Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vivo Anti-Inflammatory Activity Testing
2.3. Ulcerogenic Activity
2.4. Molecular Target Identification
2.5. Docking Studies
2.6. Cytotoxicity Assessment
3. Materials and Methods
3.1. Chemistry
3.2. Effect on Mouse Paw Edema in Carrageenan-Induced
3.3. Ulcerogenicity Activity
3.4. COX-1 and COX-2 Activity Inhibition
3.5. LOX Activity Inhibition
3.6. Docking Studies
3.7. Cytotoxicity Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- da Silva, T.L.; Costa, C.S.D.; da Silva, M.G.C.; Vieira, M.G.A. Overview of non-steroidal anti-inflammatory drugs degradation by advanced oxidation processes. J. Clean. Prod. 2022, 346, 131226. [Google Scholar] [CrossRef]
- Batchu, S.N.; Chaudhary, K.; Zlobine, I.; Pawa, J.; Seubert, J.M. Fatty Acids and Cardiac Ischemia Reperfusion Injury. In Handbook of Lipids in Human Function; Elsevier: Amsterdam, The Netherlands, 2016; pp. 39–83. [Google Scholar]
- Stone, W.L.; Basit, H.; Burns, B. Pathology, Inflammation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Wolfe, M.M.; Lichtenstein, D.R.; Singh, G. Gastrointestinal Toxicity of Nonsteroidal Antiinflammatory Drugs. N. Engl. J. Med. 1999, 340, 1888–1899. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; et al. Gastrointestinal Toxicity With Celecoxib vs Nonsteroidal Anti-inflammatory Drugs for Osteoarthritis and Rheumatoid ArthritisThe CLASS Study: A Randomized Controlled Trial. JAMA 2000, 284, 1247–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheen, A. Withdrawal of rofecoxib (Vioxx): What about cardiovascular safety of COX-2 selective non-steroidal anti-inflammatory drugs? Rev. Med. Liege 2004, 59, 565–569. [Google Scholar]
- Dogné, J.-M.; Supuran, C.T.; Pratico, D. Adverse cardiovascular effects of the coxibs. J. Med. Chem. 2005, 48, 2251–2257. [Google Scholar] [CrossRef] [PubMed]
- El-Malah, A.A.; Gineinah, M.M.; Deb, P.K.; Khayyat, A.N.; Bansal, M.; Venugopala, K.N.; Aljahdali, A.S. Selective COX-2 Inhibitors: Road from Success to Controversy and the Quest for Repurposing. Pharmaceuticals 2022, 15, 827. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Araki, H.; Komoike, Y.; Hase, S.; Takeuchi, K. Inhibition of both COX-1 and COX-2 is required for development of gastric damage in response to nonsteroidal antiinflammatory drugs. J. Physiol. 2001, 95, 21–27. [Google Scholar] [CrossRef]
- Wallace, J.L.; McKnight, W.; Reuter, B.K.; Vergnolle, N. NSAID-induced gastric damage in rats: Requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology 2000, 119, 706–714. [Google Scholar] [CrossRef]
- Langenbach, R.; Morham, S.G.; Tiano, H.F.; Loftin, C.D.; Ghanayem, B.I.; Chulada, P.C.; Mahler, J.F.; Lee, C.A.; Goulding, E.H.; Kluckman, K.D. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 1995, 83, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, A.; Hase, S.; Miyazawa, T.; Takeuchi, K. Up-regulation of cyclooxygenase-2 by inhibition of cyclooxygenase-1: A key to nonsteroidal anti-inflammatory drug-induced intestinal damage. J. Pharmacol. Exp. Ther. 2002, 300, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Perrone, M.G.; Scilimati, A.; Simone, L.; Vitale, P. Selective COX-1 inhibition: A therapeutic target to be reconsidered. Curr. Med. Chem. 2010, 17, 3769–3805. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, M.; Langhansova, L.; Temml, V.; Pavicic, A.; Vanek, T.; Landa, P. Synthesis, inhibitory activity, and in silico modeling of selective COX-1 inhibitors with a Quinazoline core. ACS Med. Chem. Lett. 2021, 12, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Calvello, R.; Lofrumento, D.D.; Perrone, M.G.; Cianciulli, A.; Salvatore, R.; Vitale, P.; De Nuccio, F.; Giannotti, L.; Nicolardi, G.; Panaro, M.A. Highly selective cyclooxygenase-1 inhibitors P6 and mofezolac counteract inflammatory state both in vitro and in vivo models of neuroinflammation. Front. Neurol. 2017, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, N.; Yamamoto, N.; Sunami, A.; Yamasaki, Y.; Miyake, H. Pharmacoligical profile of mofezolac, a new non-steroidal analgesic anti-inflammatory drug. Nihon Yakurigaku Zasshi 1990, 95, 63–81. [Google Scholar] [CrossRef]
- Abdelazeem, A.H.; El-Saadi, M.T.; Safi El-Din, A.G.; Omar, H.A.; El-Moghazy, S.M. Design, synthesis and analgesic/anti inflammatory evaluation of novel diarylthiazole and diarylimidazole derivatives towards selective COX-1 inhibitors with better gastric profile. Bioorg. Med. Chem. 2017, 25, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Xie, Y.; Liu, W.B.; You, S.L. Methyl-monofluorination of ibuprofen selectively increases its inhibitory activity toward cyclooxygenase-1 leading to enhanced analgesic activity and reduced gastric damage in vivo. Bioorg. Med. Chem. Lett. 2011, 21, 3578–3582. [Google Scholar] [CrossRef] [PubMed]
- Kakuta, H.; Zheng, X.; Oda, H.; Harada, S.; Sugimoto, Y.; Sasaki, K.; Tai, A. Cyclooxygenase-1-Selective Inhibitors Are Attractive Candidates for Analgesics That Do Not Cause Gastric Damage. Design and In Vitro/In Vivo Evaluation of a Benzamide-Type Cyclooxygenase-1 Selective Inhibitor. J. Med. Chem. 2008, 51, 2400–2411. [Google Scholar] [CrossRef]
- Perrone, M.G.; Lofrumento, D.D.; Vitale, P.; Nuccio, F.D.; Pesa, V.L.; Panella, A.; Calvello, R.; Cianciulli, A.; Panaro, M.A.; Scilimati, A. Selective Cyclooxygenase-1 Inhibition by P6 and Gastrotoxicity: Preliminary Investigation. Pharmacology 2015, 95, 22–28. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakai, H.; Motoyama, Y.; Ishikawa, T.; Takasugi, H. Antiplatelet Agents Based on Cyclooxygenase Inhibition without Ulcerogenesis. Evaluation and Synthesis of 4,5-Bis(4-methoxyphenyl)-2-substituted-thiazol. J. Med. Chem. 1994, 37, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Perissutti, E.; Fiorino, F.; Renner, C.; Severino, B.; Roviezzo, F.; Sautebin, L.; Rossi, A.; Cirino, G.; Santagada, V.; Caliendo, G. Synthesis of 2-Methyl-3-indolylacetic Derivatives as Anti-Inflammatory Agents That Inhibit Preferentially Cyclooxygenase 1 without Gastric Damage. J. Med. Chem. 2006, 49, 7774–7780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, P.C.; Kirkby, N.S.; Zain, Z.N.; Emerson, M.; Mitchell, J.A.; Warner, T.D. Thrombosis is reduced by inhibition of COX-1, but unaffected by inhibition of COX-2, in an acute model of platelet activation in the mouse. PLoS ONE 2011, 6, e20062. [Google Scholar] [CrossRef] [Green Version]
- Calvello, R.; Panaro, M.A.; Carbone, M.L.; Cianciulli, A.; Perrone, M.G.; Vitale, P.; Malerba, P.; Scilimati, A. Novel selective COX-1 inhibitors suppress neuroinflammatory mediators in LPS-stimulated N13 microglial cells. Pharmacol. Res. 2012, 65, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Pannunzio, A.; Coluccia, M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: A review of oncology and medicinal chemistry literature. Pharmaceuticals 2018, 11, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malerba, P.; Crews, B.C.; Ghebreselasie, K.; Daniel, C.K.; Jashim, E.; Aleem, A.M.; Salam, R.A.; Marnett, L.J.; Uddin, M.J. Targeted Detection of Cyclooxygenase-1 in Ovarian Cancer. ACS Med. Chem. Lett. 2020, 11, 1837–1842. [Google Scholar] [CrossRef]
- Daikoku, T.; Wang, D.; Tranguch, S.; Morrow, J.D.; Orsulic, S.; DuBois, R.N.; Dey, S.K. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res. 2005, 65, 3735–3744. [Google Scholar] [CrossRef] [Green Version]
- Grösch, S.; Tegeder, I.; Niederberger, E.; Bräutigam, L.; Geisslinger, G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J. 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niho, N.; Kitamura, T.; Takahashi, M.; Mutoh, M.; Sato, H.; Matsuura, M.; Sugimura, T.; Wakabayashi, K. Suppression of azoxymethane-induced colon cancer development in rats by a cyclooxygenase-1 selective inhibitor, mofezolac. Cancer Sci. 2006, 97, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.K.; Sung, J.J.Y.; Wu, Y.C.; Li, H.T.; Yu, L.; Li, Z.J.; Cho, C.H. Inhibition of cyclooxygenase-1 lowers proliferation and induces macroautophagy in colon cancer cells. Biochem. Biophys. Res. Commun. 2009, 382, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xu, C.; Huo, X.; Hao, H.; Wan, Q.; Chen, H.; Zhang, X.; Breyer, R.M.; Huang, Y.; Cao, X.; et al. The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat. Commun. 2019, 10, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haroun, M.; Petrou, A.; Tratrat, C.; Kolokotroni, A.; Fesatidou, M.; Zagaliotis, P.; Gavalas, A.; Venugopala, K.N.; Sreeharsha, N.; Nair, A.B.; et al. Discovery of 5-Methylthiazole-Thiazolidinone Conjugates as Potential Anti-Inflammatory Agents: Molecular Target Identification and In Silico Studies. Molecules 2022, 27, 8137. [Google Scholar] [CrossRef]
- Fesatidou, M.; Zagaliotis, P.; Camoutsis, C.; Petrou, A.; Eleftheriou, P.; Tratrat, C.; Haroun, M.; Geronikaki, A.; Ciric, A.; Sokovic, M. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg. Med. Chem. 2018, 26, 4664–4676. [Google Scholar] [CrossRef]
- Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Kostić, M.; Soković, M.; Vizirianakis, I.S.; Theodoroula, N.F.; Haroun, M. Thiazolidin-4-Ones as Potential Antimicrobial Agents: Experimental and In Silico Evaluation. Molecules 2022, 27, 1930. [Google Scholar] [CrossRef]
- Haroun, M.; Tratrat, C.; Kolokotroni, A.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Kostic, M.; Sokovic, M.; Carazo, A.; Mladěnka, P.; et al. 5-Benzyliden-2-(5-methylthiazol-2-ylimino)thiazolidin-4-ones as Antimicrobial Agents. Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Antibiotics 2021, 10, 309. [Google Scholar] [CrossRef]
- Haroun, M.; Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Ćirić, A.; Soković, M.; Nagaraja, S.; Venugopala, K.N.; Balachandran Nair, A.; et al. Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation. Molecules 2021, 26, 4061. [Google Scholar] [CrossRef]
- Haroun, M.; Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Ciric, A.; Sokovic, M. 2-Aryl-3-(6-trifluoromethoxy)benzo[d]thiazole-based thiazolidinone hybrids as potential anti-infective agents: Synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett. 2021, 32, 127718. [Google Scholar] [CrossRef] [PubMed]
- Tratrat, C. Novel Thiazole-Based Thiazolidinones as Potent Anti-infective Agents: In silico PASS and Toxicity Prediction, Synthesis, Biological Evaluation and Molecular Modelling. Comb. Chem. High Throughput Screen. 2020, 23, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Tratrat, C.; Haroun, M.; Xenikakis, I.; Liaras, K.; Tsolaki, E.; Eleftheriou, P.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Venugopala, K.N.; et al. Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones. Curr. Top. Med. Chem. 2019, 19, 356–375. [Google Scholar] [CrossRef]
- Tratrat, C.; Haroun, M.; Paparisva, A.; Geronikaki, A.; Kamoutsis, C.; Ćirić, A.; Glamočlija, J.; Soković, M.; Fotakis, C.; Zoumpoulakis, P.; et al. Design, synthesis and biological evaluation of new substituted 5-benzylideno-2-adamantylthiazol[3,2-b][1,2,4]triazol-6(5H)ones. Pharmacophore models for antifungal activity. Arab. J. Chem. 2018, 11, 573–590. [Google Scholar] [CrossRef] [Green Version]
- Haroun, M.; Petrou, A.; Tratrat, C.; Kositsi, K.; Gavalas, A.; Geronikaki, A.; Venugopala, K.N.; Sreeharsha, N. Discovery of benzothiazole-based thiazolidinones as potential anti-inflammatory agents: Anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR QSAR Environ. Res. 2022, 33, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Tratrat, C.; Haroun, M.; Paparisva, A.; Kamoutsis, C.; Petrou, A.; Gavalas, A.; Eleftheriou, P.; Geronikaki, A.; Venugopala, K.N.; Kochkar, H.; et al. New Substituted 5-Benzylideno-2-Adamantylthiazol[3,2-b][1,2,4]Triazol-6(5H)ones as Possible Anti-Inflammatory Agents. Molecules 2021, 26, 659. [Google Scholar] [CrossRef]
- Tratrat, C.; Haroun, M.; Tsolaki, E.; Petrou, A.; Gavalas, A.; Geronikaki, A. Thiazole-based Chalcone Derivatives as Potential Anti-inflammatory Agents: Biological Evaluation and Molecular Modelling. Curr. Top. Med. Chem. 2021, 21, 257–268. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Al-Attraqchi, O.H.A.; Tratrat, C.; Nayak, S.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Venugopala, R.; et al. Novel Series of Methyl 3-(Substituted Benzoyl)-7-Substituted-2-Phenylindolizine-1-Carboxylates as Promising Anti-Inflammatory Agents: Molecular Modeling Studies. Biomolecules 2019, 9, 661. [Google Scholar] [CrossRef] [Green Version]
- Vinegar, R.; Schreiber, W.; Hugo, R. Biphasic development of carrageenin edema in rats. J. Pharmacol. Exp. Ther. 1969, 166, 96–103. [Google Scholar]
- Theodosis-Nobelos, P.; Papagiouvanis, G.; Pantelidou, M.; Kourounakis, P.N.; Athanasekou, C.; Rekka, E.A. Design, Synthesis and Study of Nitrogen Monoxide Donors as Potent Hypolipidaemic and Anti-Inflammatory Agents. Molecules 2019, 25, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Mueser, T.C.; Marnett, L.J.; Funk, M.O., Jr. Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure 2012, 20, 1490–1497. [Google Scholar] [CrossRef] [Green Version]
- Tziona, P.; Theodosis-Nobelos, P.; Papagiouvannis, G.; Petrou, A.; Drouza, C.; Rekka, E.A. Enhancement of the Anti-Inflammatory Activity of NSAIDs by Their Conjugation with 3,4,5-Trimethoxybenzyl Alcohol. Molecules 2022, 27, 2104. [Google Scholar] [CrossRef]
- Barsoum, F.F.; Hosni, H.M.; Girgis, A.S. Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties. Bioorg. Med. Chem. 2006, 14, 3929–3937. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Au-todock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Petrou, A.; Eleftheriou, P.; Geronikaki, A.; Akrivou, M.G.; Vizirianakis, I.S. Novel Thiazolidin-4-ones as Potential Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase. Molecules 2019, 24, 3821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akrivou, M.G.; Demertzidou, V.P.; Theodoroula, N.F.; Chatzopoulou, F.M.; Kyritsis, K.A.; Grigoriadis, N.; Zografos, A.L.; Vizirianakis, I.S. Uncovering the pharmacological response of novel sesquiterpene derivatives that differentially alter gene expression and modulate the cell cycle in cancer cells. Int. J. Oncol. 2018, 53, 2167–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entry | R | Edema Inhibition, (%) | Entry | R | Edema Inhibition, (%) |
---|---|---|---|---|---|
1 | H | 40.8 ± 1.9 ** | 9 | 3-NO2 | 41.9 ±1.8 ** |
2 | 4-F | 39.7 ± 1.6 * | 10 | 2,3-di-F | 55.8 ± 1.9 ** |
3 | 4-Br | 62.0 ± 1.8 *** | 11 | 2,6-di-F | 47.9 ± 1.7 ** |
4 | 4-NO2 | 66.7 ± 2.1 *** | 12 | 2,3-di-Cl | 34.5 ± 1.1 * |
5 | 4-CH3 | 47.2 ± 1.2 ** | 13 | 2,4-di-Cl | 36.0 ± 1.8 * |
6 | 4-OCH3 | 37.0 ± 1.6 ** | 14 | 2,6-di-Cl | 60.0 ± 1.9 *** |
7 | 4-N(CH3)2 | 43.6 ± 1.3 ** | 15 | 4-OH,3-OCH3 | 21.4 ± 2.1 ** |
8 | 2-NO2 | 37.0 ± 1.4 * | Indomethacin | 47.0 ± 1.6 ** |
Entry | Number of Animals with Ulcer | Ulcer Index a |
---|---|---|
Indomethacin | 4/5 | 0.6 ± 0.18 |
3 | nil | - |
4 | nil | - |
14 | nil | - |
No | COX-1 Inhibition | COX-2 Inhibition | LOX | |
---|---|---|---|---|
Inhibition (%) 200 μΜ | IC50 (μΜ) | Inhibition (%) 200 μΜ | Inhibition (%) 100 μΜ | |
3 | 100 | 1.12 ± 0.5 * | 0 | 42.9 ± 1.9 ** |
4 | 100 | 1.08 ± 0.4 * | 0 | 39.8 ± 181 ** |
14 | 100 | 9.62 ± 0.5 *** | 0 | 34.5 ± 1.6 *** |
Ibuprofen | 68.0 ± 1.2 ** | 12.7 ± 0.5 * | 46.0 ± 1.4 * | |
Naproxen | 40.10 ± 1.6 ** | 17.0 ± 2.3 ** | ||
NDGA | 94.0 ± 1.1 * |
No | Ovine COX-1 (PDB ID:1EQG) | |||
---|---|---|---|---|
Binding Free Energy (kcal/mol) | Residues Involved in Hydrogen Bonds | Residues Involved in Hydrophobic Interactions | Other Important Interactions | |
3 | −8.14 | Tyr355 (OH···N, 1.72 Å) | Ile89, Ile523, Val116, Val119, Leu352, Leu381 Ala527, Phe381, Tyr385, Trp387 | Arg120 (pi-cation) |
4 | −8.28 | Tyr335 (OH···N, 1.71 Å) Tyr385 (OH···O, 2.94 Å) | Ile89, Ile523, Val116, Val119, Leu352, Ala527 | Arg120 (pi-cation) Tyr385 (pi-cation) |
14 | −7.60 | - | Ile89, Ile523, Val116, Val119, Leu352, Ala527, Phe518, Met522 | Arg120 (pi-cation) Tyr385 (pi-cation} Tyr385 (pi-sulfur} Trp387 (pi-pi) Gly56 (pi-pi) |
Ibuprofen | −7.71 | Tyr355 (OH···O, 1.85 Å) Arg120 (NH···O, 1.83 Å) Arg120 (NH···O, 1.91 Å) | Ile523, Val116, Leu351, Leu359, Ala527, Val349, Trp387, Tyr385, Phe518 | Arg120 (pi-cation) |
No | Mus musculus COX-2 (PDB ID: 3LN1) | |||
3 | −4.11 | Arg499 (NH···O, 3.10 Å) Tyr341 (OH···O, 2.48 Å) | Val335, Val509, Tyr371, Leu338, Ala502 | Gln178 (pi-sulfur} His75 (pi-sulfur} |
Celecoxib | −9.63 | Gln178 (O···HN, 2.10 Å) Leu338 (O···HN, 2.71 Å) Ser339 (O···HN, 2.12 Å) Arg499 (NH···O, 2.50 Å) Phe504 (NH···O, 2.53 Å) | Tyr341, Tyr371, Leu370, Trp373, Ala513, Val509, Val335 | Gly512 (pi-pi) |
No | Mus musculus COX-2 (PDB ID: 6BL3) | |||
3 | −7.36 | - | Val89, Val116, Val349, Val523, Leu93, Ile112, Tyr115, Trp387, Phe518, Ala527 | Tyr335 (pi-sulfur} |
Indo conjugate | −10.62 | Ser530 (OH···O, 2.24 Å) Arg120 (NH···O, 2.44 Å) | Leu93, Leu352, Leu384, Leu531, Val89, Val349, Val523, Ala527, Tyr385, Trp387, Met522 | Tyr115 (pi-pi) |
No | Human 5—LOX (PDB ID: 6N2W) | |||
3 | −9.26 | Ile673 (N···H, 3.24 Å) | Leu368, His372, Ile406, Ala410, Leu414 | Fe binding |
4 | −9.47 | His372 (N···H, 2.76 Å) | Ile367, Leu368, Ile406, Ala410, Leu414, Leu607 | Fe binding |
14 | −9.94 | Ile673 (N···H, 2.56 Å) | Leu368, Ile406, Ala410, Leu414 | Fe binding, Halogen interaction: Gln363 (Cl···H, 3.15 Å) |
NDGA | −9.17 | Ile673 (O···H, 3.25 Å), Ile673 (O···H, 3.51 Å), Gln363 (O···H, 2.46 Å), Gln363 (O···H, 3.20 Å) | Leu368, Ala410, Leu414, Leu607 | Fe binding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haroun, M.; Fesatidou, M.; Petrou, A.; Tratrat, C.; Zagaliotis, P.; Gavalas, A.; Venugopala, K.N.; Kochkar, H.; Emeka, P.M.; Younis, N.S.; et al. Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile. Molecules 2023, 28, 3416. https://doi.org/10.3390/molecules28083416
Haroun M, Fesatidou M, Petrou A, Tratrat C, Zagaliotis P, Gavalas A, Venugopala KN, Kochkar H, Emeka PM, Younis NS, et al. Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile. Molecules. 2023; 28(8):3416. https://doi.org/10.3390/molecules28083416
Chicago/Turabian StyleHaroun, Michelyne, Maria Fesatidou, Anthi Petrou, Christophe Tratrat, Panagiotis Zagaliotis, Antonis Gavalas, Katharigatta N. Venugopala, Hafedh Kochkar, Promise M. Emeka, Nancy S. Younis, and et al. 2023. "Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile" Molecules 28, no. 8: 3416. https://doi.org/10.3390/molecules28083416
APA StyleHaroun, M., Fesatidou, M., Petrou, A., Tratrat, C., Zagaliotis, P., Gavalas, A., Venugopala, K. N., Kochkar, H., Emeka, P. M., Younis, N. S., Elmaghraby, D. A., Almostafa, M. M., Chohan, M. S., Vizirianakis, I. S., Papadimitriou-Tsantarliotou, A., & Geronikaki, A. (2023). Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile. Molecules, 28(8), 3416. https://doi.org/10.3390/molecules28083416