 142, 074111–074132. [Google Scholar] [CrossRef] [Green Version]
- Peverati, R.; Truhlar, D.G. Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics. Phys. Chem. Chem. Phys. 2012, 14, 16187–16191. [Google Scholar] [CrossRef]
- Csonka, G.I.; Perdew, J.P.; Ruzsinszky, A. Global Hybrid Functionals: A Look at the Engine under the Hood. J. Chem. Theory Comput. 2010, 6, 3688–3703. [Google Scholar] [CrossRef]
- Schmider, H.L.; Becke, A.D. Optimized Density Functionals from the Extended G2 Test Set. J. Chem. Phys. 1998, 108, 9624–9631. [Google Scholar] [CrossRef]
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B 1999, 59, 7413–7421. [Google Scholar] [CrossRef] [Green Version]
- Constantin, L.A.; Fabiano, E.; Della Sala, F. Meta-GGA Exchange-Correlation Functional with a Balanced Treatment of Nonlocality. J. Chem. Theory Comput. 2013, 9, 2256–2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.S.; He, X.; Truhlar, D.G. MN15-L: A New Local Exchange-Correlation Functional for Kohn–Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids. J. Chem. Theory Comput. 2016, 12, 1280–1293. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods without Adjustable Parameters: The mPW and mPW1PW Models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Murray, É.D.; Lee, K.; Langreth, D.C. Investigation of Exchange Energy Density Functional Accuracy for Interacting Molecules. J. Chem. Theory Comput. 2009, 5, 2754–2762. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, B.; Ruzsinszky, A. Communication: Effect of the Orbital-Overlap Dependence in the Meta Generalized Gradient Approximation. J. Chem. Phys. 2012, 137, 051101. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Haunschild, R.; Xiao, B.; Bulik, I.W.; Scuseria, G.E.; Perdew, J.P. Semilocal and Hybrid Meta-Generalized Gradient Approximations Based on the Understanding of the Kinetic-Energy-Density Dependence. J. Chem. Phys. 2013, 138, 044113. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Sharma, K.; Samal, P. Improving the Performance of Tao–Mo Non-Empirical Density Functional with Broader Applicability in Quantum Chemistry and Materials Science. J. Phys. Chem. A 2019, 123, 6356–6369. [Google Scholar] [CrossRef] [Green Version]
- Bartók, A.P.; Yates, J.R. Regularized SCAN Functional. J. Chem. Phys. 2019, 150, 161101. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, R.; Gorni, T.; de Gironcoli, S. Nonlocal van Der Waals Density Functional Made Simple and Efficient. Phys. Rev. A 2013, 87, 041108. [Google Scholar] [CrossRef]
- Sun, J.; Ruzsinszky, A.; Perdew, J.P. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 036402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandenburg, J.G.; Bates, J.E.; Sun, J.; Perdew, J.P. Benchmark Tests of a Strongly Constrained Semilocal Functional with a Long-Range Dispersion Correction. Phys. Rev. B 2016, 94, 115144. [Google Scholar] [CrossRef] [Green Version]
- Neupane, B.; Tang, H.; Nepal, N.K.; Adhikari, S.; Ruzsinszky, A. Opening Band Gaps of Low-Dimensional Materials at the Meta-GGA Level of Density Functional Approximations. Phys. Rev. Mater. 2021, 5, 063803. [Google Scholar] [CrossRef]
- Sun, J.; Perdew, J.P.; Ruzsinszky, A. Semilocal Density Functional Obeying a Strongly Tightened Bound for Exchange. Proc. Natl. Acad. Sci. USA 2015, 112, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Yang, Z.-H.; Perdew, J.P.; Sun, J. Versatile van Der Waals Density Functional Based on a Meta-Generalized Gradient Approximation. Phys. Rev. X 2016, 6, 041005. [Google Scholar] [CrossRef] [Green Version]
- Hui, K.; Chai, J.-D. SCAN-Based Hybrid and Double-Hybrid Density Functionals from Models without Fitted Parameters. J. Chem. Phys. 2016, 144, 044114. [Google Scholar] [CrossRef] [Green Version]
- Tsuneda, T.; Suzumura, T.; Hirao, K. A New One-Parameter Progressive Colle–Salvetti-Type Correlation Functional. J. Chem. Phys. 1999, 110, 10664–10678. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Exchange–Correlation Functional with Good Accuracy for Both Structural and Energetic Properties While Depending Only on the Density and Its Gradient. J. Chem. Theory Comput. 2012, 8, 2310–2319. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Construction of a Generalized Gradient Approximation by Restoring the Density-Gradient Expansion and Enforcing a Tight Lieb–Oxford Bound. J. Chem. Phys. 2008, 128, 184109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peverati, R.; Truhlar, D.G. Communication: A Global Hybrid Generalized Gradient Approximation to the Exchange-Correlation Functional That Satisfies the Second-Order Density-Gradient Constraint and Has Broad Applicability in Chemistry. J. Chem. Phys. 2011, 135, 191102. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.C. A Simplification of the Hartree-Fock Method. Phys. Rev. 1951, 81, 385–390. [Google Scholar] [CrossRef]
- Handy, N.C.; Cohen, A.J. Left-Right Correlation Energy. Mol. Phys. 2001, 99, 403–412. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Boese, A.D.; Handy, N.C. New Exchange-Correlation Density Functionals: The Role of the Kinetic-Energy Density. J. Chem. Phys. 2002, 116, 9559–9569. [Google Scholar] [CrossRef]
- Aschebrock, T.; Kümmel, S. Ultranonlocality and Accurate Band Gaps from a Meta-Generalized Gradient Approximation. Phys. Rev. Res. 2019, 1, 033082. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Mo, Y. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry. Phys. Rev. Lett. 2016, 117, 073001. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [Green Version]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Kozuch, S.; Martin, J.M.L. Spin-Component-Scaled Double Hybrids: An Extensive Search for the Best Fifth-Rung Functionals Blending DFT and Perturbation Theory. J. Comput. Chem. 2013, 34, 2327–2344. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Zhang, W.; Verma, P.; He, X.; Truhlar, D.G. Nonseparable Exchange–Correlation Functional for Molecules, Including Homogeneous Catalysis Involving Transition Metals. Phys. Chem. Chem. Phys. 2015, 17, 12146–12160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-XTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.-D.; Mao, S.-P. Seeking for Reliable Double-Hybrid Density Functionals without Fitting Parameters: The PBE0-2 Functional. Chem. Phys. Lett. 2012, 538, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Vydrov, O.A.; van Voorhis, T. Nonlocal van Der Waals Density Functional: The Simpler the Better. J. Chem. Phys. 2010, 133, 244103. [Google Scholar] [CrossRef] [Green Version]
- Boese, A.D.; Doltsinis, N.L.; Handy, N.C.; Sprik, M. New Generalized Gradient Approximation Functionals. J. Chem. Phys. 2000, 112, 1670–1678. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. J. Chem. Phys. 2008, 138, 084106. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. ωB97M-V: A Combinatorially Optimized, Range-Separated Hybrid, Meta-GGA Density Functional with VV10 Nonlocal Correlation. J. Chem. Phys. 2016, 144, 214110. [Google Scholar] [CrossRef] [Green Version]
- Mardirossian, N.; Head-Gordon, M. Survival of the Most Transferable at the Top of Jacob’s Ladder: Defining and Testing the ωB97M(2) Double Hybrid Density Functional. J. Chem. Phys. 2018, 148, 241736. [Google Scholar] [CrossRef] [PubMed]
- Boese, A.D.; Handy, N.C. A New Parametrization of Exchange–Correlation Generalized Gradient Approximation Functionals. J. Chem. Phys. 2001, 114, 5497–5503. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. J. Chem. Theory Comput. 2013, 9, 263–272. [Google Scholar] [CrossRef]
- Grimme, S.; Brandenburg, J.G.; Bannwarth, C.; Hansen, A. Consistent Structures and Interactions by Density Functional Theory with Small Atomic Orbital Basis Sets. J. Chem. Phys. 2015, 143, 054107. [Google Scholar] [CrossRef] [PubMed]
- Mardirossian, N.; Head-Gordon, M. ωB97X-V: A 10-Parameter, Range-Separated Hybrid, Generalized Gradient Approximation Density Functional with Nonlocal Correlation, Designed by a Survival-of-the-Fittest Strategy. Phys. Chem. Chem. Phys. 2014, 16, 9904–9924. [Google Scholar] [CrossRef] [Green Version]
- Sure, R.; Grimme, S. Corrected Small Basis Set Hartree-Fock Method for Large Systems. J. Comput. Chem. 2013, 34, 1672–1685. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Tsai, C.-W.; Li, G.-D.; Chai, J.-D. Long-Range Corrected Hybrid Meta-Generalized-Gradient Approximations with Dispersion Corrections. J. Chem. Phys. 2012, 136, 154109. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Goddard, W.A. The X3LYP Extended Density Functional for Accurate Descriptions of Nonbond Interactions, Spin States, and Thermochemical Properties. Proc. Natl. Acad. Sci. USA 2004, 101, 2673–2677. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, X.; Goddard, W.A. Doubly Hybrid Density Functional for Accurate Descriptions of Nonbond Interactions, Thermochemistry, and Thermochemical Kinetics. Proc. Natl. Acad. Sci. USA 2009, 106, 4963–4968. [Google Scholar] [CrossRef] [Green Version]
- Zhang, I.Y.; Xu, X.; Jung, Y.; Goddard, W.A. A Fast Doubly Hybrid Density Functional Method Close to Chemical Accuracy Using a Local Opposite Spin Ansatz. Proc. Natl. Acad. Sci. USA 2011, 108, 19896–19900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. General Performance of Density Functionals. J. Phys. Chem. A 2007, 111, 10439–10452. [Google Scholar] [CrossRef] [PubMed]
- Van Noorden, R.; Maher, B.; Nuzzo, R. The Top 100 Papers. Nature 2014, 514, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.; Casanova-Páez, M.; Goerigk, L. Semi-Empirical or Non-Empirical Double-Hybrid Density Functionals: Which Are More Robust? Phys. Chem. Chem. Phys. 2018, 20, 23175–23194. [Google Scholar] [CrossRef] [PubMed]
- Casida, M.E. Jacob’s Ladder for Time-Dependent Density-Functional Theory: Some Rungs on the Way to Photochemical Heaven. In Low-Lying Potential Energy Surfaces; Hoffmann, M.R., Dyall, K.G., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2002; Volume 828, pp. 199–220. [Google Scholar] [CrossRef]
- Ioannidis, E.I.; Kulik, H.J. Towards Quantifying the Role of Exact Exchange in Predictions of Transition Metal Complex Properties. J. Chem. Phys. 2015, 143, 034104. [Google Scholar] [CrossRef]
- Weser, O.; Guther, K.; Ghanem, K.; Li Manni, G. Stochastic Generalized Active Space Self-Consistent Field: Theory and Application. J. Chem. Theory Comput. 2022, 18, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Antalík, A.; Nachtigallová, D.; Lo, R.; Matoušek, M.; Lang, J.; Legeza, Ö.; Pittner, J.; Hobza, P.; Veis, L. Ground State of the Fe(II)-Porphyrin Model System Corresponds to Quintet: A DFT and DMRG-Based Tailored CC Study. Phys. Chem. Chem. Phys. 2020, 22, 17033–17037. [Google Scholar] [CrossRef]
- Drosou, M.; Mitsopoulou, C.A.; Pantazis, D.A. Reconciling Local Coupled Cluster with Multireference Approaches for Transition Metal Spin-State Energetics. J. Chem. Theory Comput. 2022, 18, 3538–3548. [Google Scholar] [CrossRef]
- Baiardi, A.; Reiher, M. The Density Matrix Renormalization Group in Chemistry and Molecular Physics: Recent Developments and New Challenges. J. Chem. Phys. 2020, 152, 040903. [Google Scholar] [CrossRef] [Green Version]
- Konkov, V.; Peverati, R. QMC-SW: A Simple Workflow for Quantum Monte Carlo Calculations in Chemistry. SoftwareX 2019, 9, 7–14. [Google Scholar] [CrossRef]
- Rudshteyn, B.; Coskun, D.; Weber, J.L.; Arthur, E.J.; Zhang, S.; Reichman, D.R.; Friesner, R.A.; Shee, J. Predicting Ligand-Dissociation Energies of 3d Coordination Complexes with Auxiliary-Field Quantum Monte Carlo. J. Chem. Theory Comput. 2020, 16, 3041–3054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hamdani, Y.S.; Nagy, P.R.; Zen, A.; Barton, D.; Kállay, M.; Brandenburg, J.G.; Tkatchenko, A. Interactions between Large Molecules Pose a Puzzle for Reference Quantum Mechanical Methods. Nat. Commun. 2021, 12, 3927. [Google Scholar] [CrossRef] [PubMed]
- DeYonker, N.J.; Peterson, K.A.; Steyl, G.; Wilson, A.K.; Cundari, T.R. Quantitative Computational Thermochemistry of Transition Metal Species. J. Phys. Chem. A 2007, 111, 11269–11277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; DeYonker, N.J.; Determan, J.J.; Wilson, A.K. Toward Accurate Theoretical Thermochemistry of First Row Transition Metal Complexes. J. Phys. Chem. A 2012, 116, 870–885. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Schmidt, K. Jacob’s Ladder of Density Functional Approximations for the Exchange-Correlation Energy. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2001; Volume 577, pp. 1–20. [Google Scholar] [CrossRef]
- Epifanovsky, E.; Gilbert, A.T.B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, P.; White, A.F.; Coons, M.P.; Dempwolff, A.L.; et al. Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155, 084801. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- XTB; Grimme Group. Available online: https://github.com/grimme-lab/xtb (accessed on 27 March 2023).
- DFT-D4; Grimme Group. Available online: https://github.com/grimme-lab/dftd4 (accessed on 27 March 2023).
- Dral, P.O.; Wu, X.; Spörkel, L.; Koslowski, A.; Thiel, W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties. J. Chem. Theory Comput. 2016, 12, 1097–1120. [Google Scholar] [CrossRef] [Green Version]
- Morgante, P.; Peverati, R. ACCDB: A Collection of Chemistry Databases for Broad Computational Purposes. J. Comput. Chem. 2019, 40, 839–848. [Google Scholar] [CrossRef] [Green Version]
- ACCDB; Peverati Group. Available online: https://github.com/peverati/ACCDB (accessed on 27 March 2023).
Functional | Grade | Functional | Grade | Functional | Grade |
---|---|---|---|---|---|
APF [47] | A | HFLYP [48,49,50,51] | F | PKZB [52] | D |
APFD [47] | A | HFPW92 [48,49,50,53] | F | PM6 [54] | F |
B2PLYP | F | HISS [55] | A | PM7 [56] | F |
B2PLYP-D3(0) | F | HSE-HJS [57,58,59] | B | PW6B95 [60] | D |
B2PLYP-D3(BJ) | F | HSE-HJS-D3(0) | B | PW6B95-D2 [61] | C |
B2PLYP-D4 | F | HSE-HJS-D3(BJ) | B | PW6B95-D3(0) | D |
B3LYP [51,62,63] | C | LC-ωPBE08 [64] | F | PW6B95-D3(BJ) | D |
B3LYP-D2 | C | LC-ωPBE08-D3(0) | F | PW6B95-D3(CSO) | F |
B3LYP-D3(0) | C | LC-ωPBE08-D3(BJ) | F | PW91 [65] | F |
B3LYP-D3(BJ) | C | LC-ωPBE08-D3M(BJ) | F | PWB6K [60] | F |
B3LYP-D3(CSO) | C | LRC-ωPBE [66] | F | PWB6K-D3(0) | F |
B3LYP-D3M(BJ) | C | LRC-ωPBEh [66] | F | PWB6K-D3(BJ) | F |
B3LYP-D4 | C | M05 [67] | D | PWPB95-D3(BJ) | F |
B3LYP-NL [68] | C | M05-2X [69] | F | PWPB95-D4 | F |
B3LYP* [70] | F | M05-2X-D3(0) | F | r++SCAN [71] | B |
B3LYP*-D3(0) | F | M05-D3(0) | D | r2SCAN [72] | A |
B3LYP*-D3(BJ) | F | M06 [73] | B | r2SCAN-D4 [74] | A |
B3P86 [62,63,75] | C | M06-2X [73] | F | r2SCAN0 [76] | C |
B3PW91 [62,63,65] | C | M06-2X-D2 | F | r2SCAN0-D4 [76] | B |
B3PW91-D2 | C | M06-2X-D3(0) | F | r2SCANh [76] | A |
B3PW91-D3(0) | C | M06-D2 | B | r2SCANh-D4 [76] | A |
B3PW91-D3(BJ) | C | M06-D3(0) | B | r4SCAN [71] | C |
B97 [77] | C | M06-HF [78] | F | regTM [79] | F |
B97-1 [80] | C | M06-HF-D3(0) | F | revM06 [81] | F |
B97-1-D2 [61] | C | M06-L [82] | A | revM06-L [83] | A |
B97-2 [84] | B | M06-L-D2 [61] | A | revM11 [85] | F |
B97-2-D2 [61] | B | M06-L-D3(0) | A | revPBE [86] | D |
B97-3 [87] | D | M08-HX [88] | F | revPBE-D2 | D |
B97-3-D2 [61] | D | M08-SO [88] | F | revPBE-D3(0) | D |
B97-3c [89] | B | M11 [90] | F | revPBE-D3(BJ) | F |
B97-D [91] | A | M11-D3(BJ) | F | revPBE-NL [68] | F |
B97-D2 [36] | C | M11-L [92] | F | revPBE0 [57,86,93] | B |
B97-D3(0) | C | M11-L-D3(0) | F | revPBE0-D3(0) | B |
B97-D3(BJ) | C | mBEEF [94,95] | D | revPBE0-D3(BJ) | B |
B97-K [96] | F | MN12-L [97] | F | revPBE0-NL [68] | C |
B97M-rV [98] | C | MN12-L-D3(BJ) | F | revTPSS [99] | F |
B97M-V [100] | C | MN12-SX [101] | F | revTPSSh [102] | C |
B98 [103] | A | MN12-SX-D3(BJ) | F | RPBE [104] | D |
BLOC [105] | F | MN15 [25] | F | RPBE-D3(0) | D |
BLOC-D3(0) [104] | F | MN15-L [106] | A | RPBE-D3(BJ) | F |
BLYP [51,62] | F | mPW91 [65,107] | F | rPW86PBE [57,108] | F |
BLYP-D2 | F | MS0 [109] | F | rPW86PBE-D3(0) | F |
BLYP-D3(0) | F | MS0-D3(0) [110] | F | rPW86PBE-D3(BJ) | F |
BLYP-D3(BJ) | F | MS1 [110] | F | rregTM [111] | F |
BLYP-D3(CSO) | F | MS1-D3(0) [110] | F | rSCAN [71,112] | A |
BLYP-D3M(BJ) | F | MS2 [110] | F | rSCAN-D4 [74] | B |
BLYP-D4 | F | MS2-D3(0) [110] | F | rVV10 [113] | F |
BLYP-NL [68] | F | MS2h [110] | F | SCAN [114] | D |
BMK [96] | F | MS2h-D3(0) [110] | F | SCAN-D3(0) [115] | F |
BMK-D2 [61] | F | mTASK [116] | F | SCAN-D3(BJ) [115] | D |
BMK-D3(0) | F | MVS [117] | A | SCAN-rVV10 [118] | F |
BMK-D3(BJ) | F | MVSh [117] | D | SCAN0 [119] | D |
BOP [62,120] | F | N12 [121] | F | SOGGA [57,122] | F |
BOP-D3(0) | F | N12-D3(0) | F | SOGGA11-X [123] | D |
BOP-D3(BJ) | F | N12-SX [101] | F | SOGGA11-X-D3(BJ) | D |
BP86 [62,75] | F | N12-SX-D3(BJ) | F | SPW92 [53,124] | F |
BP86-D2 | F | O3LYP [125] | A | SVWN5 [124,126] | F |
BP86-D3(0) | F | OLYP [51,125] | A | τ-HCTH [127] | A |
BP86-D3(BJ) | F | OLYP-D3(0) | B | τ-HCTHh [127] | B |
BP86-D3(CSO) | F | OLYP-D3(BJ) | B | TASK [128] | B |
BP86-D3M(BJ) | F | OPBE [57,125] | B | TM [129] | F |
BPBE [57,62] | D | oTPSS-D3(0) [37] | F | TPSS [130] | F |
BPBE-D3(0) | F | oTPSS-D3(BJ) [37] | F | TPSS-D2 | F |
BPBE-D3(BJ) | F | PBE [57] | F | TPSS-D3(0) | F |
CAM-B3LYP [131] | F | PBE-D2 | F | TPSS-D3(BJ) | F |
CAM-B3LYP-D3(0) | F | PBE-D3(0) | F | TPSS-D3(CSO) | F |
CAM-B3LYP-D3(BJ) | F | PBE-D3(BJ) | F | TPSSh [132] | D |
DSD-PBEP86-D3(BJ) [133] | F | PBE-D3(CSO) | F | TPSSh-D2 [61] | D |
DSD-PBEPBE-D3(BJ) [133] | F | PBE-D3M(BJ) | F | TPSSh-D3(0) | D |
GAM [134] | A | PBE-D4 | F | TPSSh-D3(BJ) | D |
GFN1-xTB [135] | F | PBE0 [93] | B | TPSSh-D4 | F |
GFN2-xTB [136] | F | PBE0-2 [137] | F | VV10 [138] | F |
HCTH/120 [139] | A | PBE0-D2 [61] | B | ωB97 [140] | F |
HCTH/120-D3(0) | A | PBE0-D3(0) | B | ωB97M-V [141] | F |
HCTH/120-D3(BJ) | A | PBE0-D3(BJ) | B | ωB97M(2) [142] | F |
HCTH/147 [139] | A | PBE0-D3(CSO) | B | ωB97X [140] | F |
HCTH/407 [143] | A | PBE0-D3M(BJ) | C | ωB97X-D [144] | F |
HCTH/93 [80] | A | PBE0-D4 | B | ωB97X-D3 [145] | F |
HF [48,49,50] | F | PBEh-3c [146] | F | ωB97X-V [147] | F |
HF-3c [148] | F | PBEOP [57,120] | F | ωM05-D [149] | F |
HF-D3(0) | F | PBEsol [94] | F | ωM06-D3 [145] | F |
HF-D3(BJ) | F | PBEsol-D3(0) | F | X3LYP [150] | B |
HF-NL [68] | F | PBEsol-D3(BJ) | F | XYG3 [151]/XYGJ-OS [152] | F |
MUMS Functional: | Type a | Por21 | PorSS11 | PorBE10 |
---|---|---|---|---|
r2SCANh | GH-mGGA | 10.8 | 7.49 | 14.4 |
M06-L | mGGA | 11.8 | 11.9 | 11.6 |
MN15-L | mGGA | 11.9 | 17.9 | 5.26 |
r2SCAN | mGGA | 13.4 | 13.1 | 13.6 |
M06 | GH-mGGA | 15.1 | 17.9 | 12.0 |
PBE0 | GH-GGA | 16.1 | 17.1 | 15.0 |
r2SCAN0 | GH-mGGA | 17.3 | 17.4 | 17.1 |
B3LYP | GH-GGA | 19.1 | 21.1 | 16.8 |
B97M-V | mGGA | 19.8 | 20.6 | 18.9 |
PW6B95 | GH-mGGA | 22.2 | 20.4 | 24.2 |
SCAN | mGGA | 22.6 | 21.3 | 24.1 |
TPSSh | GH-mGGA | 22.9 | 26.7 | 18.8 |
BLYP | GGA | 25.6 | 27.6 | 23.4 |
PBE | GGA | 26.3 | 27.8 | 24.6 |
TPSS | mGGA | 26.7 | 30.5 | 22.5 |
MN15 | GH-mGGA | 26.8 | 30.5 | 22.7 |
B2PLYP | DH | 27.2 | 21.3 | 33.6 |
BP86 | GGA | 27.5 | 29.3 | 25.5 |
CAM-B3LYP | RSH-GGA | 28.5 | 32.5 | 24.2 |
ωB97M-V | RSH-mGGA | 31.5 | 36.2 | 26.4 |
M06-2X | GH-mGGA | 31.8 | 36.1 | 27.2 |
ωB97X-V | RSH-GGA | 36.0 | 35.4 | 36.7 |
PWPB95-D4 | DH | 37.1 | 31.5 | 43.3 |
ωB97M(2) | DH | 42.0 | 46.7 | 36.7 |
B3LYP* | GH-GGA | 43.9 | 20.8 | 69.4 |
MUMS Functional: | Type a | FeP5 → FeP3 | FeP5 → FeP1 |
---|---|---|---|
r2SCANh | GH-mGGA | −1.76 | 34.9 |
M06-L | mGGA | −1.35 | 25.6 |
MN15-L | mGGA | 12.6 | 48.7 |
r2SCAN | mGGA | −9.58 | 26.3 |
M06 | GH-mGGA | −4.49 | 27.2 |
PBE0 | GH-GGA | −8.69 | 27.2 |
r2SCAN0 | GH-mGGA | −3.83 | 33.2 |
B3LYP | GH-GGA | −14.6 | 18.6 |
B97M-V | mGGA | −21.5 | 10.8 |
PW6B95 | GH-mGGA | −12.4 | 19.6 |
SCAN | mGGA | −24.0 | 5.44 |
TPSSh | GH-mGGA | −19.7 | 13.8 |
BLYP | GGA | −16.4 | 17.4 |
PBE | GGA | −15.9 | 19.1 |
TPSS | mGGA | −26.2 | 6.68 |
MN15 | GH-mGGA | −45.2 | −9.77 |
B2PLYP | DH | −19.7 | 14.3 |
BP86 | GGA | −13.7 | 19.6 |
CAM-B3LYP | RSH-GGA | −11.4 | 24.2 |
ωB97M-V | RSH-mGGA | −57.5 | 106. |
M06-2X | GH-mGGA | −49.4 | −11.8 |
ωB97X-V | RSH-GGA | −53.9 | 108. |
PWPB95-D3(BJ) | DH | −62.1 | 93.0 |
ωB97M(2) | DH | −80.9 | −54.0 |
B3LYP* | GH-GGA | −14.6 | 18.6 |
CCSD(T) | WFT | 2.30 | 33.0 |
CASPT2 | WFT, Reference | 7.00 | 39.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgante, P.; Peverati, R. Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins. Molecules 2023, 28, 3487. https://doi.org/10.3390/molecules28083487
Morgante P, Peverati R. Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins. Molecules. 2023; 28(8):3487. https://doi.org/10.3390/molecules28083487
Chicago/Turabian StyleMorgante, Pierpaolo, and Roberto Peverati. 2023. "Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins" Molecules 28, no. 8: 3487. https://doi.org/10.3390/molecules28083487
APA StyleMorgante, P., & Peverati, R. (2023). Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins. Molecules, 28(8), 3487. https://doi.org/10.3390/molecules28083487