Chiral Porphyrin Assemblies Investigated by a Modified Reflectance Anisotropy Spectroscopy Spectrometer
Abstract
:1. Introduction
2. Experimental Methods and Techniques
3. Results and Discussion
- i.
- A solution of chiral porphyrins with a chiral signature (in terms ellipticity) in the order of some thousands of millideg (samples A1 and A2);
- ii.
- A solution of chiral porphyrins with a chiral signal in the order of some millideg (sample B);
- iii.
- A thin chiral film of porphyrins deposited onto glass substrates, in two enantiomeric configurations (samples C1 and C2).
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gilp, J.F.M. Epioptics: Linear and non-linear optical spectroscopy of surfaces and interfaces. J. Phys. Cond. Matt. 1990, 2, 7985. [Google Scholar]
- Weightman, P.; Martin, D.S.; Cole, R.J.; Farrell, T. Reflection anisotropy spectroscopy. Rep. Progr. Phys. 2005, 68, 1251. [Google Scholar] [CrossRef]
- Goletti, C. Reflectance Anisotropy Spectroscopy. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Wandelt, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 413–420. [Google Scholar]
- Kamiya, I.; Aspnes, D.E.; Florez, L.T.; Harbison, J.P. Reflectance-difference spectroscopy of (001) GaAs surfaces in ultrahigh vacuum. Phys. Rev. B 1992, 46, 15894. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, P.; Rose, K.C.; Fernandez, V.; Bradshaw, A.M.; Richter, W. Study of Surface States on Cu(110) Using Optical Reflectance Anisotropy. Phys. Rev. Lett. 1995, 75, 2039. [Google Scholar] [CrossRef] [PubMed]
- Goletti, C.; Bussetti, G.; Arciprete, F.; Chiaradia, P.; Chiarotti, G. Infrared surface absorption in Si(111)2x1 observed with reflectance anisotropy spectroscopy. Phys. Rev. B 2002, 66, 153307. [Google Scholar] [CrossRef]
- Shkrebtii, A.I.; Esser, N.; Richter, W.; Schmidt, W.G.; Bechstedt, F.; Fimland, B.O.; Kley, A.; Del Sole, R. Reflectance anisotropy of GaAs (100): Theory and experiment. Phys. Rev. Lett. 1998, 81, 721. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Quezada, A.; Ghanbari, E.; Wagner, T.; Zeppenfeld, P. Molecular reorientation during the initial growth of perfluoropentacene on Ag (110). J. Phys. Chem. C 2018, 122, 12704. [Google Scholar] [CrossRef]
- Fazi, L.; Raimondo, L.; Bonanni, B.; Fanfoni, M.; Paolesse, R.; Sgarlata, A.; Sassella, A.; Goletti, C. Unveiling the robustness of porphyrin crystalline nanowires toward aggressive chemicals. Eur. Phys. J. Plus (Open Access) 2022, 137, 300. [Google Scholar] [CrossRef]
- Goletti, C.; Bussetti, G.; Chiaradia, P.; Sassella, A.; Borghesi, A. Highly sensitive optical monitoring of molecular film growth by organic molecular beam deposition. Appl. Phys. Lett. 2003, 83, 4146. [Google Scholar] [CrossRef]
- Sassella, A.; Campione, M.; Raimondo, L.; Borghesi, A.; Bussetti, G.; Cirilli, S.; Violante, A.; Goletti, C.; Chiaradia, P. Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy. Appl. Phys. Lett. 2009, 94, 073307. [Google Scholar] [CrossRef] [Green Version]
- Di Natale, C.; Goletti, C.; Paolesse, R.; Della Sala, F.; Drago, M.; Chiaradia, P.; Lugli, P.; D’Amico, A. Optical anisotropy of Langmuir–Blodgett sapphyrin films. Appl. Phys. Lett. 2000, 77, 3164. [Google Scholar] [CrossRef]
- Goletti, C.; Paolesse, R.; Dalcanale, E.; Berzina, T.; Di Natale, C.; Bussetti, G.; Chiaradia, P.; Froiio; Costa, L.C.M.; D’Amico, A. Thickness Dependence of the Optical Anisotropy for Porphyrin Octaester Langmuir−Schaefer Films. Langmuir 2002, 18, 6881. [Google Scholar] [CrossRef]
- Goletti, C. Reflectance anisotropy at the solid–liquid interface. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Wandelt, K., Bussetti, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Available online: https://scitechconnect.elsevier.com/resources/reference-module-chemistry-molecular-sciences-chemical-engineering/ (accessed on 1 March 2023).
- Goletti, C.; Bussetti, G.; Violante, A.; Bonanni, B.; Di Giovannantonio, M.; Serrano, G.; Breuer, S.; Gentz, K.K.; Wandelt, K. Thickness Dependence of the Optical Anisotropy for Porphyrin Octaester Langmuir−Schaefer Films. J. Phys. Chem. C 2015, 119, 1782. [Google Scholar] [CrossRef]
- Barati, G.; Solokha, V.; Wandelt, K.; Hingerl, K.; Cobet, C. Chloride-induced morphology transformations of the Cu (110) surface in dilute HCl. Langmuir 2014, 30, 14486. [Google Scholar] [CrossRef]
- Lininger, A.; Palermo, G.; Guglielmelli, A.; Nicoletta, G.; Goel, M.; Hinczewski, M.; Strangi, G. Chirality Light–Matter Interaction. Adv. Mater. 2022, 2107325. [Google Scholar] [CrossRef] [PubMed]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; McNaught, A.D., Wilkinson, A., Eds.; The “Gold Book”; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Moss, G.P. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2193–2222. [Google Scholar] [CrossRef]
- Monti, D. Recent Advancements in Chiral Porphyrin Self-Assembly. In Synthesis and Modification of Porphy-Rinoids—Topics in Heterocyclic Chemistry; Paolesse, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 33, pp. 231–291. [Google Scholar]
- Berova, N.; Nakanishi, K. Circular Dichroism: Principles and Applications, 2nd ed.; Berova, N., Nakanishi, K., Woody, R.W., Eds.; Wiley-VCH: New York, NY, USA, 2000; pp. 337–382. [Google Scholar]
- Pescitelli, G. ECD exciton chirality method today: A modern tool for determining absolute configurations. Chirality 2022, 34, 333–363. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, M.; Magna, G.; Di Natale, C.; Paolesse, R.; Monti, D. Stereospecific Self-Assembly Processes of Porphyrin-Proline Conjugates: From the Effect of Structural Features and Bulk Solvent Properties to the Application in Stereoselective Sensor Systems. Int. J. Mol. Sci. 2022, 23, 15587. [Google Scholar] [CrossRef]
- Stefanelli, M.; Magna, G.; Zurlo, F.; Caso, M.F.; Di Bartolomeo, E.; Antonaroli, S.; Venanzi, M.; Paolesse, R.; Di Natale, C.; Monti, D.; et al. Selectivity of Porphyrin-ZnO Nanoparticle conjugates. ACS Appl. Mater. Interfaces 2019, 11, 12077–12087. [Google Scholar] [CrossRef]
- Magna, G.; Traini, T.; Naitana, M.L.; Bussetti, G.; Domenici, F.; Paradossi, G.; Venanzi, M.; Di Natale, C.; Paolesse, R.; Monti, D. Seeding Chiral Ensembles of Prolinated Porphyrin Derivatives on Glass Surface: Simple and Rapid Access to Chiral Porphyrin Films. Front. Chem. 2022, 9, 804893. [Google Scholar] [CrossRef]
- The Manual of the CD Spectrometer Model J-1100/1500, Section “Principles of CD Operation”. p. 1. Available online: https://jascoinc.com/products/spectroscopy/circular-dichroism/ (accessed on 1 March 2023).
- Bussetti, G.; Goletti, C.; Chiaradia, P.; Derry, T. Optical gap between dangling-bond states of a single-domain diamond C (111)-2× 1 by reflectance anisotropy spectroscopy. Europhys. Lett. 2007, 79, 57002. [Google Scholar] [CrossRef]
- Azzam, R.M.A.; Bashara, N.M. Ellipsometry and Polarized Light; North Holland: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Berkovits, V.L.; Kiselev, V.A.; Safarov, V.I. Optical spectroscopy of (110) surfaces of III–V semiconductors. Surf. Sci. 1989, 211, 489. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Anisotropies in the above—Band-gap optical spectra of cubic semiconductors. Phys. Rev. Lett. 1985, 54, 1956. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomei, I.; Bonanni, B.; Sgarlata, A.; Fanfoni, M.; Martini, R.; Di Filippo, I.; Magna, G.; Stefanelli, M.; Monti, D.; Paolesse, R.; et al. Chiral Porphyrin Assemblies Investigated by a Modified Reflectance Anisotropy Spectroscopy Spectrometer. Molecules 2023, 28, 3471. https://doi.org/10.3390/molecules28083471
Tomei I, Bonanni B, Sgarlata A, Fanfoni M, Martini R, Di Filippo I, Magna G, Stefanelli M, Monti D, Paolesse R, et al. Chiral Porphyrin Assemblies Investigated by a Modified Reflectance Anisotropy Spectroscopy Spectrometer. Molecules. 2023; 28(8):3471. https://doi.org/10.3390/molecules28083471
Chicago/Turabian StyleTomei, Ilaria, Beatrice Bonanni, Anna Sgarlata, Massimo Fanfoni, Roberto Martini, Ilaria Di Filippo, Gabriele Magna, Manuela Stefanelli, Donato Monti, Roberto Paolesse, and et al. 2023. "Chiral Porphyrin Assemblies Investigated by a Modified Reflectance Anisotropy Spectroscopy Spectrometer" Molecules 28, no. 8: 3471. https://doi.org/10.3390/molecules28083471
APA StyleTomei, I., Bonanni, B., Sgarlata, A., Fanfoni, M., Martini, R., Di Filippo, I., Magna, G., Stefanelli, M., Monti, D., Paolesse, R., & Goletti, C. (2023). Chiral Porphyrin Assemblies Investigated by a Modified Reflectance Anisotropy Spectroscopy Spectrometer. Molecules, 28(8), 3471. https://doi.org/10.3390/molecules28083471