Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton’s Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation
Abstract
:1. Introduction
2. Results
2.1. Molecular Docking
2.2. Protein–Ligand Interaction Analysis
2.3. ADME Analysis
2.4. In Silico Toxicity Analysis
2.5. MD Simulation Analysis
3. Discussion
4. Materials and Methods
4.1. Retrieval of Protein and Ligand Structures
4.2. Preparation of Protein and Ligands for Docking
4.3. Molecular Docking Procedure and Interaction Studies
4.4. ADME Analysis of Selected Phytochemicals
4.5. In Silico Toxicity Prediction
4.6. Molecular Dynamics Simulations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yao, Y.; Lin, X.; Li, F.; Jin, J.; Wang, H. The global burden and attributable risk factors of chronic lymphocytic leukemia in 204 countries and territories from 1990 to 2019: Analysis based on the global burden of disease study 2019. BioMed. Eng. OnLine 2022, 21, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Chiorazzi, N.; Chen, S.S.; Rai, K.R. Chronic lymphocytic leukemia. Cold Spring Harb. Perspect. Med. 2021, 11, a035220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsagaby, S.A.; Iqbal, D.; Ahmad, I.; Patel, H.; Mir, S.A.; Madkhali, Y.A.; Oyouni, A.A.; Hawsawi, Y.M.; Alhumaydhi, F.A.; Alshehri, B.; et al. In silico investigations identified Butyl Xanalterate to competently target CK2α (CSNK2A1) for therapy of chronic lymphocytic leukemia. Sci. Rep. 2022, 12, 17648. [Google Scholar] [CrossRef]
- Stauder, R.; Eichhorst, B.; Hamaker, M.E.; Kaplanov, K.; Morrison, V.A.; Österborg, A.; Poddubnaya, I.; Woyach, J.A.; Shanafelt, T.; Smolej, L.; et al. Management of chronic lymphocytic leukemia (CLL) in the elderly: A position paper from an international Society of Geriatric Oncology (SIOG) Task Force. Ann. Oncol. 2017, 28, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2017, 92, 946–965. [Google Scholar] [CrossRef] [Green Version]
- Kipps, T.J.; Stevenson, F.K.; Wu, C.J.; Croce, C.M.; Packham, G.; Wierda, W.G.; O’brien, S.; Gribben, J.; Rai, K. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Prim. 2017, 3, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.D.; Zhang, M.; Ma, X.; Wang, J.Q.; Lei, Z.N.; Teng, Q.X.; Li, Y.D.; Lin, L.; Feng, W.; Chen, Z.S. Bruton’s tyrosine kinase (BTK) inhibitor RN486 overcomes ABCB1-mediated multidrug resistance in cancer cells. Front. Cell Dev. Biol. 2020, 8, 865. [Google Scholar] [CrossRef]
- Brullo, C.; Villa, C.; Tasso, B.; Russo, E.; Spallarossa, A. Btk inhibitors: A medicinal chemistry and drug delivery perspective. Int. J. Mol. Sci. 2021, 22, 7641. [Google Scholar] [CrossRef]
- Kaur, V.; Swami, A. Ibrutinib in CLL: A focus on adverse events, resistance, and novel approaches beyond ibrutinib. Ann. Hematol. 2017, 96, 1175–1184. [Google Scholar] [CrossRef]
- Egyed, M.; Lueff, S.; Borbely, J.; Illes, A. Acalabrutinib and its use in the treatment of chronic lymphocytic leukemia. Future Oncol. 2022, 18, 755–769. [Google Scholar] [CrossRef]
- Rogers, K.A.; Thompson, P.A.; Allan, J.N.; Coleman, M.; Sharman, J.P.; Cheson, B.D.; Jones, D.; Izumi, R.; Frigault, M.M.; Quah, C.; et al. Phase II study of acalabrutinib in ibrutinibintolerant patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica 2021, 106, 2364–2373. [Google Scholar] [CrossRef] [PubMed]
- Harsha, M.; Kumar, K.M.; Kagathur, S.; Amberkar, V.S. Effect of Ocimum sanctum extract on leukemic cell lines: A preliminary in-vitro study. J. Oral Maxillofac. Pathol. 2020, 24, 93. [Google Scholar] [PubMed]
- Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev. 2010, 4, 95. [Google Scholar] [CrossRef] [Green Version]
- Cor, J.S.; Beach, J.F.; Blair, A.; Clark, A.J.; King, J.; Lee, T.B. Disodium chromoglycate. Adv. Drug Res. 1970, 5, 190–196. [Google Scholar]
- Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. J. Biomol. Struct. Dyn. 2022, 40, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.K.; Chopdar, K.S.; Dash, G.C.; Mohanty, A.K.; Raval, M.K. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease. J. Biomol. Struct. Dyn. 2023, 41, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.K.; Agrawal, A.; Kulkarni, G.T.; Tailang, M. Molecular docking study on phytoconstituents of traditional ayurvedic drug tulsi (ocimum sanctum linn.) against COVID-19 mpro enzyme: An in silico study. Int. J. Pharm. Pharm. Sci. 2022, 14, 44–50. [Google Scholar] [CrossRef]
- Cohen, M.M. Tulsi-Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med. 2014, 5, 251. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kumari, S. Pharmacological properties of tulsi: A review. Int. J. Ayurvedic Herb. Med. 2015, 5, 1941–1948. [Google Scholar]
- Umadevi, M.; Kumar, K.S.; Bhowmik, D.; Duraivel, S. Traditionally used anticancer herbs in India. J. Med. Plants Stud. 2013, 1, 56–74. [Google Scholar]
- Preethi, R.; Padma, P.R. Anticancer activity of silver nanobioconjugates synthesized from Piper betle leaves extract and its active compound eugenol. Int. J. Pharm. Pharm. Sci. 2016, 8, 201–205. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Ravichandran, P.; Govindasamy, S. Chemopreventive effect of Ocimum sanctum on DMBA-induced hamster buccal pouch carcinogenesis. Oral Oncol. 1999, 35, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Prashar, R.; Kumar, A.; Hewer, A.; Cole, K.J.; Davis, W.; Phillips, D.H. Inhibition by an extract of Ocimum sanctum of DNA-binding activity of 7, 12-dimethylbenz [a] anthracene in rat hepatocytes in vitro. Cancer Lett. 1998, 128, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Gupta, S.K. Chemopreventive activity of Ocimum sanctum seed oil. J. Ethnopharmacol. 2000, 72, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012, 52, 420–428. [Google Scholar] [CrossRef]
- Jahan, S.; Redhu, N.S.; Siddiqui, A.J.; Iqbal, D.; Khan, J.; Banawas, S.; Alaidarous, M.; Alshehri, B.; Mir, S.A.; Adnan, M.; et al. Nobiletin as a Neuroprotectant against NMDA Receptors: An In Silico Approach. Pharmaceutics 2022, 14, 1123. [Google Scholar] [CrossRef]
- Perutelli, F.; Montalbano, M.C.; Boccellato, E.; Coscia, M.; Vitale, C. Beyond ibrutinib: Novel BTK inhibitors for the treatment of chronic lymphocytic leukemia. Curr. Opin. Oncol. 2022, 1, 757–767. [Google Scholar] [CrossRef]
- Martino, E.A.; Bruzzese, A.; Vigna, E.; Iaccino, E.; Mendicino, F.; Lucia, E.; Olivito, V.; Filippelli, G.; Neri, A.; Morabito, F.; et al. Acalabrutinib in chronic lymphocytic leukemia. Expert Opin. Pharmacother. 2023; accepted. [Google Scholar] [CrossRef]
- Flamandita, D.; Lischer, K.; Pratami, D.K.; Aditama, R.; Sahlan, M. Molecular docking analysis of podophyllotoxin derivatives in Sulawesi propolis as potent inhibitors of protein kinases. In Proceedings of the AIP Conference Proceedings, 4 May 2020; AIP Publishing: Long Island, NY, USA, 2020; Volume 2230, p. 020010. [Google Scholar]
- Umar, A.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods. SN Appl. Sci. 2020, 2, 815. [Google Scholar] [CrossRef] [Green Version]
- Attique, S.A.; Hassan, M.; Usman, M.; Atif, R.M.; Mahboob, S.; Al-Ghanim, K.A.; Bilal, M.; Nawaz, M.Z. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. Int. J. Environ. Res. Public Health 2019, 16, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, V.; Bhaliya, J.; Patel, G.M. In silico docking and ADME study of deketene curcumin derivatives (DKC) as an aromatase inhibitor or antagonist to the estrogen-alpha positive receptor (Erα+): Potent application of breast cancer. Struct. Chem. 2022, 33, 571–600. [Google Scholar] [CrossRef] [PubMed]
- Zia, Q.; Rehman, M.T.; Hashmi, M.; Siddiqui, S.; Bin Dukhyil, A.A.; Ahmed, M.Z.; Jamal, A.; Banawas, S.; Mohammad, O.; AlAjmi, M. Effect of date palm (Phoenix dactylifera) phytochemicals on Aβ1-40 amyloid formation: An in-silico analysis. Front. Neurosci. 2022, 16, 1124. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead-and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Mir, S.A.; Alaidarous, M.; Alshehri, B.; Mir, B.A.; Dukhyil, A.A.B.; Banawas, S.; Firoz, A.; Alsagaby, S.A.; Madkhali, Y.A.; Jahan, S.; et al. Identification of Mycobacterial RNA Polymerase Inhibitors from the Main Phytochemicals of Nigella sativa: An in silico Study. Int. J. Pharmacol. 2022, 18, 1015–1025. [Google Scholar]
- Butt, S.S.; Badshah, Y.; Shabbir, M.; Rafiq, M. Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinform. Biotechnol. 2020, 1, e14232. [Google Scholar] [CrossRef]
- Mir, S.A.; Firoz, A.; Alaidarous, M.; Alshehri, B.; Dukhyil, A.A.; Banawas, S.; Alsagaby, S.A.; Alturaiki, W.; Bhat, G.A.; Kashoo, F.; et al. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi J. Biol. Sci. 2022, 29, 394–401. [Google Scholar] [CrossRef]
- Mir, S.A. Investigation of the Anti-TB Potential of Selected Phytochemicals of Nigella Sativa using Molecular Docking Approach. J. Pharm. Res. Int. 2021, 33, 278–286. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallarés, N.; Barba, F.J.; Berrada, H.; Tolosa, J.; Ferrer, E. Pulsed Electric Fields (PEF) to Mitigate Emerging Mycotoxins in Juices and Smoothies. Appl. Sci. 2020, 10, 6989. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanommeslaeghe, K.; Raman, E.P.; MacKerell, A.D., Jr. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 2012, 52, 3155–3168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No | Name of Phytochemical/Ligand | Compound ID (CID) | Molecular Weight (g/mol) | Docking Score (kcal/mol) |
---|---|---|---|---|
1 | 3-carene | CID_26049 | 136.23 | −6.7 |
2 | 4-hydroxybenzaldehyde | CID_126 | 122.12 | −5.6 |
3 | 4-hydroxybenzoic acid | CID_135 | 138.12 | −5.9 |
4 | Aesculin | CID_5281417 | 340.28 | −7.9 |
5 | Alpha-Cadinol | CID_10398656 | 222.37 | −7.3 |
6 | Ascorbic acid | CID_54670067 | 176.12 | −5.6 |
7 | Bergamotene | CID_521569 | 204.35 | −7.2 |
8 | Cadinene | CID_441005 | 204.35 | −7.2 |
9 | Carvacrol | CID_10364 | 150.22 | −6.2 |
10 | Caryophyllene | CID_5281515 | 204.35 | −6.7 |
11 | Chlorogenic acid | CID_1794427 | 354.31 | −8.4 |
12 | Cirsilineol | CID_162464 | 344.3 | −8.7 |
13 | Cirsimaritin | CID_188323 | 314.29 | −8.7 |
14 | Citral | CID_638011 | 152.23 | −6.0 |
15 | Estragole | CID_8815 | 148.20 | −6.1 |
16 | Eucalyptol | CID_2758 | 154.25 | −4.8 |
17 | Eugenol | CID_3314 | 164.20 | −5.9 |
18 | Gallic acid | CID_370 | 170.12 | −6.1 |
19 | Gallic acid ethyl ester | CID_13250 | 198.17 | −6.3 |
20 | Gallic acid methyl ester | CID_7428 | 184.15 | −6.2 |
21 | Galuteolin | CID_5280637 | 448.4 | −9.6 |
22 | Isorientin | CID_44257986 | 730.6 | −8.5 |
23 | Isothymonin | CID_11726019 | 360.3 | −8.4 |
24 | Isothymusin | CID_630253 | 330.29 | −8.6 |
25 | Isovitexin | CID_162350 | 432.4 | −8.9 |
26 | Linoleic acid | CID_5280450 | 280.4 | −5.7 |
27 | Linolenic acid | CID_5280934 | 278.4 | −6.7 |
28 | Luteolin | CID_5280445 | 286.24 | −8.9 |
29 | Luteolin−7-O-glucuronide | CID_13607752 | 462.4 | −9.8 |
30 | Methyl cinnamate | CID_637520 | 162.18 | −6.5 |
31 | Methyl eugenol | CID_7127 | 178.23 | −5.9 |
32 | Methylchavicol | CID_8815 | 148.20 | −5.7 |
33 | Molludistin | CID_44258315 | 416.4 | −9.7 |
34 | Ocimene | CID_5281553 | 136.23 | −5.7 |
35 | Oleic acid | CID_445639 | 282.5 | −6.0 |
36 | Rosmarinic acid | CID_5281792 | 360.3 | −9.2 |
37 | Sitosterol | CID_222284 | 414.7 | −8.5 |
38 | Stearic acid | CID_5281 | 284.5 | −5.9 |
39 | Terpinene-4-ol | CID_11230 | 154.25 | −5.5 |
40 | Ursolic acid | CID_64945 | 456.7 | −8.9 |
41 | Vanillic acid | CID_8468 | 168.15 | −6.0 |
42 | Vicenin | CID_3084407 | 594.5 | −8.9 |
43 | Vicenin-2 | CID_442664 | 594.5 | −10.0 |
44 | Vitexin | CID_5280441 | 432.4 | −9.3 |
45 | Alpha-pinene | CID_6654 | 136.23 | −7.2 |
46 | Beta- pinene | CID_14896 | 136.23 | −6.7 |
Ibrutinib (Control drug) | CID_24821094 | 440.5 | −11.3 | |
Acalabrutinib (Control drug) | CID_71226662 | 465.5 | −10.3 |
Tested Phytochemicals | Physicochemical Properties | Drug-Likeliness | Water Solubility | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MW | HA | RB | HBA | HBD | MR | TPSA | L-V | BS | Log S (ESOL) | Log S (Ali) | |
Galuteolin | 448.38 | 32 | 4 | 11 | 7 | 108.13 | 190.28 Å2 | 2 | 0.17 | Soluble | Moderately soluble |
Luteolin-7-O-glucuronide | 462.36 | 33 | 4 | 12 | 7 | 108.74 | 207.35 Å2 | 2 | 0.11 | Soluble | Moderately soluble |
Molludistin | 416.38 | 30 | 3 | 9 | 5 | 105.11 | 149.82 Å2 | 0 | 0.55 | Soluble | Soluble |
Rosmarinic acid | 360.31 | 26 | 7 | 8 | 5 | 91.4 | 144.52 Å2 | 0 | 0.56 | Soluble | Moderately soluble |
Vicenin-2 | 594.52 | 42 | 5 | 15 | 11 | 139.23 | 271.2 Å2 | 3 | 0.17 | Soluble | Soluble |
Vitexin | 432.38 | 31 | 3 | 10 | 7 | 106.61 | 181.05 Å2 | 1 | 0.55 | Soluble | Soluble |
Tested Phytochemicals | Results of Oral Toxicity Prediction | |||
---|---|---|---|---|
Predicted Toxicity Class | Predicted LD50 (mg/Kgbw) | Average Similarity (%) | Prediction Accuracy (%) | |
Molludistin | Class IV | 832 | 60.24 | 68.07 |
Rosmarinic acid | Class V | 5000 | 63.44 | 68.07 |
Vitexin | Class IV | 832 | 58.71 | 67.38 |
Ibrutinib (control drug) | Class IV | 1000 | 48.69 | 54.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, S.A.; Madkhali, Y.; Firoz, A.; Al Othaim, A.; Alturaiki, W.; Almalki, S.G.; Algarni, A.; Alsagaby, S.A. Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton’s Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation. Molecules 2023, 28, 3287. https://doi.org/10.3390/molecules28083287
Mir SA, Madkhali Y, Firoz A, Al Othaim A, Alturaiki W, Almalki SG, Algarni A, Alsagaby SA. Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton’s Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation. Molecules. 2023; 28(8):3287. https://doi.org/10.3390/molecules28083287
Chicago/Turabian StyleMir, Shabir Ahmad, Yahya Madkhali, Ahmad Firoz, Ayoub Al Othaim, Wael Alturaiki, Sami G. Almalki, Abdulrahman Algarni, and Suliman A. Alsagaby. 2023. "Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton’s Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation" Molecules 28, no. 8: 3287. https://doi.org/10.3390/molecules28083287
APA StyleMir, S. A., Madkhali, Y., Firoz, A., Al Othaim, A., Alturaiki, W., Almalki, S. G., Algarni, A., & Alsagaby, S. A. (2023). Inhibitory Potential of the Ocimum sanctum Phytochemicals on Bruton’s Tyrosine Kinase, a Well-Known Drug Target for Treatment of Chronic Lymphocytic Leukemia: An In Silico Investigation. Molecules, 28(8), 3287. https://doi.org/10.3390/molecules28083287