Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Statistical Analysis
2.2. Determination of Optimum Medium Constituents
2.3. Biosynthesis of the Citric Acid
3. Materials and Methods
3.1. Major Substrate and Microorganisms
3.2. Experimental Procedure
3.3. Determination of Citric Acid and Glycerol
3.4. Experimental Design
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Apelblat, A. Citric Acid Chemistry. In Citric Acid; Springer: Berlin, Germany, 2014; pp. 213–266. [Google Scholar] [CrossRef]
- Vandenberghe, L.P.S.; Rodrigues, C.; de Carvalho, J.C.; Medeiros, A.B.P.; Soccol, C.R. Production and application of citric acid. In Current Developments in Biotechnology and Bioengineering; Elsevier B.V.: Amsterdam, The Netherlands, 2017; pp. 557–575. [Google Scholar] [CrossRef]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial production of organic acids: Expanding the markets. Trends Biotechnol. 2008, 26, 100–108. [Google Scholar] [CrossRef]
- Citric Acid Market by Application, Function, Region—2020; Markets and Markets Research Private Ltd.: Pune, India, 2015.
- Reena, R.; Sindhu, R.; Athiyaman Balakumaran, P.; Pandey, A.; Awasthi, M.K.; Binod, P. Insight into citric acid: A versatile organic acid. Fuel 2022, 327, 125181. [Google Scholar] [CrossRef]
- Show, P.L.; Oladele, K.O.; Siew, Q.Y.; Aziz Zakry, F.A.; Lan, J.C.W.; Ling, T.C. Overview of citric acid production from Aspergillus niger. Front. Life Sci. 2015, 8, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Citric Acid Market—Global Industry Analysis, Size and Forecast, 2016 to 2026; Future Market Insights: Pune, India, 2016.
- Yang, L.; Lübeck, M.; Lübeck, P.S. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol. Rev. 2017, 31, 33–49. [Google Scholar] [CrossRef]
- Mostafa, Y.S.; Alamri, S.A. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger. Saudi J. Biol. Sci. 2012, 19, 241–246. [Google Scholar] [CrossRef]
- Adeoye, A.O.; Lateef, A.; Gueguim-Kana, E.B. Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate. Biocatal. Agric. Biotechnol. 2015, 4, 568–574. [Google Scholar] [CrossRef]
- Yadegary, M.; Hamidi, A.; Alavi, S.A. Citric acid production from sugarcane bagasse through solid state fermentation method using Aspergillus niger mold and optimization of citric acid production by Taguchi Method. Jundishapur J. Microbiol. 2013, 6, e7625. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W. Optimization of fermentation conditions for the production of citric acid by Aspergillus niger NRRL 567 grown on agricultural by products. Korean Chem. Eng. Res. 2014, 52, 402–406. [Google Scholar] [CrossRef] [Green Version]
- Barrington, S.; Kim, J.W. Response surface optimization of medium components for citric acid production by Aspergillus niger NRRL 567 grown in peat moss. Bioresour. Technol. 2008, 99, 368–377. [Google Scholar] [CrossRef]
- Betiku, E.; Adesina, O.A. Statistical approach to the optimization of citric acid production using filamentous fungus Aspergillus niger grown on sweet potato starch hydrolyzate. Biomass Bioenergy 2013, 55, 350–354. [Google Scholar] [CrossRef]
- Ghanbartabar, S.A.; Najafpour, G.D.; Mohammadi, M. Comparative studies on citric acid production from cheese why by submerged and immobilized Aspergillus niger. J. Biotechnol. 2016, 13, 79–85. [Google Scholar]
- Sawant, O.; Mahale, S.; Ramchandran, V.; Nagaraj, G.; Bankar, A. Fungal citric acid production using waste materials: A mini-review. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 821–828. [Google Scholar] [CrossRef]
- Chozhavendhan, S.; Praveen Kumar, R.; Elavazhagan, S.; Barathiraja, B.; Jayakumar, M.; Varjani, S.J. Utilization of crude glycerol from biodiesel industry for the production of value-added bioproducts. In Waste to Wealth. Energy, Environment, and Sustainability; Springer: Singapore, 2018; pp. 65–82. [Google Scholar] [CrossRef]
- Quispe, C.A.G.; Coronado, C.J.R.; Carvalho, J.A., Jr. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Zheng, X.J.; Jin, K.; Zhang, L.; Wang, G.; Liu, Y.P. Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Braz. J. Microbiol. 2016, 47, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosamia, N.M.; Samavi, M.; Uprety, B.K.; Rakshit, S.K. Valorization of biodiesel byproduct crude glycerol for the production of bioenergy and biochemicals. Catalysts 2020, 10, 609. [Google Scholar] [CrossRef]
- Biodiesel Market by Feedstock Type, Application & by Geography—2021; Markets and Markets Research Private Ltd.: Pune, India, 2017.
- Hu, W.; Li, W.J.; Yang, H.Q.; Chen, J.H. Current strategies and future prospects for enhancing microbial production of citric acid. Appl. Microbiol. Biotechnol. 2019, 103, 201–209. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kharmawlong, G.J.; Moholkar, V.S. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans. Bioresour. Technol. 2018, 256, 302–311. [Google Scholar] [CrossRef]
- Luthra, U.; Singh, N.; Tripathi, A.; Vora, S.; Bhosle, V. Media optimization for lovastatin production by statistical approach using Aspergillus terreus by submerged fermentation. J. Med. Sci. Clin. Res. 2015, 2, 4520–4528. [Google Scholar]
- Jiang, L.; Zheng, A.; Zhao, Z.; He, F.; Li, H. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation. Bioresour. Technol. 2015, 196, 194–199. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, J.; Wang, Z.; Yang, S.T.; Zhou, H. Effects of carbon dioxide on cell growth and propionic acid production from glycerol and glucose by Propionibacterium acidipropionici. Bioresour. Technol. 2015, 175, 374–381. [Google Scholar] [CrossRef]
- Rywińska, A.; Marcinkiewicz, M.; Cibis, E.; Rymowicz, W. Optimization of medium composition for erythritol production from glycerol by Yarrowia lipolytica using response surface methodology. Prep. Biochem. Biotechnol. 2015, 45, 515–529. [Google Scholar] [CrossRef]
- West, T.P. Fungal biotransformation of crude glycerol into malic acid. Z. Naturforsch. C J. Biosci. 2015, 70, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Dishisha, T.; Ibrahim, M.H.A.; Cavero, V.H.; Alvarez, M.T.; Hatti-Kaul, R. Improved propionic acid production from glycerol: Combining cyclic batch- and sequential batch fermentations with optimal nutrient composition. Bioresour. Technol. 2015, 176, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyyappan, J.; Bharathiraja, B.; Baskar, G.; Jayamuthunagai, J.; Barathkumar, S. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. Bioresour. Technol. 2018, 251, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Iyyappan, J.; Baskar, G.; Bharathiraja, B.; Saravanathamizhan, R. Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation. Bioresour. Technol. 2018, 269, 393–399. [Google Scholar] [CrossRef]
- Iyyappan, J.; Bharathiraja, B.; Baskar, G.; Kamalanaban, E. Process optimization and kinetic analysis of malic acid production from crude glycerol using Aspergillus niger. Bioresour. Technol. 2019, 281, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Samul, D.; Leja, K.; Grajek, W. Impurities of crude glycerol and their effect on metabolite production. Ann. Microbiol. 2014, 64, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, R.W.; Marchand, K.; Lubitz, W.D. Bioconversion of crude glycerol by fungi. Appl. Microbiol. Biotechnol. 2012, 93, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Foryś, E.; Podgórski, W.; Kaczyńska, M. Wpływ makroelementów na proces biosyntezy kwasu cytrynowego z glicerolu przez Aspergillus niger W78B 1. Acta Sci. Pol. Biotechnol. 2007, 6, 31–37. [Google Scholar]
- Sivasankaran, C.; Ravichandran, V.; Mani, J. Comprehensive report on production of citric acid from crude glycerol. Int. J. Appl. Eng. Res. 2015, 10, 11777–11783. [Google Scholar]
- Salazar, P.M. Systems Biology of Glucose Sensing and Repression in Aspergillus Niger: Lessons from Genomics and Transcriptomics. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2010. [Google Scholar]
- Bauweleers, H.M.K.; Groeseneken, D.K. Process for the Preparation of Citric Acid Employing Filamentous Fungi in a Culture Medium Comprising Glycerol. Patent WO2008107472, 13 September 2008. [Google Scholar]
- Klein, M.; Swinnen, S.; Thevelein, J.M.; Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: Established knowledge and ambiguities. Environ. Microbiol. 2017, 19, 878–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, K.M.; Survase, S.A.; Saudagar, P.S.; Lele, S.S.; Singhal, R.S. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. [Google Scholar] [CrossRef]
- Sita, K.K.; Sarat, B.I.; Rao, G.H. Process optimization for citric acid production from raw glycerol using response surface methodology. Indian J. Biotechnol. 2008, 7, 496–501. [Google Scholar]
- Jańczewski, D.; Różycki, C.; Synoradzki, L. Projektowanie Procesów Technologicznych: Matematyczne Metody Planowania Eksperymentów; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2010. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodo-logy: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Cacace, S.; Semeraro, Q. Fast optimisation procedure for the selection of L-PBF parameters based on utility function. Virtual Phys. Prototyp. 2022, 17, 125–137. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Witteveen, C.F.B.; De Vondervoort, P.; Dijkema, C.; Swart, K.; Visser, J. Characterization of a glycerol kinase mutant of Aspergius niger. J. Gen. Microbiol. 1990, 136, 1299–1301. [Google Scholar]
- Hondmann, D.H.A.; Busink, R.; Witteveen, C.F.B.; Vlsser, J. Glycerol catabolism in Aspergillus nidulans. J. Gen. Microbiol. 1991, 137, 629–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, G.S.; Brar, S.K.; Verma, M.; Tyagi, R.D. Apple pomace ultrafiltration sludge—A novel substrate for fungal bioproduction of citric acid: Optimisation studies. Food Chem. 2011, 128, 864–871. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.K.; Shanker, G.; Srivastava, A. Citric acid production by solid state fermentation using sugarcane bagasse. Process Biochem. 2003, 38, 1731–1738. [Google Scholar] [CrossRef]
- West, T.P. Citric Acid Production by Aspergillus niger Using Solid-State Fermentation of Agricultural Processing Coproducts. Appl. Biosci. 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Zhou, P.P.; Meng, J.; Bao, J. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresour. Technol. 2017, 224, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.L.; Bao, J. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger. Bioresour. Technol. 2018, 253, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Chergui, D.; Akretche-Kelfat, S.; Lamoudi, L.; Al-Rshaidat, M.; Boudjelal, F.; Ait-Amar, H. Optimization of citric acid production by Aspergillus niger using two downgraded Algerian date varieties. Saudi J. Biol. Sci. 2021, 28, 7134–7141. [Google Scholar] [CrossRef] [PubMed]
- Guc, S.; Erkmen, O. Citric Acid Production from Nontreated Beet Molasses by a Novel Aspergillus niger Strain: Effects of pH, Sugar and Ingredients. J. Food Microbiol. Saf. Hyg. 2017, 2, 2. [Google Scholar] [CrossRef]
- Aboyeji, O.O.; Oloke, J.K.; Arinkoola, A.O.; Oke, M.A.; Ishola, M.M. Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger. Sci. Afr. 2020, 10, e00554. [Google Scholar] [CrossRef]
- Biofuels, OECD-FAO Agricultural Outlook 2021–2030, OECD Library. Available online: https://www.oecd-ilibrary.org/sites/89d2ac54-en/index.html?itemId=/content/component/89d2ac54-en#abstract-d1e22068 (accessed on 20 January 2023).
- Global Citric Acid Market Outlook, Expert Market Research, By Form: Anhydrous, Liquid; By Application: Food and Beverages, Household Detergents and Cleaners, Pharmaceuticals; Regional Analysis; Historical Market and Forecast (2018–2028); Market Dynamics; Project Requirements and Cost Analysis; Project Economics; Competitive Landscape; Industry Events and Developments. Available online: https://www.expertmarketresearch.com/reports/citric-acid-market (accessed on 20 January 2023).
- Konstantinovic, S.; Danilovic, B.; Ciric, J.; Ilic, S.; Savic, D.; Veljkovic, V. Valorization of crude glycerol from biodiesel production. Chem. Ind. Chem. Eng. Q. 2016, 22, 461–489. [Google Scholar] [CrossRef]
Response | Optimal Variable Value (g∙L−1) | Predicted | Experimental | |
---|---|---|---|---|
Crude Glycerol | Ammonium Nitrate | |||
Final concentration of citric acid (Y1) (g∙L−1) | 114.14 | 2.85 | 36.42 | 33.69 |
Volumetric rate of citric acid biosynthesis (Y2) (g∙L−1∙h−1) | 0.101 | 0.095 | ||
Yield of citric acid biosynthesis (Y3) (%) | 32.18 | 30.26 |
Symbol | Unit | Parameters | Results |
---|---|---|---|
t | h | Culture time | 157 |
GK | g∙L−1 | Final concentration of glycerol in the medium | 0.50 |
Y1 | g∙L−1 | Monohydrate citric acid concentration in culture medium | 69.70 |
Y2 | g∙L−1∙h−1 | Volumetric rate of monohydrate citric acid biosynthesis | 0.183 |
Y3 | % (m/m) | Yield of citric acid biosynthesis with respect to introduced substrate | 61.00 |
KEF | % g∙L−1∙h−1 | Efficiency coefficient of monohydrate citric acid biosynthesis | 27.08 |
XK | g∙L−1 | Biomass concentration in culture medium | 19.40 |
YX/S | % (m/m) | Yield of biomass biosynthesis | 17.00 |
Property | Unit | Value |
---|---|---|
Glycerin | % (m/m) | 88.30 |
Sodium chloride | % (m/m) | 3.92 |
Methanol | % (m/m) | 0.04 |
Water | % (m/m) | 6.67 |
Matter Organic Non-Glycerol | % (m/m) | 1.20 |
pH | - | 7.40 |
Run | Crude Glycerol | NH4NO3 | KH2PO4 | MgSO4∙7H2O |
---|---|---|---|---|
[g∙L−1] | [g∙L−1] | [g∙L−1] | [g∙L−1] | |
1 | 80.00 | 2.00 | 0.20 | 0.20 |
2 | 80.00 | 3.00 | 0.20 | 0.20 |
3 | 120.00 | 2.00 | 0.20 | 0.20 |
4 | 120.00 | 3.00 | 0.20 | 0.20 |
5 | 71.71 | 2.50 | 0.20 | 0.20 |
6 | 128.28 | 2.50 | 0.20 | 0.20 |
7 | 100.00 | 1.79 | 0.20 | 0.20 |
8 | 100.00 | 3.20 | 0.20 | 0.20 |
9 | 100.00 | 2.50 | 0.20 | 0.20 |
10 | 100.00 | 2.50 | 0.20 | 0.20 |
11 | 100.00 | 2.50 | 0.20 | 0.20 |
12 | 100.00 | 2.50 | 0.20 | 0.20 |
13 | 100.00 | 2.50 | 0.20 | 0.20 |
Independent Variables, Xi | Unit | Center Point | Variable Step |
---|---|---|---|
X1 | g∙L−1 | 120.0 | 20.0 |
X2 | g∙L−1 | 2.5 | 0.5 |
Independent Variables, Xi | Unit | Levels and Ranges | ||||
---|---|---|---|---|---|---|
(−1.414) | (−1) | (0) | (+1) | (+1.414) | ||
X1 | g∙L−1 | 71.71 | 80.00 | 100.00 | 120.00 | 128.28 |
X2 | g∙L−1 | 1.79 | 2.00 | 2.50 | 3.20 | 3.00 |
Run | Actual and Coded Variables | Results | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Y1 (g·L−1) | Y2 (g∙L−1·h−1) | Y3 (%) | ||||||||
Crude Glycerol X1 | Ammonium Nitrate X2 | Experimental | Predicted | Experimental | Predicted | Experimental | Predicted | |||
1 | 80.00 | −1 | 2.00 | −1 | 5.60 | 8.97 | 0.021 | 0.028 | 7.00 | 10.02 |
2 | 80.00 | −1 | 3.00 | 1 | 13.65 | 11.64 | 0.063 | 0.051 | 17.06 | 15.32 |
3 | 120.00 | 1 | 2.00 | −1 | 11.32 | 11.92 | 0.031 | 0.036 | 9.43 | 10.21 |
4 | 120.00 | 1 | 3.00 | 1 | 38.15 | 33.38 | 0.106 | 0.091 | 31.79 | 27.82 |
5 | 71.72 | −1.414 | 2.50 | 0 | 7.70 | 6.44 | 0.029 | 0.031 | 10.74 | 9.63 |
6 | 128.28 | 1.414 | 2.50 | 0 | 21.23 | 23.89 | 0.059 | 0.065 | 16.55 | 18.61 |
7 | 100.00 | 0 | 1.79 | −1.414 | 12.37 | 9.26 | 0.037 | 0.027 | 12.37 | 9.472 |
8 | 100.00 | 0 | 3.20 | 1.414 | 21.82 | 26.32 | 0.065 | 0.082 | 21.82 | 25.66 |
9 | 100.00 | 0 | 2.50 | 0 | 28.35 | 28.30 | 0.084 | 0.084 | 28.35 | 28.30 |
10 | 100.00 | 0 | 2.50 | 0 | 25.78 | 28.30 | 0.077 | 0.084 | 25.78 | 28.30 |
11 | 100.00 | 0 | 2.50 | 0 | 29.28 | 28.30 | 0.087 | 0.084 | 29.28 | 28.30 |
12 | 100.00 | 0 | 2.50 | 0 | 30.33 | 28.30 | 0.090 | 0.084 | 30.33 | 28.30 |
13 | 100.00 | 0 | 2.50 | 0 | 27.77 | 28.30 | 0.083 | 0.084 | 27.77 | 28.30 |
Source | Sum of Square | Degree of Freedom | Mean Squares | F-Value | p-Values |
---|---|---|---|---|---|
Model | 1120.76 | 5 | 224.15 | 17.66 | 0.0008 |
X1 | 304.450 | 1 | 304.50 | 103.91 | 0.0005 |
X12 | 300.13 | 1 | 300.13 | 102.42 | 0.0005 |
X2 | 290.98 | 1 | 290.98 | 99.29 | 0.0006 |
X22 | 192.17 | 1 | 192.17 | 65.58 | 0.0013 |
X1X2 | 88.20 | 1 | 88.20 | 30.10 | 0.0054 |
Lack of fit | 77.14 | 3 | 25.71 | 8.77 | 0.0312 |
Pure error | 11.72 | 4 | 2.93 | ||
Cor total | 1209.62 | 12 |
Source | Sum of Square | Degree of Freedom | Mean Squares | F-Value | p-Values |
---|---|---|---|---|---|
Model | 0.0078 | 5 | 0.0016 | 11.12 | 0.0032 |
X1 | 0.0011 | 1 | 0.0011 | 43.61 | 0.0027 |
X12 | 0.0023 | 1 | 0.0023 | 87.66 | 0.0007 |
X2 | 0.0031 | 1 | 0.0031 | 117.63 | 0.0004 |
X22 | 0.0015 | 1 | 0.0015 | 57.82 | 0.0016 |
X1X2 | 0.0003 | 1 | 0.0003 | 10.21 | 0.0331 |
Lack of fit | 0.0009 | 3 | 0.00029 | 11.28 | 0.0202 |
Pure error | 0.0001 | 4 | 0.00003 | ||
Cor total | 0.0088 | 12 |
Source | Sum of Square | Degree of Freedom | Mean Squares | F-Value | p-Values |
---|---|---|---|---|---|
Model | 869.91 | 5 | 9.85 | 17.67 | 0.0008 |
X1 | 80.5393 | 1 | 80.5393 | 27.48 | 0.0063 |
X12 | 349.8102 | 1 | 349.8102 | 119.37 | 0.0004 |
X2 | 262.0668 | 1 | 262.0668 | 89.43 | 0.0007 |
X22 | 200.4206 | 1 | 200.4206 | 68.39 | 0.0012 |
X1X2 | 37.8140 | 1 | 37.8140 | 12.90 | 0.0230 |
Lack of fit | 57.2059 | 3 | 19.0686 | 6.51 | 0.0510 |
Pure error | 11.7219 | 4 | 2.9305 | ||
Cor total | 938.8329 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Książek, E.E.; Janczar-Smuga, M.; Pietkiewicz, J.J.; Walaszczyk, E. Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments. Molecules 2023, 28, 3268. https://doi.org/10.3390/molecules28073268
Książek EE, Janczar-Smuga M, Pietkiewicz JJ, Walaszczyk E. Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments. Molecules. 2023; 28(7):3268. https://doi.org/10.3390/molecules28073268
Chicago/Turabian StyleKsiążek, Ewelina Ewa, Małgorzata Janczar-Smuga, Jerzy Jan Pietkiewicz, and Ewa Walaszczyk. 2023. "Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments" Molecules 28, no. 7: 3268. https://doi.org/10.3390/molecules28073268
APA StyleKsiążek, E. E., Janczar-Smuga, M., Pietkiewicz, J. J., & Walaszczyk, E. (2023). Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments. Molecules, 28(7), 3268. https://doi.org/10.3390/molecules28073268