Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Prepared Adsorbent
2.2. Optimization of Adsorption Conditions
2.3. Isotherm Modeling
2.4. Thermodynamic Study
2.5. Kinetic Study
2.6. Comparison with Other Adsorbents
3. Experimental
3.1. Materials
3.2. Materials Synthesis
3.3. Material Characterization
3.4. Adsorption Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jawad, A.H.; Sahu, U.K.; Mastuli, M.S.; ALOthman, Z.A.; Wilson, L.D. Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave assisted H3PO4. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Brillas, E.; Martinez-Huitle, C.A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B-Environ. 2015, 166, 603–643. [Google Scholar] [CrossRef]
- Leon, O.; Munoz-Bonilla, A.; Soto, D.; Perez, D.; Rangel, M.; Colina, M.; Fernandez-Garcia, M. Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohyd. Polym. 2018, 194, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Wu, H.; Shi, Y.; Tao, Y.; Yong, Q. Preparation of lignin-based magnetic adsorbent from kraft lignin for adsorbing the Congo red. Front. Bioeng. Biotechnol. 2021, 9, 691528. [Google Scholar] [CrossRef]
- Marco, C.D.; Mauler, R.S.; Daitx, T.S.; Krindges, I.; Cemin, A.; Bonetto, L.R.; Crespo, J.S.; Guégan, R.; Carlid, L.N.; Giovanela, M. Removal of malachite green dye from aqueous solutions by a magnetic adsorbent. Sep. Sci. Technol. 2019, 55, 1089–1101. [Google Scholar] [CrossRef]
- Kubra, K.T.; Salman, M.S.; Hasan, M.N. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J. Mol. Liq. 2021, 328, 115468. [Google Scholar] [CrossRef]
- Qin, P.G.; Chen, D.K.; Li, M.Y.; Li, D.; Gao, Y.M.; Zhu, S.P.; Mu, M.Y.; Lu, M.H. Melamine/MIL-101(Fe)-derived magnetic carbon nanotube-decorated nitrogen-doped carbon materials as sorbent for rapid removal of organic dyes from environmental water sample. J. Mol. Liq. 2022, 359, 119231. [Google Scholar] [CrossRef]
- Perez-Ramirez, E.E.; de la Luz-Asuncion, M.; Martinez-Hernandez, A.L.; de la Rosa-Alvarez, G.; Fernandez-Tavizon, S.; Salas, P.; Velasco-Santos, C. One- and two-dimensional carbon nanomaterials as adsorbents of cationic and anionic dyes from aqueous solutions. Carbon. Lett. 2019, 29, 155–166. [Google Scholar] [CrossRef]
- Xiao, W.; Jiang, X.P.; Liu, X.; Zhou, W.M.; Garba, Z.N.; Lawan, I.; Wang, L.W.; Yuan, Z.H. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J. Clean. Prod. 2021, 284, 124773. [Google Scholar] [CrossRef]
- Imessaoudene, A.; Cheikh, S.; Hadadi, A.; Hamri, N.; Bollinger, J.C.; Amrane, A.; Tahraoui, H.; Manseri, A.; Mouni, L. Adsorption performance of zeolite for the removal of Congo red dye: Factorial design experiments, kinetic, and equilibrium studies. Separations 2023, 10, 57. [Google Scholar] [CrossRef]
- Posati, T.; Listwan, A.; Sotgiu, G.; Torreggiani, A.; Zamboni, R.; Aluigi, A. Keratin/hydrotalcites hybrid sponges as promising adsorbents for cationic and anionic dyes. Front. Bioeng. Biotechnol. 2020, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.C.; Hu, C.S.; Dichiara, A.B.; Jiang, W.H.; Gu, J. Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mammar, A.C.; Mouni, L.; Bollinger, J.C.; Belkhiri, L.; Bouzaza, A.; Assadi, A.A.; Belkacemi, H. Modeling and optimization of process parameters in elucidating the adsorption mechanism of Gallic acid on activated carbon prepared from date stones. Sep. Sci. Technol. 2020, 55, 3113–3125. [Google Scholar] [CrossRef]
- Imessaoudene, A.; Cheikh, S.; Bollinger, J.C.; Belkhiri, L.; Tiri, A.; Bouzaza, A.; El Jery, A.; Assadi, A.; Amrane, A.; Mouni, L. Zeolite waste characterization and use as low-cost, ecofriendly, and sustainable material for malachite green and methylene blue dyes removal: Box–behnken design, kinetics, and thermodynamics. Appl. Sci. 2022, 12, 7587. [Google Scholar] [CrossRef]
- Zeng, H.X.; Tang, R.C. Adsorption properties of direct dyes on viscose/chitin bicomponent fiber: Evaluation and comparison with viscose fiber. RSC Adv. 2014, 4, 38064–38072. [Google Scholar] [CrossRef]
- Wen, G.; Guo, Z.G. Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution. Colloid Surf. A 2018, 541, 58–67. [Google Scholar] [CrossRef]
- Song, Y.; Seo, J.Y.; Kim, H.; Beak, K.Y. Structural control of cellulose nanofibrous composite membrane with metal organic framework (ZIF-8) for highly selective removal of cationic dye. Carbohyd. Polym. 2019, 222, 115018. [Google Scholar] [CrossRef]
- Jena, K.K.; Mittal, H.; Wadi, V.S.; Mani, G.K.; Alhassan, S.M. Advanced TiO2-SiO2 sulfur (Ti-Si-S) nanohybrid materials: Potential adsorbent for the remediation of contaminated wastewater. Acs. Appl. Mater. Inter. 2019, 11, 30247–30258. [Google Scholar] [CrossRef]
- Feng, C.T.; Ren, P.G.; Huo, M.X.; Dai, Z.; Liang, D.; Jin, Y.L.; Ren, F. Facile synthesis of trimethylammonium grafted cellulose foams with high capacity for selective adsorption of anionic dyes from water. Carbohyd. Polym. 2020, 241, 116369. [Google Scholar] [CrossRef]
- Wu, J.; Li, Q.M.; Li, W.T.; Li, Y.; Wang, G.X.; Li, A.M.; Li, H.B. Efficient removal of acid dyes using permanent magnetic resin and its preliminary investigation for advanced treatment of dyeing effluents. J. Clean. Prod. 2020, 251, 119694. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Xu, J.; Wang, B.; Xie, J.X.; Ying, G.D.; Li, J.P.; Cheng, Z.; Li, J.; Chen, K.F. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon. J. Colloid Interf. Sci. 2022, 625, 158–168. [Google Scholar] [CrossRef]
- Goscianska, J.; Galarda, A.; Ejsmont, A.; Wuttke, S. Identification of the physicochemical factors involved in the dye separation via methionine-functionalized mesoporous carbons. Adv. Sustain. Syst. 2021, 5, 2100013. [Google Scholar] [CrossRef]
- Kicinski, W.; Szala, M.; Bystrzejewski, M. Sulfur-doped porous carbons: Synthesis and applications. Int. J. Energ. Res. 2014, 68, 1–32. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Saini, V.K. Adsorption studies on the removal of vertigo blue 49 and orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J. Colloid Interf. Sci. 2007, 315, 87–93. [Google Scholar] [CrossRef]
- Herrera-Gonzalez, A.M.; Caldera-Villalobos, M.; Pelaez-Cid, A.A. Adsorption of textile dyes using an activated carbon and crosslinked polyvinyl phosphonic acid composite. J. Environ. Manag. 2019, 234, 237–244. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Liu, Y.F.; Lyu, Y.N. Synthesis of carbazole-based polymer derived N-enriched porous carbon for dyes sorption. Polym. Bull. 2020, 78, 3311–3325. [Google Scholar] [CrossRef]
- Li, X.G.; He, Y.Y.; Sui, H.; He, L. One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.L.; Park, J.H.; Kim, S.H.; Kang, S.W.; Cho, J.S.; Jeon, J.R.; Lee, Y.B.; Seo, D.C. Sorption behavior of malachite green onto pristine lignin to evaluate the possibility as a dye adsorbent by lignin. Appl. Biol. Chem. 2019, 62, 37. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.W.; Chen, Y.F.; Yang, S.; Li, R.L.; Zhang, X.Y.; Dong, Q.X.; Li, X.Y.; Ma, X.D. Lignin-based adsorbent-catalyst with high capacity and stability for polychlorinated aromatics removal. Bioresour. Technol. 2021, 337, 125453. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Z.; Gleisner, R.; Mann, D.H.; Xu, J.M.; Jiang, J.C.; Zhu, J.Y. Lignin based activated carbon using H3PO4 activation. Polymers 2020, 12, 2829. [Google Scholar] [CrossRef]
- Guo, D.L.; Hu, D.G.; Yan, Z.Y.; Yuan, K.S.; Sha, L.Z.; Zhao, H.F.; Chen, J.B.; Liu, B. Preparation and characteristic of high surface area lignin-based porous carbon by potassium tartrate activation. Micropor. Mesopor. Mat. 2021, 326, 111340. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; Silva, A.L.P.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. COVID-19 Pandemic repercussions on the use and management of plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cao, L.; Li, W.; Du, X.S.; Lin, Z.D.; Zhang, P. Carbon nanotube prepared by catalytic pyrolysis as the electrode for supercapacitors from polypropylene wasted face masks. Ionics 2022, 28, 3489–3500. [Google Scholar] [CrossRef]
- Serafin, J.; Srenscek-Nazzal, J.; Kaminska, A.; Paszkiewicz, O.; Michalkiewicz, B. Management of surgical mask waste to activated carbons for CO2 capture. J. CO2 Util. 2022, 59, 101970. [Google Scholar] [CrossRef] [PubMed]
- Srenscek-Nazzal, J.; Serafin, J.; Kaminska, A.; Dymerska, A.; Mijowska, E.; Michalkiewicz, B. Waste-based nanoarchitectonics with face masks as valuable starting material for high-performance supercapacitors. J. Colloid Interf. Sci. 2022, 627, 978–991. [Google Scholar] [CrossRef] [PubMed]
- Cepeliogullar, O.; Putun, A.E. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energ. Convers. Manag. 2013, 75, 263–270. [Google Scholar] [CrossRef]
- Liu, S.R.; Li, Q.F.; Zuo, S.L.; Xia, H.A. Facile synthesis of lignosulfonate-derived sulfur-doped carbon materials for photocatalytic degradation of tetracycline under visible-light irradiation. Micropor. Mesopor. Mat. 2022, 336, 111876. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, W.F.; Zhang, H.; Zhang, J.L.; Zhang, H.M.; Cao, G.P.; Han, M.F.; Yang, Y.S. Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 2018, 132, 280–293. [Google Scholar] [CrossRef]
- Huang, S.Z.; Liang, Q.W.; Geng, J.J.; Luo, H.J.; Wei, Q. Sulfurized biochar prepared by simplified technic with superior adsorption property towards aqueous Hg(II) and adsorption mechanisms. Mater. Chem. Phys. 2019, 238, 121919. [Google Scholar] [CrossRef]
- Fiuza, R.A.; Neto, R.M.D.; Correia, B.; Andrade, H.M.C. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J. Environ. Manag. 2015, 161, 198–205. [Google Scholar] [CrossRef]
- Kazmierczak-Razna, J.; Nowicki, P.; Pietrzak, R. The use of microwave radiation for obtaining activated carbons enriched in nitrogen. Powder Technol. 2015, 273, 71–75. [Google Scholar] [CrossRef]
- Li, L.X.; Wang, J.; Jia, C.; Lv, Y.; Liu, Y. Co-pyrolysis of cyanobacteria and plastics to synthesize porous carbon and its application in methylene blue adsorption. J. Water Process. Eng. 2021, 39, 101753. [Google Scholar] [CrossRef]
- Zhu, R.Y.; Xia, J.; Zhang, H.J.; Kong, F.G.; Hu, X.; Shen, Y.A.; Zhang, W.H. Synthesis of magnetic activated carbons from black liquor lignin and Fenton sludge in a one-step pyrolysis for methylene blue adsorption. J. Environ. Eng. 2021, 9, 106538. [Google Scholar] [CrossRef]
- Sukhbaatar, B.; Yoo, B.; Lim, J.H. Metal-free high-adsorption-capacity adsorbent derived from spent coffee grounds for methylene blue. RSC Adv. 2021, 11, 5118–5127. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.P.; Cai, J.X.; Aikelaimu, A.; Li, Y.W. Removal of Cr (III) from aqueous solutions by carbon lignin-based composite. Sep. Sci. Technol. 2022, 57, 523–531. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Cheng, B.; Fan, J.J.; Yu, J.G.; Ho, W.K. Review on nickel-based adsorption materials for Congo red. J. Hazard. Mater. 2021, 403, 123559. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, L.; Lqbal, J.; Yang, Z.; Du, Y. Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution. Int. J. Biol. Macromol. 2022, 199, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.P.; Li, Y.H.; Li, M.X.; Zheng, H.; Du, Q.J.; Li, H.; Wang, Y.Q.; Wang, Y.Q.; Wang, C.P.; Sui, K.Y.; et al. Preparation of improved gluten material and its adsorption behavior for Congo red from aqueous solution. J. Colloid Interf. Sci. 2019, 556, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.S.; Guang, C.Y.; Liu, Y.; Su, Z.Q.; Gong, S.D.; Yao, Y.J.; Wang, Y.P. Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent. Chemosphere 2020, 246, 125757. [Google Scholar] [CrossRef]
- Roosta, M.; Ghaedi, M.; Sahraei, R.; Purkait, M.K. Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded activated carbon: Optimized experimental design. Mat. Sci. Eng. C-Mater. 2015, 52, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.; Ghaedi, M.; Taghdiri, M.; Asfaram, A. Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: Experimental design and derivative spectrophotometry method. Ultrason. Sonochem. 2016, 33, 197–209. [Google Scholar] [CrossRef]
- Kang, D.J.; Yu, X.L.; Ge, M.F.; Xiao, F.; Xu, H. Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. J. Environ. Sci. 2017, 54, 1–12. [Google Scholar] [CrossRef]
- Kazeem, T.S.; Lateef, S.A.; Ganiyu, S.A.; Qamaruddin, M.; Tanimu, A.; Sulaiman, K.O.; Jillani, S.M.S.; Alhooshani, K. Aluminium-modified activated carbon as efficient adsorbent for cleaning of cationic dye in wastewater. J. Clean. Prod. 2018, 205, 303–312. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K.; Phan, C. Synthesis and characterization of slow pyrolysis pine cone bio-char in the removal of organic and inorganic pollutants from aqueous solution by adsorption: Kinetic, equilibrium, mechanism and thermodynamic. Bioresour. Technol. 2017, 246, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.J.; Ying, H.J.; Cao, F.F.; Wang, Q.N.; Ai, N. Adsorption of Congo red on mesoporous activated carbon prepared by CO2 physical activation. Chin. J. Chem. Eng. 2020, 28, 1069–1076. [Google Scholar] [CrossRef]
- Mohebali, S.; Bastani, D.; Shayesteh, H. Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: Acid and CTAB-acid modified celery (Apium graveolens). J. Mol. Struct. 2019, 1176, 181–193. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yan, X.L.; Hu, M.Q.; Hu, X.Y.; Zhou, M. Adsorption of Congo red from aqueous solution using ZnO-modified SiO2 nanospheres with rough surfaces. J. Mol. Liq. 2018, 249, 772–778. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, C.; Hou, B.; Wang, Y.; Hao, C.; Wu, J. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 2018, 206, 587–596. [Google Scholar] [CrossRef]
- Ghaedi, A.M.; Karamipour, S.; Vafaei, A.; Baneshi, M.M.; Kiarostami, V. Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network. Ultrason. Sonochem. 2019, 51, 264–280. [Google Scholar] [CrossRef]
- Abbas, M. Experimental investigation of activated carbon prepared from apricot stones material (ASM) adsorbent for removal of malachite green (MG) from aqueous solution. Adsorpt. Sci. Technol. 2020, 38, 24–45. [Google Scholar] [CrossRef] [Green Version]
- Sundari, P.M.; Senthamilselvan, K.; Krishnan, S.M.; Meenambal, T. Preparation, Characterization and utilization of activated carbon prepared from putrescible vegetable waste for the removal of malachite green from its aqueous solution. Asian J. Chem. 2014, 26, 2249–2255. [Google Scholar] [CrossRef]
- Tran, H.N. Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient KD (qe/Ce) or Freundlich constant (KF): Considerations from the derivation of dimensionless thermodynamic equilibrium constant and suggestions. Adsorpt. Sci. Technol. 2022, 2022, 5553212. [Google Scholar] [CrossRef]
- Kang, C.L.; Shang, D.; Yang, T.; Zhu, L.; Liu, F.; Wang, N.; Tian, T. Preparation of corn stalk-walnut shell mix-based activated carbon and its adsorption of malachite green. Chem. Res. Chin. Univ. 2018, 34, 1014–1019. [Google Scholar] [CrossRef]
- Gong, L.; Wang, J.; Jiang, C.H.; Xiao, T.; Shen, K.; Lei, M.; Tang, Y.P. Study on magnetic porous carbon microspheres as a novel adsorbent for malachite green. Chem. Select. 2021, 6, 3174–3182. [Google Scholar] [CrossRef]
- Luo, X.; Wang, X.R.; Bao, S.P.; Liu, X.W.; Zhang, W.C.; Fang, T. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide. Sci. Rep. 2016, 6, 39108. [Google Scholar] [CrossRef] [Green Version]
- Magdy, Y.H.; Altaher, H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng. 2018, 6, 834–841. [Google Scholar] [CrossRef]
- Mehrizad, A.; Behnajady, M.A.; Gharbani, P.; Sabbagh, S. Sonocatalytic degradation of Acid Red 1 by sonochemically synthesized zinc sulfide-titanium dioxide nanotubes: Optimization, kinetics and thermodynamics studies. J. Clean. Prod. 2019, 215, 1341–1350. [Google Scholar] [CrossRef]
Dyes | Temperature (°C) | Langmuir Constant | Freundlich Constant | ||||
---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | R2 | KF (L/g) | 1/n | R2 | ||
MG | 30 | 352.11 | 0.12 | 0.985 | 154.76 | 0.25 | 0.51 |
45 | 346.76 | 0.11 | 0.984 | 147.23 | 0.26 | 0.48 | |
60 | 342.43 | 0.09 | 0.982 | 142.47 | 0.29 | 0.41 | |
CR | 30 | 232.02 | 0.09 | 0.990 | 108.98 | 0.05 | 0.28 |
45 | 231.45 | 0.08 | 0.987 | 105.43 | 0.05 | 0.39 | |
60 | 227.85 | 0.06 | 0.983 | 99.48 | 0.08 | 0.32 |
Adsorbents | Dyes | Adsorption Capacity | Reference |
---|---|---|---|
Zn(OH)2-NP-AC | Sunset yellow | 115 | [51] |
ZnO-NRs-AC | Bromocresol green | 58 | [52] |
Al-CNTs-2.0 | Methyl orange | 70 | [53] |
AC-Al | Methylene blue | 182 | [54] |
Pine cone biochar | Methylene blue | 106 | [55] |
Sargassum fusiforme activated carbon | Congo red | 234 | [56] |
H2SO4 modified celery residue | Congo red | 239 | [57] |
ZnO-modified SiO2 NPs | Congo red | 83 | [58] |
Carbon composite lignin | Congo red | 199 | [59] |
CuO-NPs-AC | Malachite green | 213 | [60] |
Apricot stones AC | Malachite green | 88 | [61] |
Putrescible vegetable waste AC | Malachite green | 31 | [62] |
Pinus roxburghii cone AC | Malachite green | 250 | [63] |
Corn stalk and walnut shell mix-based AC | Malachite green | 195 | [64] |
Fe3O4-carbon microspheres | Malachite green | 469 | [65] |
DMAL | Congo red | 232 | This work |
Malachite green | 352 |
Dyes | Temperature (°C) | ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (J/mol·K) |
---|---|---|---|---|
MG | 30 | −6.50 | −16.95 | −34.48 |
45 | −5.98 | |||
60 | −5.46 | |||
CR | 30 | −9.26 | −10.83 | −5.18 |
45 | −9.18 | |||
60 | −9.10 |
Kinetic Model | Parameters | MG | CR |
---|---|---|---|
Pseudo-first order | k1 | 0.038 | 0.028 |
qe | 62.72 | 56.51 | |
R2 | 0.777 | 0.739 | |
Pseudo-second order | k1 | 0.0004 | 0.0002 |
qe | 370.37 | 263.16 | |
R2 | 0.999 | 0.996 | |
Intraparticle diffusion | kid1 | 38.80 | 24.58 |
C | 99.54 | 25.07 | |
R12 | 0.972 | 0.999 | |
kid2 | 7.05 | 6.30 | |
C | 273.27 | 164.07 | |
R12 | 0.986 | 0.938 |
Name | CR | MG |
---|---|---|
Molecular formula | C32H22N6Na2O6S2 | C23H25N2Cl |
Molecular weight | 697 | 365 |
Type | Anionic | Cationic |
Maximum absorption | 499 | 620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Yang, C.; Wang, Y.; Su, W.; Wei, Y.; Wu, W. Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin. Molecules 2023, 28, 3349. https://doi.org/10.3390/molecules28083349
Li P, Yang C, Wang Y, Su W, Wei Y, Wu W. Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin. Molecules. 2023; 28(8):3349. https://doi.org/10.3390/molecules28083349
Chicago/Turabian StyleLi, Penghui, Chi Yang, Yanting Wang, Wanting Su, Yumeng Wei, and Wenjuan Wu. 2023. "Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin" Molecules 28, no. 8: 3349. https://doi.org/10.3390/molecules28083349
APA StyleLi, P., Yang, C., Wang, Y., Su, W., Wei, Y., & Wu, W. (2023). Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin. Molecules, 28(8), 3349. https://doi.org/10.3390/molecules28083349