Isolation of Two New Phenolic Glycosides from Castanopsis chinensis Hance by Combined Multistep CC and HSCCC Separation and Evaluation of Their Antioxidant Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Chromatographic Column Separation
2.2. Selection of Solvent System
2.3. HSCCC Separation
2.4. Structural Identification
2.5. Determination of Sugar Configuration
2.6. Antioxidant Capacity and α-Glucosidase Inhibitory Activity
3. Experimental
3.1. Reagents and Materials
3.2. Extraction and Isolation of Phenolic Glycosides
3.3. HSCCC Separation
3.3.1. Selection of Two-Phase Solvent System
3.3.2. HSCCC Separation Procedure
3.4. HPLC Analysis
3.5. Identification of Target Compounds
3.6. Spectroscopic Data
3.7. Determination of Sugar Configuration
3.8. Antioxidant Activity
3.9. α-Glucosidase Inhibitory Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chinese Academy of Sciences. Flora Republicae Popularis Sinicae; China Science Publishing & Media Ltd. Press, Inc.: Beijing, China, 1998. [Google Scholar]
- Qiu, L.D.; Chang, H.; Lu, D.G.; Wu, X.Y.; Liu, T. Studies on spatial diversity patterns and its indices of all genera in Fagaceae of China. Acta Bot. Boreali—Occident. Sin. 2018, 38, 761–769. [Google Scholar]
- Wu, L.B.; Shi, X.C.; Zou, L.N.; Liu, D.P.; Li, J.F.; Zheng, D.X. Relationship between diameter structure and interspecies of Castanopsis fordii at Yunzhong Mountain in Anxi. J. Southwest For. Univ. 2018, 38, 116–123. [Google Scholar]
- Xu, Y.F.; Cao, F.X.; Yu, X.L.; Qi, C.J. Analysis on community structures and spatial patterns of Castanopsis fordii in Nanling Region of Hunan. For. Resour. Manag. 2010, 4, 22–26. [Google Scholar]
- Sun, J.C.; Wu, Y.Y.; Zhu, J.L.; Sun, Y.G.; Feng, J.; Jiang, Z.P.; Shi, S.Q. Comparison and comprehensive evaluation of acorn qualities of Quercus and Castanopsis from different provenances. J. Beijing For. Univ. 2022, 44, 36–51. [Google Scholar]
- Shanthy, S.; Shadma, A.; Priyanka, D.; Kumar, R.G. Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening. Appl. Biochem. Biotech. 2011, 164, 1192–1206. [Google Scholar]
- Gesine, L.; Thomas, B.; Andreas, P.; Kerstin, S.; Sylvio, R.; Andreas, H. Polyphenols from Myrothamnus flabellifolia Welw. inhibit in vitro adhesion of Porphyromonas gingivalis and exert anti-inflammatory cytoprotective effects in KB cells. J. Clin. Periodontol. 2011, 38, 457–469. [Google Scholar]
- Sanda, C.V.; Octavian, M.S.; Corina, B.I.; Claudiu, M.D.; Mihaela, L.A.; Dana, B.A.; Maria, P.R. Grape pomace polyphenols as a source of compounds for management of oxidative stress and Inflammation—A possible alternative for Non-Steroidal Anti-Inflammatory drugs. Molecules 2022, 27, 6826. [Google Scholar]
- Yuan, P.J. Screening and Identification of Active Compounde with the Animal Model of Caenorharbditis elegans. D; Guangxi University: Nanning, China, 2020. [Google Scholar]
- Zhou, W.; Xia, N.H. The Chinese Fagaceae resources—A treasury imperative for development. For. Resour. Manag. 2011, 2, 93–96, 100. [Google Scholar]
- Zhou, L.; Xu, M.; Yang, C.R.; Zhang, Y.J. The Advance of Chemical Components and Bioactivity of Fagaceous Plants. Nat. Prod. Res. Dev. 2012, 24, 260–273. [Google Scholar]
- Huang, Y.L.; Matsuo, Y.; Tanaka, T.; Kouno, I.; Li, D.P.; Nonaka, G.I. New phenylpropanoid-substituted flavan-3-ols from the leaves of Castanopsis sclerophylla. Heterocycles 2011, 83, 2321–2328. [Google Scholar]
- Huang, Y.L.; Tanaka, T.; Matsuo, Y.; Kouno, I.; Li, D.P.; Nonaka, G.I. Isolation of ellagitannin monomer and macrocycllc dimer from Castanopsis carlesii leaves. Heterocycles 2012, 86, 381–389. [Google Scholar]
- Huang, Y.L.; Tanaka, T.; Matsuo, Y.; Kouno, I.; Li, D.P.; Nonaka, G.I. Two new phenolic glucosides and an ellagitannin from the leaves of Castanopsis sclerophylla. Phytochem. Lett. 2012, 5, 158–161. [Google Scholar] [CrossRef]
- Huang, Y.L.; Tsujita, T.; Tanaka, T.; Matsuo, Y.; Kouno, I.; Li, D.P.; Nonaka, G.I. Triterpene hexahydroxydiphenoyl esters and a quinic acid purpurogallincarbonyl ester from the leaves of Castanopsis fissa. Phytochemistry 2011, 72, 2006–2014. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Wang, Y.F.; Liu, J.L.; Wang, L.; Tanakaet, T.; Chen, Y.Y.; Lu, F.L.; Li, D.P. Phenolic compounds from the leaves of Castanopsis fargesii. Molecules 2017, 22, 162. [Google Scholar] [CrossRef]
- Wang, Y.F.; He, R.J.; Li, D.P.; Huang, Y.L. Phytochemical and chemotaxonomic study on Castanopsis fargesii Franch. Biochem. Syst. Ecol. 2018, 78, 113–115. [Google Scholar] [CrossRef]
- Wang, Y.F.; He, R.J.; Li, D.P.; Huang, Y.L. Three new compounds from the leaves of Castanopsis tibetana Hance. Nat. Prod. Res. 2021, 36, 4906–4910. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.Y.; Pang, N.; He, R.J.; Wang, Y.F.; Huang, Y.L. Triterpene hexahydroxydiphenoyl ester and phenol glucosides from the leaves of Castanopsis eyrie (Champ. ex Benth.) Hutch. Nat. Prod. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wei, Z.M.; Liu, Y.; Wang, F.; Zhang, S.T.; Serrano, C.; Li, L.X.; Sun, B.S. Characterization, Large-Scale HSCCC separation and neuroprotective effects of polyphenols from Moringa oleifera Leaves. Molecules 2022, 27, 678. [Google Scholar] [CrossRef]
- Li, L.J.; Liu, X.Q.; Du, X.P.; Wu, L.; Jiang, Z.D.; Ni, H.; Li, Q.B.; Chen, F. Preparation of isoquercitrin by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC purification. Prep. Biochem. Biotech. 2020, 50, 1–9. [Google Scholar] [CrossRef]
- Yu, J.Q.; Chen, W.X.; Zhao, L.; Yue, T.; Yang, W.C.; Wang, X. Efficient separation of anti-inflammatory isolates from Polygonti rhizome by three different modes of high-speed counter-current chromatography. J. Sep. Sci. 2022, 45, 4012–4022. [Google Scholar] [CrossRef]
- Yang, F.; Qi, Y.X.; Liu, W.; Li, J.; Wang, D.J.; Fang, L.; Zhang, Y.Q. Separation of five flavonoids from aerial parts of Salvia miltiorrhiza Bunge using HSCCC and their antioxidant activities. Molecules 2019, 24, 3448. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Jia, Q.Q.; Zhang, M.; Kang, L.; Li, Z.H.; Liu, Y.; Zhang, H.Y.; Hu, P. Isolation of three glucaric acids from Leonurus japonicus Houtt. by using high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography. J. Sep. Sci. 2022, 45, 2140–2147. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.Y.; Wu, J.; Wu, L.; Gu, Z.; Xie, C.Q.; Wu, L.Y.; Hu, J.W.; Xu, G.Z. Separation of three favonoid glycosides from Polygonum multiforum Thunb. leaves using HSCCC and their antioxidant activities. Eur. Food Res. Technol. 2022, 248, 129–139. [Google Scholar] [CrossRef]
- Yoshimi, N.; Tsutomu, W.; Tadataka, N. Studies on the Constituents from the Aerial Part of Baccharis dracunculifolia DC. II. Chem. Pharm. Bull. 2002, 50, 583–589. [Google Scholar]
- Sugiyama, M.; Kikuchi, M. Phenylethanoid glycosides from Osmanthus asiaticus. Phytochemistry 1993, 32, 1553–1555. [Google Scholar] [CrossRef]
- Tanaka, T.; Nakashima, T.; Ueda, T.; Tomii, K.; Kouno, I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 2007, 55, 899–901. [Google Scholar] [CrossRef] [PubMed]
- Sendri, N.; Bhandari, P. Polyphenolic composition and antioxidant potential of underutilized Himalayan wild edible berries by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2021, 44, 4237–4254. [Google Scholar] [CrossRef]
- Poongunran, J.; Irani Perera, H.K.; Jayasinghe, L.; Fernando, T.; Sivakanesan, R.; Araya, H.; Fujimoto, Y. Bioassay guided fractionation and identification of α-amylase inhibitors from Syzygium cumini leaves. Pharm. Biol. 2016, 55, 206–211. [Google Scholar] [CrossRef]
- Xiao, J.Q.; Liu, W.Y.; Sun, H.P.; Li, W.; Koike, K.; Kikuchi, T.; Yamada, T.; Li, D.; Feng, F.; Zhang, J. Bioactivity based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi. Bioorg. Chem. 2019, 92, 103268. [Google Scholar] [CrossRef]
No. | Solvent Systems (v/v/v/v) | K1 | K2 | Kα 1/2 |
---|---|---|---|---|
1 | N-Hexane/Ethyl acetate/Methanol/Water 1:6:3:3 | 0.34 | 0.69 | 2.03 |
2 | N-Hexane/Ethyl acetate/Methanol/Water 1:6:3:4 | 0.51 | 0.83 | 1.63 |
3 | N-Hexane/Ethyl acetate/Methanol/Water 1:6:4:3 | 0.10 | 0.09 | 1.11 |
Compounds | DPPH IC50 (µg/mL) | α-glucosidase IC50 (mg/mL) |
---|---|---|
chinensin D | 54.5 ± 0.82 | ≥10 |
chinensin E | 52.5 ± 0.47 | ≥10 |
Ascorbic acid | 13.1 ± 0.21 | - |
Acarbose | - | 0.515 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-F.; Lin, P.; Huang, Y.-L.; He, R.-J.; Yang, B.-Y.; Liu, Z.-B. Isolation of Two New Phenolic Glycosides from Castanopsis chinensis Hance by Combined Multistep CC and HSCCC Separation and Evaluation of Their Antioxidant Activity. Molecules 2023, 28, 3331. https://doi.org/10.3390/molecules28083331
Wang Y-F, Lin P, Huang Y-L, He R-J, Yang B-Y, Liu Z-B. Isolation of Two New Phenolic Glycosides from Castanopsis chinensis Hance by Combined Multistep CC and HSCCC Separation and Evaluation of Their Antioxidant Activity. Molecules. 2023; 28(8):3331. https://doi.org/10.3390/molecules28083331
Chicago/Turabian StyleWang, Ya-Feng, Ping Lin, Yong-Lin Huang, Rui-Jie He, Bing-Yuan Yang, and Zhang-Bin Liu. 2023. "Isolation of Two New Phenolic Glycosides from Castanopsis chinensis Hance by Combined Multistep CC and HSCCC Separation and Evaluation of Their Antioxidant Activity" Molecules 28, no. 8: 3331. https://doi.org/10.3390/molecules28083331
APA StyleWang, Y.-F., Lin, P., Huang, Y.-L., He, R.-J., Yang, B.-Y., & Liu, Z.-B. (2023). Isolation of Two New Phenolic Glycosides from Castanopsis chinensis Hance by Combined Multistep CC and HSCCC Separation and Evaluation of Their Antioxidant Activity. Molecules, 28(8), 3331. https://doi.org/10.3390/molecules28083331