The Large Molecular Weight Polysaccharide from Wild Cordyceps and Its Antitumor Activity on H22 Tumor-Bearing Mice
Abstract
:1. Introduction
2. Results
2.1. The Total Sugar Content, Purity, Average Molecular Weight, and Microstructural Feature Results of WCP
2.2. Main Organic Functional Groups and Monosaccharide Composition of WCP
2.3. WCP Alleviates the Symptoms of H22 Tumor-Bearing Mice
2.4. Analysis of the Blood Routine Results
2.5. Effect of WCP on the Liver, Lung, Organ Indices, and IL-10
2.6. WCP Changes the Proportions of T Lymphocytes and Macrophages
2.7. WCP Treatment Promotes Apoptosis of Tumor Cells
2.8. WCP Promotes Cyto-c/Caspase8/3 and Inhibits IL-10/STAT3/Bcl2 Pathway
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Preparation of Wild Cordyceps Polysaccharide (WCP)
4.3. WCP Characterization
4.3.1. Total Sugar Content and SDS-PAGE Gel Electrophoresis Analysis
4.3.2. Assays of UV Spectroscopy and Molecular Weight
4.3.3. Scanning Electron Microscopy
4.3.4. Assays of FT-IR Spectrum and Monosaccharide Composition
4.4. Antitumor Activity In Vivo
4.4.1. Animal Experimental Design
4.4.2. Solid Tumors and Immune Organ Indices
4.4.3. Blood Routine Examination and Blood Biochemical Analysis
4.4.4. TUNEL Assay
4.4.5. T Lymphocyte Subsets, Macrophage Distribution and Proportions
4.4.6. Evaluation of Cytokine Levels and Lungs Fixed with Bounis Fixative
4.4.7. HE Assay of Liver and Tumor
4.4.8. Western Blot Assay and Quantitative Real-Time PCR
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Moghaddam, A.; Salehi Moghaddam, A.; Absalan, M.; Kruppke, B.; Ruckdäschel, H.; Khonakdar, H.A. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023, 258, 124399. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, B.; Long, Y.; Li, H. Effect of traditional Chinese medicine combined with Western therapy on primary hepatic carcinoma: A systematic review with meta-analysis. Front. Med. 2017, 11, 191–202. [Google Scholar] [CrossRef]
- Rosenberg, N.; Van Haele, M.; Lanton, T.; Brashi, N.; Bromberg, Z.; Adler, H.; Giladi, H.; Peled, A.; Goldenberg, D.S.; Axelrod, J.H.; et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. J. Hepatol. 2022, 77, 1631–1641. [Google Scholar] [CrossRef]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.-S.; Shen, F.-X.; Xie, R.-F.; Zhou, G.; Feng, Y.-M.; Zhou, X. Bufothionine induces autophagy in H22 hepatoma-bearing mice by inhibiting JAK2/STAT3 pathway, a possible anti-cancer mechanism of cinobufacini. J. Ethnopharmacol. 2021, 270, 113848. [Google Scholar] [CrossRef]
- Department of Medical Administration, National Health and Health Commission of the People’s Republic of China. Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition). Zhonghua Gan Zang Bing Za Zhi 2020, 28, 112–128. [Google Scholar] [CrossRef]
- Gong, P.; Wang, S.; Liu, M.; Chen, F.; Yang, W.; Chang, X.; Liu, N.; Zhao, Y.; Wang, J.; Chen, X. Extraction methods, chemical characterizations and biological activities of mushroom polysaccharides: A mini-review. Carbohydr. Res. 2020, 494, 108037. [Google Scholar] [CrossRef]
- Murtazina, A.; Alcala, G.R.; Jimenez-Martinez, Y.; Marchal, J.A.; Tarabayeva, A.; Bitanova, E.; McDougall, G.; Bishimbayeva, N.; Boulaiz, H. Anti-Cancerous Potential of Polysaccharides Derived from Wheat Cell Culture. Pharmaceutics 2022, 14, 1100. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Huang, Q.-Z.; Chen, K.-W.; Liu, Y.; Jia, R.-B.; Liu, B. Sanghuangporus vaninii fruit body polysaccharide alleviates hyperglycemia and hyperlipidemia via modulating intestinal microflora in type 2 diabetic mice. Front. Nutr. 2022, 9, 1013466. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Jia, F.; Liu, Y.; Zhou, X. Astragalus polysaccharides and astragaloside IV alleviate inflammation in bovine mammary epithelial cells by regulating Wnt/β-catenin signaling pathway. PLoS ONE 2022, 17, e0271598. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhao, L.; Jiang, C.; Zhu, Y.; Zhang, J.; Hu, J.; Wang, G. Polysaccharides from Pseudostellaria heterophylla modulate gut microbiota and alleviate syndrome of spleen deficiency in rats. Sci. Rep. 2022, 12, 20217. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-B.; Hong, H.-L.; Liu, L.-Y.; Zhou, J.-N.; Wang, Y.; Li, Y.-M.; Zhai, L.-Y.; Shi, Z.-H.; Zhao, J.; Liu, D. Analysis of Structure and Antioxidant Activity of Polysaccharides from Aralia continentalis. Pharmaceuticals 2022, 15, 1545. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, P.; Liu, H.; Zhang, Y.; Zhang, X. Penthorum chinense Pursh polysaccharide induces a mitochondrial-dependent apoptosis of H22 cells and activation of immunoregulation in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2023, 224, 510–522. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-Q.; Ding, S.-Y.; Chen, P.; Liu, H.-P.; Chang, M.-L.; Shi, S.-Y. A water-soluble polysaccharide from Eucommia folium: The structural characterization and anti-tumor activity in vivo. Glycoconj. J. 2022, 39, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, A. Structural Characterization of an Alcohol-Soluble Polysaccharide from Bletilla striata and Antitumor Activities in Vivo and in Vitro. Chem. Biodivers. 2022, 19, e202200635. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Zhu, J.; Xu, J.; Zhang, S.; Bao, Y. Antitumor effect of a polysaccharide from Pseudostellaria heterophylla through reversing tumor-associated macrophages phenotype. Int. J. Biol. Macromol. 2022, 220, 816–826. [Google Scholar] [CrossRef]
- Chen, P.; Chen, Y.; Yan, Z.-Q.; Ding, S.-Y.; Liu, H.-P.; Tu, J.-Q.; Zhang, X.-W. Protective Effect of the Polysaccharides from Taraxacum mongolicum Leaf by Modulating the p53 Signaling Pathway in H22 Tumor-Bearing Mice. Foods 2022, 11, 3340. [Google Scholar] [CrossRef]
- Shi, S.; Chang, M.; Liu, H.; Ding, S.; Yan, Z.; Si, K.; Gong, T. The Structural Characteristics of an Acidic Water-Soluble Polysaccharide from Bupleurum chinense DC and Its In Vivo Anti-Tumor Activity on H22 Tumor-Bearing Mice. Polymers 2022, 14, 1119. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Qiao, Y.; Shan, Z.; Yang, M.; Li, G.; Xiao, Y.; Wei, L.; Bi, H.; Gao, T. Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking. Ann. Transl. Med. 2022, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Lin, M.; Xie, D.; Zhang, W.; Zhang, M.; Zhou, L.; Li, S.; Hu, H. Comparative metabolic profiling of wild Cordyceps species and their substituents by liquid chromatography-tandem mass spectrometry. Front. Pharmacol. 2022, 13, 1036589. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.-H.; Ju, C.-H.; Wu, L.-H.; Lui, W.-Y.; Wu, C.-W.; Shiao, M.-S.; Hong, C.-Y. Cordyceps sinensis Increases the Expression of Major Histocompatibility Complex Class II Antigens on Human Hepatoma Cell Line HA22T/VGH Cells. Am. J. Chin. Med. 1998, 26, 159–170. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Dong, N.; Fang, Q.; Zhang, Y.; Chen, C.; Cui, S.W.; Nie, S. Polysaccharides from natural Cordyceps sinensis attenuated dextran sodium sulfate-induced colitis in C57BL/6J mice. Food Funct. 2023, 14, 720–733. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Xiong, L.; Shu, X.; Chen, W.; Li, W.; Li, J.; Ma, L.; Xiao, Y.; Li, L. Antioxidant effects of bioactive compounds isolated from cordyceps and their protective effects against UVB-irradiated HaCaT cells. J. Cosmet. Dermatol. 2019, 18, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, M.; Li, L.; Chen, M.; Puno, P.T.; Bao, W.; Zheng, H.; Wen, X.; Cheng, H.; Fung, H.; et al. Cordyceps polysaccharide marker CCP modulates immune responses via highly selective TLR4/MyD88/p38 axis. Carbohydr. Polym. 2021, 271, 118443. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-L.; Kuo, P.-C.; Hwang, T.-L.; Wu, T.-S. Anti-inflammatory Principles from Cordyceps sinensis. J. Nat. Prod. 2011, 74, 1996–2000. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Lu, T.; Li, J.; Zheng, Y.; Kong, L. Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sci. 2006, 78, 2742–2748. [Google Scholar] [CrossRef]
- Huang, Y.-K.; Sheu, J.-R.; Jayakumar, T.; Chiu, C.-C.; Wang, S.-H.; Chou, D.-S.; Huang, Y.-K.; Sheu, J.-R. Anti-cancer Effects of CME-1, a Novel Polysaccharide, Purified from the Mycelia of Cordyceps sinensis against B16-F10 Melanoma Cells. J. Cancer Res. Ther. 2014, 10, 43–49. [Google Scholar] [CrossRef]
- Qi, W.; Zhou, X.; Wang, J.; Zhang, K.; Zhou, Y.; Chen, S.; Nie, S.; Xie, M. Cordyceps sinensis polysaccharide inhibits colon cancer cells growth by inducing apoptosis and autophagy flux blockage via mTOR signaling. Carbohydr. Polym. 2020, 237, 116113. [Google Scholar] [CrossRef]
- Wang, J.; Nie, S.; Kan, L.; Chen, H.; Cui, S.W.; Phillips, A.O.; Phillips, G.O.; Xie, M. Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis. Food Sci. Biotechnol. 2017, 26, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gong, Z.; Su, Y.; Lin, J.; Tang, K. Cordyceps fungi: Natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol. 2009, 61, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Pathak, M.; Sarma, H.K.; Bhattacharyya, K.G.; Subudhi, S.; Bisht, V.; Lal, B.; Devi, A. Characterization of a Novel Polymeric Bioflocculant Produced from Bacterial Utilization of n-Hexadecane and Its Application in Removal of Heavy Metals. Front. Microbiol. 2017, 8, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, X.; Ma, X.; Liu, L.; Ren, J.; Li, H.; Li, X.; Yu, S.; Zhang, W.; Fan, W. Structural characterization and antioxidant activity in vitro of polysaccharides from angelica and astragalus. Carbohydr. Polym. 2016, 137, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhu, Z.-Y.; Liu, Y.; Sun, H.; Song, Q.-Y.; Zhang, Y. The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from rose buds. Food Funct. 2018, 9, 2300–2312. [Google Scholar] [CrossRef]
- National Pharmacopoeia Committee. Chinese Pharmacopoeia; China Medical Science and Technology Press: Beijing, China, 2020; p. 1088. [Google Scholar]
- Hu, B.; Yuan, Y.; Yan, Y.; Zhou, X.; Li, Y.; Kan, Q.; Li, S. Preparation and evaluation of a novel anticancer drug delivery carrier for 5-Fluorouracil using synthetic bola-amphiphile based on lysine as polar heads. Mater. Sci. Eng. C 2017, 75, 637–645. [Google Scholar] [CrossRef]
- Sadhukhan, R.; Majumdar, D.; Garg, S.; Landes, R.D.; McHargue, V.; Pawar, S.A.; Chowdhury, P.; Griffin, R.J.; Narayanasamy, G.; Boerma, M.; et al. Simultaneous exposure to chronic irradiation and simulated microgravity differentially alters immune cell phenotype in mouse thymus and spleen. Life Sci. Space Res. 2020, 28, 66–73. [Google Scholar] [CrossRef]
- Yu, J.; Ji, H.-Y.; Liu, C.; Liu, A.-J. The structural characteristics of an acid-soluble polysaccharide from Grifola frondosa and its antitumor effects on H22-bearing mice. Int. J. Biol. Macromol. 2020, 158, 1288–1298. [Google Scholar] [CrossRef]
- Qin, Q.; Chen, H.; Xu, H.; Zhang, X.; Chen, J.; Zhang, C.; Liu, J.; Xu, L.; Sun, X. FoxM1 knockdown enhanced radiosensitivity of esophageal cancer by inducing apoptosis. J. Cancer 2023, 14, 454–463. [Google Scholar] [CrossRef]
- Fianco, G.; Contadini, C.; Ferri, A.; Cirotti, C.; Stagni, V.; Barilà, D. Caspase-8: A Novel Target to Overcome Resistance to Chemotherapy in Glioblastoma. Int. J. Mol. Sci. 2018, 19, 3798. [Google Scholar] [CrossRef] [Green Version]
- Ya, L.; Hongli, L.; Xiaojing, Y.; Eddie, Z.; Hui, Q.; Hai, H. Role and mechanism of inhibition of gastric cancer cell proliferation based on BI-HSV-TK/GCV system. Clin. Med. Res. Pract. 2021, 6, 1–4. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Z.-J.; Zhou, X.-W. Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism—A Review. Molecules 2022, 27, 6576. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.-M.; Yang, R.; Zhang, M.; Zou, W.-H.; Qian, N.-N.; Xu, Q.-J.; Chen, H.; Peng, J.-C.; Luo, X.-P.; Zhang, Q.; et al. Peripheral Blood-Derived Mesenchymal Stem Cells Modulate Macrophage Plasticity through the IL-10/STAT3 Pathway. Stem Cells Int. 2022, 2022, 5181241. [Google Scholar] [CrossRef]
- Batchu, R.B.; Gruzdyn, O.V.; Kolli, B.K.; Dachepalli, R.; Umar, P.S.; Rai, S.K.; Singh, N.; Tavva, P.S.; Weaver, D.W.; Gruber, S.A. IL-10 Signaling in the Tumor Microenvironment of Ovarian Cancer. Adv. Exp. Med. Biol. 2021, 1290, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.-X.; Jiao, Y.-N.; Hao, H.-F.; Xue, D.; Bai, C.-C.; Han, S.-Y. Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10/STAT3/PD-L1 signaling pathways. J. Ethnopharmacol. 2021, 274, 113978. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, A.; Khatami, F.; Keshel, S.H.; Akbari, M.R.; Mirzaei, A.; Gholami, K.; Farsani, R.M.; Aghamir, S.M.K. The effect of mesenchymal stem cells-derived exosomes on the prostate, bladder, and renal cancer cell lines. Sci. Rep. 2022, 12, 20924. [Google Scholar] [CrossRef]
- Fengxuan, J.; Guopeng, L.; Weimin, Z.; Biaofang, W. Significance of serum Bax/Bcl-2 in patients with non-traumatic femoral head necrosis. Chin. J. Orthop. Surg. 2023, 31, 10–14. [Google Scholar]
- Muñoz-Castiblanco, T.; de la Parra, L.S.M.; Peña-Cañón, R.; Mejía-Giraldo, J.C.; León, I.E.; Puertas-Mejía, M. Anticancer and Antioxidant Activity of Water-Soluble Polysaccharides from Ganoderma aff. australe against Human Osteosarcoma Cells. Int. J. Mol. Sci. 2022, 23, 14807. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, L.-L.; Liu, H.-P.; Wu, Y.-R.; Li, M.-Y.; Jia, Q. Structural characterization of a novel polysaccharide from Pleurotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int. J. Biol. Macromol. 2021, 168, 251–260. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.-M.; Qin, G.-Y. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal. Food Chem. 2017, 234, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-S.; Park, S.B.; Shin, K.-S. Molecular mechanisms of immunomodulatory activity by polysaccharide isolated from the peels of Citrus unshiu. Int. J. Biol. Macromol. 2018, 112, 576–583. [Google Scholar] [CrossRef]
- Ji, X.; Liu, F.; Peng, Q.; Wang, M. Purification, structural characterization, and hypolipidemic effects of a neutral polysaccharide from Ziziphus Jujuba cv. Muzao. Food Chem. 2018, 245, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- U.S. Office of Science and Technology Policy. Laboratory Animal Welfare; U.S. Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research and Training; Notice. Fed Regist. 1985, 50, 20864–20865. [Google Scholar]
- Li, J.; Jiang, X.; Shang, L.; Li, Z.; Yang, C.; Luo, Y.; Hu, D.; Shen, Y.; Zhang, Z. L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent. Drug Deliv. 2021, 28, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Dun, X.; Liu, S.; Ge, N.; Liu, M.; Li, M.; Zhang, J.; Bao, H.; Li, B.; Zhang, H.; Cui, L. Photothermal effects of CuS-BSA nanoparticles on H22 hepatoma-bearing mice. Front. Pharmacol. 2022, 13, 1029986. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-B.; Ahmed, Z.; Yang, H.; Horbach, C. TUNEL Assay and DAPI Staining Revealed Few Alterations of Cellular Morphology in Naturally and Artificially Aged Seeds of Cultivated Flax. Plants 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.-Y.; Liu, C.; Dai, K.-Y.; Yu, J.; Liu, A.-J.; Chen, Y.-F. The immunosuppressive effects of low molecular weight chitosan on thymopentin-activated mice bearing H22 solid tumors. Int. Immunopharmacol. 2021, 99, 108008. [Google Scholar] [CrossRef]
- Yeo, A.T.; Rawal, S.; Delcuze, B.; Christofides, A.; Atayde, A.; Strauss, L.; Balaj, L.; Rogers, V.A.; Uhlmann, E.J.; Varma, H.; et al. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nat. Immunol. 2022, 23, 971–984. [Google Scholar] [CrossRef]
- Fangling, W. Influence of RRS1/Rrs1 Gene on the Invasive Metastatic Function of Breast Cancer. Ph.D. Thesis, Qingdao University, Qingdao, China, 2020. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Zhang, Y.; Liu, F.-F. Influence of Pholiota adiposa on gut microbiota and promote tumor cell apoptosis properties in H22 tumor-bearing mice. Sci. Rep. 2022, 12, 8589. [Google Scholar] [CrossRef]
- Han, C.; Wei, Y.; Wang, X.; Cui, Y.; Bao, Y.; Shi, W. Salvia miltiorrhiza polysaccharides protect against lipopolysaccharide-induced liver injury by regulating NF-κb and Nrf2 pathway in mice. Food Agric. Immunol. 2019, 30, 979–994. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, X.; Xue, Y.; Wang, N.; Liu, W. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2014, 64, 276–280. [Google Scholar] [CrossRef] [PubMed]
Items | Units | Blank | Model | Low WCP | High WCP | 5-FU |
---|---|---|---|---|---|---|
Leukocytes | 109/L | 4.49 ± 1.31 | 8.96 ± 2.04 ### | 9.81 ± 2.04 | 8.75 ± 1.43 | 2.28 ± 0.97 **** |
Neutrophils | 109/L | 0.57 ± 0.27 | 5.36 ± 1.49 ### | 5.21 ± 2.70 | 4.30 ± 1.38 | 0.17 ± 0.23 **** |
Lymphocytes | 109/L | 4.17 ± 0.85 | 2.46 ± 0.64 # | 3.46 ± 0.65 | 4.72 ± 1.12 *** | 2.10 ± 0.83 |
Neutrophils percentage | % | 15.43 ± 7.19 | 67.58 ± 9.56 #### | 54.70 ± 25.05 | 50.13 ± 20.74 | 6.15 ± 7.20 **** |
Lymphocytes percentage | % | 87.47 ± 8.00 | 40.23 ± 15.26 #### | 35.17 ± 5.42 | 43.17 ± 7.92 | 93.22 ± 7.60 **** |
Erythrocytes | 1012/L | 11.91 ± 0.37 | 10.01 ± 0.76 ### | 10.01 ± 0.33 | 10.68 ± 0.89 | 10.76 ± 0.93 |
Hemoglobin | g/L | 181.17 ± 4.31 | 151.67 ± 9.42 ## | 147.00 ± 12.87 | 155.17 ± 18.31 | 165.67 ± 10.80 |
Hematokrit | % | 53.13 ± 1.34 | 45.92 ± 2.36 ## | 44.13 ± 3.55 | 45.87 ± 4.30 | 48.07 ± 3.08 |
Mean corpuscular volume | fL | 44.63 ± 0.91 | 45.98 ± 1.49 | 45.78 ± 0.70 | 44.97 ± 1.27 | 44.77 ± 1.17 |
Mean hemoglobin | pg | 15.22 ± 0.30 | 15.17 ± 0.52 | 15.27 ± 0.10 | 15.20 ± 0.23 | 15.40 ± 0.57 |
Mean hemoglobin concentration | g/L | 341.17 ± 4.07 | 329.83 ± 5.74 | 333.17 ± 3.19 | 337.67 ± 8.45 | 344.67 ± 9.61 *** |
Erythrocytes distribution width coefficient | % | 15.23 ± 0.37 | 15.6 ± 0.44 | 15.72 ± 0.58 | 15.93 ± 0.62 | 15.12 ± 0.26 |
Erythrocytes distribution width standard | fL | 28.6 ± 0.73 | 29.85 ± 0.96 | 29.92 ± 1.09 | 30.03 ± 1.47 | 28.38 ± 0.80 |
Blood platelet | 109/L | 828.17 ± 65.14 | 918.17 ± 111.6 | 921.67 ± 123.1 | 899.17 ± 85.21 | 509.67 ± 242.1 |
Mean platelet volume | fL | 6.22 ± 0.23 | 6.5 ± 0.34 | 6.32 ± 0.24 | 6.25 ± 0.32 | 6.68 ± 0.26 |
Platelet distribution width | 15.98 ± 0.23 | 15.97 ± 0.34 | 15.8 ± 0.35 | 15.85 ± 0.27 | 16.05 ± 0.22 | |
Thrombocytocrit | % | 0.51 ± 0.02 | 0.59 ± 0.05 | 0.58 ± 0.08 | 0.56 ± 0.06 | 0.34 ± 0.16 *** |
platelet-larger cell count | 109/L | 74.17 ± 11.82 | 94.67 ± 16.22 | 82.83 ± 20.49 | 81.67 ± 16.06 | 59.5 ± 26.94 * |
platelet-larger cell ratio | % | 9.05 ± 1.75 | 10.55 ± 2.62 | 9.02 ± 2.12 | 9.13 ± 1.80 | 11.75 ± 1.49 |
Primer | Sequence (5′-3′) |
---|---|
IL-6 F | AATGTCGAGGCTGTGCAGATTAGTAC |
IL-6 R | GGGTGGTGGCTTTGTCTGGATTC |
Bax-F | GGCGAATTGGAGATGAACTG |
Bax-R | AAAGTAGAAGAGGGCAACCA |
Bcl-2-F | AGGATTGTGGCCTTCTTTGA |
Bcl-2-R | ACCTACCCAGCCTCCGTTAT |
IL-Iβ-F | TACTGCCGTCCGATTGAGAC |
IL-Iβ-R | TCCAGGGCTTCATCGTTACA |
NF-κB-F | TGCGATTCCGCTATAAATGCG |
NF-κB-R | ACAAGTTCATGTGGATGAGGC |
TNF-α-F | GCACTGAGAGCATGATCCGAGAC |
TNF-α-R | CGACCAGGAGGAAGGAGAAGAGG |
Gapdh-F | TGTGTCCGTCGTGGATCTGA |
Gapdh-R | GATGCCTGCTTCACCACCTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Liu, S.; Li, X.; He, J.; He, L.; Li, Y.; Yang, C.; Li, Y.; Hua, Y.; Guo, J. The Large Molecular Weight Polysaccharide from Wild Cordyceps and Its Antitumor Activity on H22 Tumor-Bearing Mice. Molecules 2023, 28, 3351. https://doi.org/10.3390/molecules28083351
Tan L, Liu S, Li X, He J, He L, Li Y, Yang C, Li Y, Hua Y, Guo J. The Large Molecular Weight Polysaccharide from Wild Cordyceps and Its Antitumor Activity on H22 Tumor-Bearing Mice. Molecules. 2023; 28(8):3351. https://doi.org/10.3390/molecules28083351
Chicago/Turabian StyleTan, Li, Sijing Liu, Xiaoxing Li, Jing He, Liying He, Yang Li, Caixia Yang, Yong Li, Yanan Hua, and Jinlin Guo. 2023. "The Large Molecular Weight Polysaccharide from Wild Cordyceps and Its Antitumor Activity on H22 Tumor-Bearing Mice" Molecules 28, no. 8: 3351. https://doi.org/10.3390/molecules28083351
APA StyleTan, L., Liu, S., Li, X., He, J., He, L., Li, Y., Yang, C., Li, Y., Hua, Y., & Guo, J. (2023). The Large Molecular Weight Polysaccharide from Wild Cordyceps and Its Antitumor Activity on H22 Tumor-Bearing Mice. Molecules, 28(8), 3351. https://doi.org/10.3390/molecules28083351