Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption Spectra
2.2. D-Optimal Design
2.3. Partial Least Squares Regression
2.4. Real-Time Tests
2.5. Outlier Detection
3. Methods
3.1. Sample Preparation
3.2. Absorption Measurements
3.3. Experimental Design
3.4. Partial Least Squares Regression
3.5. Preprocessing and Feature Selection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roggo, Y.Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. 2007, 44, 683–700. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Putnik, P.; Kovacevic, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Da Cruz, A.G.; Jarvis, B.; Rodionova, O.Y.; Pomerantsev, A. Trends in Chemometrics: Authentication, Microbiology, and Effects of Processing. Compr. Rev. Food Sci. Food Saf. 2018, 17, 663–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumetta, G.J.; Allred, J.R.; Bryan, S.A.; Hall, G.B.; Levitskaia, T.G.; Lines, A.M.; Sinkov, S.I. Simulant Testing of a Co-Decontamination (CoDCon) Flowsheet for a Product with a Controlled Uranium-to-Plutonium Ratio. Sep. Sci. Technol. 2019, 54, 1977–1984. [Google Scholar] [CrossRef]
- Kirsanov, D.; Rudnitskaya, A.; Legin, A.; Babain, V. UV-Vis spectroscopy with chemometric data treatment: An option for on-line control in nuclear industry. J. Radioanal. Nucl. Chem. 2017, 312, 461–470. [Google Scholar] [CrossRef]
- Bryan, S.A.; Levitskaia, T.G.; Johnsen, A.M.; Orton, C.R.; Peterson, J.M. Spectroscopic Monitoring of Spent Nuclear Fuel Reprocessing Streams: An Evaluation of Spent Fuel Solutions via Raman, Visible, and Near-Infrared Spectroscopy. Radiochim. Acta 2011, 99, 563–571. [Google Scholar] [CrossRef]
- Sadergaski, L.R.; Myhre, K.G.; Delmau, L.H. Multivariate chemometric methods and Vis-NIR spectrophotometry for monitoring plutonium-238 anion exchange column effluent in a radiochemical hot cell. Talanta Open 2022, 5, 1000120. [Google Scholar] [CrossRef]
- Lascola, R.; O’Rourke, P.E.; Kyser, E.A. A Piecewise Local Partial Least Squares (PLS) Method for the Quantitative Analysis of Plutonium Nitrate Solutions. Appl. Spectrosc. 2017, 71, 2579–2594. [Google Scholar] [CrossRef]
- Tse, P.; Bryan, S.A.; Bessen, N.P.; Lines, A.M.; Shafer, J.C. Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management. Anal. Chim. Acta. 2020, 1107, 1–13. [Google Scholar] [CrossRef]
- Sadergaski, L.R.; DePaoli, D.W.; Myhre, K.G. Monitoring the caustic dissolution of aluminum in a hot cell by Raman spectroscopy. Appl. Spectrosc. 2020, 74, 1252–1262. [Google Scholar] [CrossRef]
- Sadergaski, L.R.; Morgan, K. Applying Two-Dimensional Correlation Spectrosocpy and Principal Component Analysis to Understand How Temperatures Affects the Neptunium(V) Absorption Spectrum. Chemosensors 2022, 10, 475. [Google Scholar] [CrossRef]
- Sadergaski, L.R.; Andrews, H.B. Simultaneous quantification of uranium(VI), samarium, nitric acid, and temperature with combined ensemble learning, laser fluorescence, and Raman scattering for real-time monitoring. Analyst 2022, 147, 4014–4025. [Google Scholar] [CrossRef] [PubMed]
- Nee, K.; Bryan, S.A.; Levitskaia, T.G.; Kuo, J.W.-J.; Nilsson, M. Combinations of NIR, Raman spectroscopy and physiochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models. Anal. Chim. Acta 2018, 1006, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Casella, A.J.; Levitskaia, T.G.; Peterson, J.M.; Bryan, S.A. Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis. Anal. Chem. 2013, 85, 4120–4128. [Google Scholar] [CrossRef] [PubMed]
- Sadergaski, L.R.; Hager, T.J.; Andrews, H.B. Design of Experiments, Chemometrics, and Raman Spectroscopy for the Quantification of Hydroxylammonium, Nitrate, and Nitric Acid. ACS Omega 2022, 7, 7287–7296. [Google Scholar] [CrossRef] [PubMed]
- Langford, V.S.; McKinley, A.J.; Quickenden, T.I. Temperature Dependence of the Visible-Near-Infrared Absorbance Spectrum of Liquid Water. J. Phys. Chem. A 2001, 105, 8916–8921. [Google Scholar] [CrossRef]
- Lin, J.; Brown, C.W. Near-IR Spectroscopic Measurement of Seawater Salinity. Environ. Sci. Technol. 1993, 27, 1611–1615. [Google Scholar] [CrossRef]
- Curcio, J.A.; Petty, C.C. The Near Infrared Absorption Spectrum of Liquid Water. J. Opt. Soc. Am. 1951, 41, 302–304. [Google Scholar] [CrossRef]
- Maeda, H.; Tanaka, M.; Hayashi, N.; Kojima, T.; Ozki, Y. Near infrared spectroscopy and chemometrics studies of temperature-dependent spectral variations of water: Relationship between spectral changes and hydrogen bonds. J. Near Infrared Spectrosc. 1995, 3, 191–201. [Google Scholar] [CrossRef]
- Frost, V.J.; Molt, K. Analysis of aqueous solutions by near-infrared spectrometry (NIRS) III. Binary mixtures of inorganic salts in water. J. Mol. Struct. 1997, 410, 573–579. [Google Scholar] [CrossRef]
- Segtnan, V.H.; Sasic, S.; Isaksson, T.; Ozaki, Y. Studies on the Structure of Water Using Two-Dimensional Near-Infrared Correlation Spectroscopy and Principal Component Analysis. Anal. Chem. 2001, 73, 3153–3161. [Google Scholar] [CrossRef]
- Wenz, J.J. Examining water in model membranes by near infrared spectroscopy and multivariate analysis. BBA-Biomembr. 2018, 1860, 673–682. [Google Scholar] [CrossRef]
- Chang, K.; Shinzawa, H.; Chung, H. Concentration determination of inorganic acids that do not absorb near-infrared (NIR) radiation through recognizing perturbed NIR water bands by them and investigation of accuracy dependency on their acidities. Microchem. J. 2018, 139, 443–449. [Google Scholar] [CrossRef]
- Beganovic, A.; Moll, V.; Huck, C.W. Comparison of Multivariate Regression Models Based on Water- and Carbohydrate-Related Spectral Regions in the Near-Infrared for Aqueous Solutions of Glucose. Molecules 2019, 24, 3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadergaski, L.R.; Toney, G.K.; Delmau, L.H.; Myhre, K.G. Chemometrics and Experimental Design for the Quantification of Nitrate Salts in Nitric Acid: Near-Infrared Spectroscopy Absorption Analysis. Appl. Spectrosc. 2021, 75, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Ziouane, Y.; Leturcq, G. New Modeling of Nitric Acid Dissociation Function of Acidity and Temperature. ACS Omega 2018, 3, 6566–6576. [Google Scholar] [CrossRef]
- Czitrom, V. One-Factor-at-a-Time Versus Designed Experiments. Am. Stat. 1999, 53, 126–131. [Google Scholar]
- Bondi, R.W., Jr.; Igne, B.; Drennen, J.K., III; Anderson, C.A. Effect of Experimental Design on the Prediction Performance of Calibration Models Based on Near-Infrared Spectroscopy for Pharmaceutical Applications. Appl. Spectrosc. 2012, 66, 1442–1453. [Google Scholar] [CrossRef]
- Alam, M.A.; Drennen, J.; Anderson, C. Designing a calibration set in spectral space for efficient development of an NIR method for tablet analysis. J. Pharm. Biomed. 2017, 145, 230–239. [Google Scholar] [CrossRef]
- Andrews, H.B.; Sadergaski, L.R.; Cary, S.K. Pursuit of the Ultimate Regression Model for Samarium(III), Europium(III), and LiCl using Laser-Induced Fluorescence, Design of Experiments, and a Genetic Algorithm for Feature Selection. ACS Omega 2023, 8, 2281–2290. [Google Scholar] [CrossRef]
- Steinbach, D.S.; Anderson, C.A.; McGeorge, G.; Igne, B.; Bondi, R.W.; Drennan, J.K., III. Calibration Transfer of Quantitative Transmission Raman PLS Model: Direct Transfer vs. Global Modeling. J. Pharm. Innov. 2017, 12, 347–356. [Google Scholar] [CrossRef]
- Zahran, A.; Anderson-Cook, C.M.; Myers, R.H. Fraction of Design Space to Assess Prediction Capability of Response Surface Designs. J. Qual. Tech. 2003, 35, 377–386. [Google Scholar] [CrossRef]
- Bogomolov, A.; Engler, M.; Melichar, M.; Wigmore, A. In-line analysis of a fluid bed pellet coating process using a combination of near infrared and Raman spectroscopy. J. Chemometr. 2010, 24, 544–557. [Google Scholar] [CrossRef]
- de Aguiar, P.F.; Bourguignon, G.; Khots, M.S.; Massart, D.L.; Phan-Than-Luu, R. D-optimal designs. Chemometr. Intell. Lab. Syst. 1995, 30, 199–210. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.E. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Vries, S.D.; Ter Brakk, C.J.F. Prediction error in partial least squares regression: A critique on the deviation used in The Unscrambler. Chemom. Intell. Lab. Syst. 1995, 30, 239–245. [Google Scholar] [CrossRef]
- Andrews, H.B.; Myhre, K.G. Quantification of lanthanides in a molten salt reactor surrogate off-gas stream using laser-induced breakdown spectroscopy. Appl. Spectrosc. 2022, 76, 877–886. [Google Scholar] [CrossRef]
Run | Acid (M) | Temp. (°C) | Space Type | Build Type |
---|---|---|---|---|
1 | 1.77 | 32.5 | Interior | Model |
2 * | 8.0 | 40.0 | Vertex | Model |
3 * | 6.025 | 14.5 | Interior | Lack of Fit |
4 * | 0.10 | 10.0 | Vertex | Model |
5 * | 0.10 | 20.5 | Edge | Model |
6 | 5.83 | 23.5 | Interior | Lack of Fit |
7 * | 2.075 | 40.0 | Edge | Lack of Fit |
8 * | 8.0 | 28.0 | Edge | Lack of Fit |
9 * | 4.05 | 10.0 | Center Edge | Model |
10 * | 8.0 | 20.5 | Edge | Model |
11 | 0.15 | 28.0 | Interior | Lack of Fit |
12 * | 6.025 | 40.0 | Edge | Lack of Fit |
13 * | 2.075 | 14.2 | Interior | Lack of Fit |
14 * | 8.0 | 10.0 | Vertex | Model |
15 * | 4.05 | 29.5 | Interior | Lack of Fit |
16 | 2.23 | 23.5 | Interior | Lack of Fit |
17 * | 4.05 | 18.4 | Interior | Lack of Fit |
18 * | 0.10 | 40.0 | Vertex | Model |
19 | 6.34 | 32.35 | Interior | Model |
20 * | 4.05 | 40.0 | Center Edge | Model |
Model | LVs | RMSEC | RMSECV | RMSEP | RMSEP% | Bias |
---|---|---|---|---|---|---|
HNO3 D-opt. PLS2 | 4 | 0.053 | 0.086 | 0.083 | 2.10% | −0.033 |
Temp. D-opt. PLS2 | 5 | 0.36 | 1.12 | 0.73 | 4.87% | 0.0013 |
HNO3 ECal PLS2 | 4 | 0.054 | 0.065 | 0.082 | 2.08% | −0.035 |
Temp. ECal PLS2 | 5 | 0.42 | 0.69 | 0.87 | 5.80% | 0.40 |
HNO3 D-opt. GA | 4 | 0.050 | 0.14 | 0.055 | 1.39% | −0.016 |
Inverse GA | 4 | 0.044 | 0.076 | 0.080 | 2.03% | −0.032 |
HNO3 ECal GA | 4 | 0.044 | 0.057 | 0.068 | 1.72% | −0.018 |
Inverse GA | 4 | 0.044 | 0.057 | 0.072 | 1.82% | −0.024 |
Temp. D-opt. GA | 4 | 0.44 | 0.81 | 0.62 | 4.13% | 0.12 |
Inverse GA | 4 | 0.44 | 0.92 | 0.85 | 5.67% | −0.12 |
Temp. Ecal GA | 4 | 0.41 | 0.56 | 0.70 | 4.67% | 0.10 |
Inverse GA | 4 | 0.44 | 0.69 | 0.66 | 4.40% | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadergaski, L.R.; Irvine, S.B.; Andrews, H.B. Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature. Molecules 2023, 28, 3224. https://doi.org/10.3390/molecules28073224
Sadergaski LR, Irvine SB, Andrews HB. Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature. Molecules. 2023; 28(7):3224. https://doi.org/10.3390/molecules28073224
Chicago/Turabian StyleSadergaski, Luke R., Sawyer B. Irvine, and Hunter B. Andrews. 2023. "Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature" Molecules 28, no. 7: 3224. https://doi.org/10.3390/molecules28073224
APA StyleSadergaski, L. R., Irvine, S. B., & Andrews, H. B. (2023). Partial Least Squares, Experimental Design, and Near-Infrared Spectrophotometry for the Remote Quantification of Nitric Acid Concentration and Temperature. Molecules, 28(7), 3224. https://doi.org/10.3390/molecules28073224