New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Docking Studies
2.3. Antibacterial and Antioxidant Activity of Compound 17a
2.4. Agrochemical Studies
3. Materials and Methods
3.1. Antibacterial Studies
3.2. Antioxidant Activity of Compound 17a
3.3. Herbicide-Safening Effect Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hassan, H.; Hisham, M.; Osman, M.; Hayallah, A. Nicotinonitrile as an essential scaffold in medicinal chemistry: An updated review. J. Adv. Biomed. Pharm. Sci. 2023, 6, 1–11. [Google Scholar] [CrossRef]
- Shamroukh, A.H.; Kotb, E.R.; Anwar, M.M.; Sharaf, M. A Review on the Chemistry of Nicotinonitriles and Their applications. Egypt. J. Chem. 2021, 64, 4509–4529. [Google Scholar] [CrossRef]
- Makarov, M.V.; Migaud, M.E. Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives. Beilstein J. Org. Chem. 2019, 15, 401–430. [Google Scholar] [CrossRef] [Green Version]
- Velena, A.; Zarkovic, N.; Gall Troselj, K.; Bisenieks, E.; Krauze, A.; Poikans, J.; Duburs, G. 1, 4-dihydropyridine derivatives: Dihydronicotinamide analogues—Model compounds targeting oxidative stress. Oxid. Med. Cell. Longev. 2016, 2016, 1892412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouda, M.A.; Hussein, B.H.; Helal, M.H.; Salem, M.A. A Review: Synthesis and Medicinal Importance of Nicotinonitriles and Their Analogous. J. Heterocycl. Chem. 2018, 55, 1524–1553. [Google Scholar] [CrossRef]
- Gouda, M.A.; Attia, E.; Helal, M.H.; Salem, M.A. Recent Progress on Nicotinonitrile Scaffold-based Anticancer, Antitumor, and Antimicrobial Agents: A Literature Review. J. Heterocycl. Chem. 2018, 55, 2224–2250. [Google Scholar] [CrossRef]
- Salem, M.A.; Helel, M.H.; Gouda, M.A.; Ammar, Y.A.; El-Gaby, M.S.A. Overview on the synthetic routes to nicotine nitriles. Synth. Commun. 2018, 48, 345–374. [Google Scholar] [CrossRef]
- Gouda, M.A.; Berghot, M.A.; Abd El Ghani, G.E.; Khalil, A.E.G.M. Chemistry of 2-Amino-3-cyanopyridines. Synth. Commun. 2014, 44, 297–330. [Google Scholar] [CrossRef]
- Litvinov, V.P. The chemistry of 3-cyanopyridine-2(1H)-chalcogenones. Russ. Chem. Rev. 2006, 75, 577–599. [Google Scholar] [CrossRef]
- Litvinov, V.P. Partially hydrogenated pyridinechalcogenones. Russ. Chem. Bull. 1998, 47, 2053–2073. [Google Scholar] [CrossRef]
- Litvinov, V.P.; Krivokolysko, S.G.; Dyachenko, V.D. Synthesis and properties of 3-cyanopyridine-2(1H)-chalcogenones. Review. Chem. Heterocycl. Compd. 1999, 35, 509–540. [Google Scholar] [CrossRef]
- Dyachenko, I.V.; Dyachenko, V.D.; Dorovatovskii, P.V.; Khrustalev, V.N.; Nenaidenko, V.G. New Options of Multicomponent Condensations Leading to Functional Derivatives of 2-Pyridons. Russ. J. Org. Chem. 2021, 57, 1809–1823. [Google Scholar] [CrossRef]
- Dyachenko, I.V.; Dyachenko, V.D.; Dorovatovskii, P.V.; Khrustalev, V.N.; Nenajdenko, V.G. New method for the synthesis of 4-spirocyclopentane-and 4-spirocyclohexanenicotinic acid nitriles and amides. Russ. Chem. Bull. 2021, 70, 949–959. [Google Scholar] [CrossRef]
- Frolov, K.A.; Dotsenko, V.V.; Krivokolysko, S.G.; Litvinov, V.P. Three-component condensation in the synthesis of substituted tetrahydropyridinethiolates. Russ. Chem. Bull. 2005, 54, 1335–1336. [Google Scholar] [CrossRef]
- Dyachenko, V.D.; Karpov, E.N. 4-Alkyl-6-amino-N3,N5-diaryl-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamides: I. Tandem synthesis and alkylation. Molecular and crystal structure of 6-allylsulfanyl-2-amino-4-isobutyl-N3,N5-di-m-tolyl-3,4-dihydropyridine-3, 5-dicarboxamide. Russ. J. Gen. Chem. 2013, 83, 1394–1401. [Google Scholar] [CrossRef]
- Dyachenko, V.D.; Karpov, E.N.; Feskov, I.A. 4-Alkyl-6-amino-N3,N5-diaryl-2-thioxo-1,2,3,4-tetrahydropyridine-3,5-dicarboxamides: II. Synthesis and selected reactions. Russ. J. Gen. Chem. 2013, 83, 1716–1723. [Google Scholar] [CrossRef]
- Faty, R.M.; Youssef, M.M.; Youssef, A.M. Microwave assisted synthesis and unusual coupling of some novel pyrido[3,2-f][1,4] thiazepines. Molecules 2011, 16, 4549–4559. [Google Scholar] [CrossRef] [Green Version]
- Dyachenko, I.V.; Vovk, M.V. Synthesis and transformations of new 3-oxo(thioxo)-1-phenyl-2,3,5,6,7,8-hexahydroisoquinoline-4-carboxylic acid derivatives. Russ. J. Gen. Chem. 2012, 82, 697–702. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Krivokolysko, S.G.; Litvinov, V.P. The Mannich reaction in the synthesis of N,S-containing heterocycles. 12. First example of aminomethylation involving 2-thioxonicotinamide derivative: Synthesis of 3,5,7,11-tetraazatricyclo[7.3.1.02,7] tridec-2-ene-9-carboxamides. Russ. Chem. Bull. 2012, 61, 136–140. [Google Scholar] [CrossRef]
- Dyachenko, V.D.; Krasnikov, D.A. Unusual Michael Reaction of 3-(4-Chlorophenyl)-1-phenylprop-2-en-1-one with 3-Amino-N-phenyl-3-thioxopropanamide. Russ. J. Org. Chem. 2012, 48, 953–956. [Google Scholar] [CrossRef]
- Dyachenko, A.D.; Desenko, S.M.; Dyachenko, V.D. Regioselective synthesis and properties of 6-amino-3-carbamoyl-5-cyano-3,4-dihydrospirocyclohexane-4-pyridine-2-thiol and 5-cyano-3-thiocarbamoyl-4-spirocyclohexanepiperidine-2,6-dione. Chem. Heterocycl. Compd. 2004, 40, 1017–1023. [Google Scholar] [CrossRef]
- Dyachenko, V.D.; Tkachev, R.P. 3-Amino-3-thioxopropanamide in the Synthesis of Functionally Substituted Nicotinamides. Russ. J. Org. Chem. 2003, 39, 1174–1179. [Google Scholar] [CrossRef]
- Sasse, K. 1-Substituierte 1,6-Dihydro-4-mercapto-6-pyrimidinone und 1,2,3,6-Tetrahydro-4-(methylthio)-2,6-pyrimidindione. Liebigs Ann. Chem. 1976, 1976, 768–780. [Google Scholar] [CrossRef]
- Schaper, W. Heterocyclen-Synthesen mit Monothiomalonsäure-Amiden: Synthese von 3-Oxo-2,3-dihydroisothiazolo[5,4-b] pyridinen und 3-Oxo-2, 3-dihydroisothiazolo[5,4-d]pyrimidinen. Synthesis 1985, 1985, 861–867. [Google Scholar] [CrossRef]
- Rodinovskaya, L.A.; Shestopalov, A.M.; Nesterov, V.N. Stereoselective synthesis and structure of 3,4-trans-6-amino-4-aryl-3-carbamoyl-5-cyano-1,2,3,4-tetrahydropyridin-2(1H)-thiones. Chem. Heterocycl. Compd. 1996, 32, 1182–1188. [Google Scholar] [CrossRef]
- Hussain, S.M.; Sherif, S.M.; Youssef, M.M. New synthesis of polyfunctionally substituted 2-mercaptopyridines and fused pyridines. Gazz. Chim. Ital. 1994, 124, 97–101. [Google Scholar]
- Krauze, A.; Popelis, J.; Duburs, G. Synthesis of 4,7(2H)-dihydrothiazolo[3,2-a]pyridines from 3-carbamoyl-1,4-dihydropyridine-2(3H)-thiones. Heterocycl. Commun. 1996, 3, 515–520. [Google Scholar] [CrossRef]
- Krauze, A.; Popelis, J.; Duburs, G. Efficient regioselective one-pot synthesis of partially hydrogenated thiazolo[3,2-a]pyridines. Tetrahedron 1998, 54, 9161–9168. [Google Scholar] [CrossRef]
- Sadeghian, Z.; Bayat, M. Green synthesis of isatin-based compounds. Res. Chem. Intermed. 2022, 48, 3987–4016. [Google Scholar] [CrossRef]
- Gataullin, R.R. Advances in the Synthesis of Benzo-Fused Spiro Nitrogen Heterocycles: New Approaches and Modification of Old Strategies. Helv. Chim. Acta 2020, 103, e2000137. [Google Scholar] [CrossRef]
- Izmest’ev, A.N.; Gazieva, G.A.; Kravchenko, A.N. Regioselectivity of (3+2) cycloaddition of azomethine ylides to activated olefins in the synthesis of spiro [oxindole-3, 2′-pyrrolidine] derivatives. Chem. Heterocycl. Compd. 2020, 56, 255–264. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Mironov, V.F. Advances in the synthesis of isatins: A survey of the last decade. Synthesis 2018, 50, 1601–1609. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron 2018, 74, 1323–1353. [Google Scholar] [CrossRef]
- Moradi, R.; Ziarani, G.M.; Lashgari, N. Recent applications of isatin in the synthesis of organic compounds. Arkivoc 2017, 1, 148–201. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.J.; Wang, Y.C. Recent Advances in Green Synthesis of 3, 3′-Spirooxindoles via Isatin–based One–pot Multicomponent Cascade Reactions in Aqueous Medium. ChemistrySelect 2016, 1, 6948–6960. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Moradi, R.; Lashgari, N. Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. Arkivoc 2016, 1, 1–81. [Google Scholar] [CrossRef] [Green Version]
- Gazieva, G.A.; Izmest’ev, A.N. Oxoindolinylidene derivatives of thiazolidin-4-ones: Methods of synthesis and biological activity. Chem. Heterocycl. Compd. 2015, 50, 1515–1527. [Google Scholar] [CrossRef]
- Musin, L.I.; Bogdanov, A.V.; Mironov, V.F. Isatin derivatives in reactions with phosphorus (III–V) compounds. Chem. Heterocycl. Compd. 2015, 51, 421–439. [Google Scholar] [CrossRef]
- Borad, M.A.; Bhoi, M.N.; Prajapati, N.P.; Patel, H.D. Review of synthesis of multispiro heterocyclic compounds from isatin. Synth. Commun. 2014, 44, 1043–1057. [Google Scholar] [CrossRef]
- Xia, M.; Ma, R.Z. Recent progress on routes to spirooxindole systems derived from isatin. J. Heterocycl. Chem. 2014, 51, 539–554. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Wan, J. Recent advances in diversity oriented synthesis through isatin-based multicomponent reactions. Asian J. Org. Chem. 2013, 2, 374–386. [Google Scholar] [CrossRef]
- Lashgari, N.; Ziarani, G.M. Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions. Arkivoc 2012, 1, 277–320. [Google Scholar] [CrossRef]
- Da Silva, J.F.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc. 2001, 12, 273–324. [Google Scholar] [CrossRef]
- Shvekhgeimer, M.-G.A. Synthesis of heterocyclic compounds by the cyclization of isatin and its derivatives. Chem. Heterocycl. Compd. 1996, 32, 249–276. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z.S.; Feng, L.S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett. 2017, 28, 159–167. [Google Scholar] [CrossRef]
- Cheke, R.S.; Firke, S.D.; Patil, R.R.; Bari, S.B. Isatin: New hope against convulsion. CNS Agents Med. Chem. 2018, 18, 76–101. [Google Scholar] [CrossRef] [PubMed]
- Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem. 2019, 164, 678–688. [Google Scholar] [CrossRef]
- Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000–2008. Anti-Cancer Agents Med. Chem. 2009, 9, 397–414. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.Q.; Liu, X.; Zhang, Z.; Feng, L.S.; Liu, M.L. Isatin derivatives with potential antitubercular activities. J. Heterocycl. Chem. 2018, 55, 1263–1279. [Google Scholar] [CrossRef]
- De Moraes Gomes, P.A.T.; Pena, L.J.; Leite, A.C.L. Isatin derivatives and their antiviral properties against arboviruses: A review. Mini Rev. Med. Chem. 2019, 19, 56–62. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm. 2020, 353, 1900367. [Google Scholar] [CrossRef]
- Chauhan, G.; Pathak, D.P.; Ali, F.; Bhutani, R.; Kapoor, G.; Khasimbi, S. Advances in Synthesis, Derivatization and Bioactivity of Isatin: A Review. Curr. Org. Synth. 2021, 18, 37–74. [Google Scholar] [CrossRef] [PubMed]
- Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct. 2020, 1222, 128900. [Google Scholar] [CrossRef]
- Song, F.; Li, Z.; Bian, Y.; Huo, X.; Fang, J.; Shao, L.; Zhou, M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch. Pharm. 2020, 353, 2000143. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin–azole hybrids and their anticancer activities. Arch. Pharm. 2020, 353, 1900272. [Google Scholar] [CrossRef]
- Brandão, P.; Marques, C.; Burke, A.J.; Pineiro, M. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. Eur. J. Med. Chem. 2021, 211, 113102. [Google Scholar] [CrossRef]
- Ferraz de Paiva, R.E.; Vieira, E.G.; Rodrigues da Silva, D.; Wegermann, C.A.; Costa Ferreira, A.M. Anticancer compounds based on isatin-derivatives: Strategies to ameliorate selectivity and efficiency. Front. Mol. Biosci. 2021, 7, 627272. [Google Scholar] [CrossRef]
- Cheke, R.S.; Patil, V.M.; Firke, S.D.; Ambhore, J.P.; Ansari, I.A.; Patel, H.M.; Shinde, S.D.; Pasupuleti, V.R.; Hassan, M.I.; Adnan, M.; et al. Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals 2022, 15, 272. [Google Scholar] [CrossRef]
- Chowdhary, S.; Shalini; Arora, A.; Kumar, V. A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals 2022, 15, 536. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, D.; Hu, G. The antibacterial activity of isatin hybrids. Curr. Top. Med. Chem. 2022, 22, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Varun; Sonam; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. Med. Chem. Commun. 2019, 10, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Elsaman, T.; Mohamed, M.S.; Eltayib, E.M.; Abdel-Aziz, H.A.; Abdalla, A.E.; Munir, M.U.; Mohamed, M.A. Isatin derivatives as broad-spectrum antiviral agents: The current landscape. Med. Chem. Res. 2022, 31, 244–273. [Google Scholar] [CrossRef] [PubMed]
- Maryamabadi, A.; Hasaninejad, A.; Nowrouzi, N.; Mohebbi, G.; Asghari, B. Application of PEG-400 as a green biodegradable polymeric medium for the catalyst-free synthesis of spiro-dihydropyridines and their use as acetyl and butyrylcholinesterase inhibitors. Bioorg. Med. Chem. 2016, 24, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Ghozlan, S.A.; Mohamed, M.F.; Ahmed, A.G.; Shouman, S.A.; Attia, Y.M.; Abdelhamid, I.A. Cytotoxic and antimicrobial evaluations of novel apoptotic and anti-angiogenic spiro cyclic 2-oxindole derivatives of 2-amino-tetrahydroquinolin-5-one. Arch. Pharm. 2015, 348, 113–124. [Google Scholar] [CrossRef]
- Zou, M.; Tian, X.; Chen, N.; Shao, X. Nematicidal activity of sprio and bridged heterocyclic neonicotinoid analogues against Meloidogyne incognita. Lett. Drug Des. Discov. 2015, 12, 439–445. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, Y.F.; Wang, J.W.; Yu, B.; Shi, Y.K.; Liu, H.M. Multicomponent assembly of novel antiproliferative steroidal dihydropyridinyl spirooxindoles. Steroids 2016, 109, 22–28. [Google Scholar] [CrossRef]
- Mondal, A.; Naskar, B.; Goswami, S.; Prodhan, C.; Chaudhuri, K.; Mukhopadhyay, C. I2 catalyzed access of spiro[indoline-3,4′-pyridine] appended amine dyad: New ON–OFF chemosensors for Cu2+ and imaging in living cells. Org. Biomol. Chem. 2018, 16, 302–315. [Google Scholar] [CrossRef]
- Yagnam, S.; Akondi, A.M.; Trivedi, R.; Rathod, B.; Prakasham, R.S.; Sridhar, B. Spirooxindole-fused pyrazolo pyridine derivatives: NiO–SiO2 catalyzed one-pot synthesis and antimicrobial activities. Synth. Commun. 2018, 48, 255–266. [Google Scholar] [CrossRef]
- El-Kalyoubi, S.A.; Ragab, A.; Abu Ali, O.A.; Ammar, Y.A.; Seadawy, M.G.; Ahmed, A.; Fayed, E.A. One-pot synthesis and molecular modeling studies of new bioactive spiro-oxindoles based on uracil derivatives as SARS-CoV-2 inhibitors targeting rna polymerase and spike glycoprotein. Pharmaceuticals 2022, 15, 376. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Sinotsko, A.E.; Strelkov, V.D.; Varzieva, E.A.; Russkikh, A.A.; Levchenko, A.G.; Temerdashev, A.Z.; Aksenov, N.A.; Aksenova, I.V. Alkyl 4-aryl-6-amino-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]pyridine- 5-carboxylates: Synthesis and Agrochemical Studies. Molecules 2023, 28, 609. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Krivokolysko, B.S.; Bibik, E.Y.; Frolov, K.A.; Aksenov, N.A.; Aksenova, I.V.; Krivokolysko, S.G. Synthesis and in vivo evaluation of hepatoprotective effects of novel sulfur-containing 1,4-dihydropyridines and 1,2,3,4-tetrahydropyridines. Curr. Bioact. Compds. 2023, 19, e171022210054. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Jassim, N.T.; Temerdashev, A.Z.; Aksenov, N.A.; Aksenova, I.V. Synthesis and structure of 4-aryl-3,6-dioxo-2,3,4,5,6,7-hexahydroisothiazolo[5,4-b]pyridine-5-carbonitriles. Russ. J. Gen. Chem. 2022, 92, 2861–2869. [Google Scholar] [CrossRef]
- Krivokolysko, D.S.; Dotsenko, V.V.; Bibik, E.Y.; Samokish, A.A.; Venidiktova, Y.S.; Frolov, K.A.; Krivokolysko, S.G.; Pankov, A.A.; Aksenov, N.A.; Aksenova, I.V. New hybrid molecules based on sulfur-containing nicotinonitriles: Synthesis, analgesic activity in acetic acid-induced writhing test, and molecular docking studies. Russ. J. Bioorg. Chem. 2022, 48, 628–635. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Khrustaleva, A.N.; Frolov, K.A.; Aksenov, N.A.; Aksenova, I.V.; Krivokolysko, S.G. 1,6-Diamino-2-oxopyridine-3, 5-dicarbonitrile derivatives in the Mannich reaction. Russ. J. Gen. Chem. 2021, 91, 44–56. [Google Scholar] [CrossRef]
- Bibik, I.V.; Bibik, E.Y.; Dotsenko, V.V.; Frolov, K.A.; Krivokolysko, S.G.; Aksenov, N.A.; Aksenova, I.V.; Shcherbakov, S.V.; Ovcharov, S.N. Synthesis and analgesic activity of new heterocyclic cyanothioacetamide derivatives. Russ. J. Gen. Chem. 2021, 91, 154–166. [Google Scholar] [CrossRef]
- Kurskova, A.O.; Dotsenko, V.V.; Frolov, K.A.; Aksenov, N.A.; Aksenova, I.V.; Shcherbakov, S.V.; Ovcharov, S.N.; Krivokolysko, D.S.; Krivokolysko, S.G. New methods of synthesis, structure and aminomethylation of 4-imino-2-(dicyanomethylene)-3-azaspiro[5.5]undecane-1, 5-dicarbonitrile. Russ. J. Gen. Chem. 2021, 91, 971–984. [Google Scholar] [CrossRef]
- Kurskova, A.O.; Dotsenko, V.V.; Frolov, K.A.; Aksenov, N.A.; Aksenova, I.V.; Krivokolysko, B.S.; Krivokolysko, S.G. Synthesis and Aminomethylation of 6-Amino-2-(dicyanomethylene)-4-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile morpholinium salt. Russ. J. Gen. Chem. 2021, 91, 1471–1483. [Google Scholar] [CrossRef]
- Krivokolysko, D.S.; Dotsenko, V.V.; Bibik, E.Y.; Samokish, A.A.; Venidiktova, Y.S.; Frolov, K.A.; Krivokolysko, S.G.; Vasilin, V.K.; Pankov, A.A.; Aksenov, N.A.; et al. New 4-(2-furyl)-1,4-dihydronicotinonitriles and 1,4,5,6-tetrahydro-nicotinonitriles: Synthesis, structure, and analgesic activity. Russ. J. Gen. Chem. 2021, 91, 1646–1660. [Google Scholar] [CrossRef]
- Krivokolysko, D.S.; Dotsenko, V.V.; Bibik, E.Y.; Myazina, A.V.; Krivokolysko, S.G.; Vasilin, V.K.; Pankov, A.A.; Aksenov, N.A.; Aksenova, I.V. Synthesis, structure, and analgesic activity of 4-(5-cyano-{4-(fur-2-yl)-1,4-dihydropyridin-3-yl} carboxamido)benzoic acids ethyl esters. Russ. J. Gen. Chem. 2021, 91, 2588–2605. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Krivokolysko, S.G.; Krivokolysko, B.S.; Frolov, K.A. A New approach to the synthesis of functional derivatives of 3-(4-pyridinyl)-1H-indole and 4-(1H-indol-3-yl)thieno[2,3-b]pyridine. Russ. J. Gen. Chem. 2018, 88, 682–688. [Google Scholar] [CrossRef]
- Terauchi, H.; Tanitame, A.; Tada, K.; Nishikawa, Y. A Convenient Synthesis of N-Substituted 2,3-Dihydro-3-oxoisothiazolo[5, 4-b]pyridines in Acidic Conditions. Heterocycles 1996, 43, 1719–1734. [Google Scholar] [CrossRef]
- Martinez-Merino, V.; Gil, M.J.; Gonzalez, A.; Zabalza, J.M.; Navarro, J.; Mañu, M.A. New 5-substituted derivatives of ethyl 2,3-dihydro-3-oxoisothiazolo[5, 4-b]pyridine-2-acetate. Heterocycles 1994, 38, 333–344. [Google Scholar] [CrossRef]
- Monge, A.; Martinez-Merino, V.; Fernandez-Alvarez, E. Synthesis of 2-substituted 3-oxoisothiazolo[5,4-b]pyridines. J. Heterocycl. Chem. 1985, 22, 1353–1356. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Buryi, D.S.; Lukina, D.Y.; Krivokolysko, S.G. Recent advances in the chemistry of thieno[2,3-b]pyridines 1. Methods of synthesis of thieno[2,3-b]pyridines. Russ. Chem. Bull. Int. Ed. 2020, 69, 1829–1858. [Google Scholar] [CrossRef]
- Malinka, W.; Świątek, P.; Śliwińska, M.; Szponar, B.; Gamian, A.; Karczmarzyk, Z.; Fruziński, A. Synthesis of novel isothiazolopyridines and their in vitro evaluation against Mycobacterium and Propionibacterium acnes. Bioorg. Med. Chem. 2013, 21, 5282–5291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świątek, P.; Strzelecka, M.; Urniaz, R.; Gębczak, K.; Gębarowski, T.; Gąsiorowski, K.; Malinka, W. Synthesis, COX-1/2 inhibition activities and molecular docking study of isothiazolopyridine derivatives. Bioorg. Med. Chem. 2017, 25, 316–326. [Google Scholar] [CrossRef]
- Malinka, W.; Świątek, P.; Filipek, B.; Sapa, J.; Jezierska, A.; Koll, A. Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type. Farmaco 2005, 60, 961–968. [Google Scholar] [CrossRef]
- Gorsuch, S.; Bavetsias, V.; Rowlands, M.G.; Aherne, G.W.; Workman, P.; Jarman, M.; McDonald, E. Synthesis of isothiazol-3-one derivatives as inhibitors of histone acetyltransferases (HATs). Bioorg. Med. Chem. 2009, 17, 467–474. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Krivokolysko, S.G. Oxidation of thioamides with the DMSO–HCl system: A convenient and efficient method for the synthesis of 1,2,4-thiadiazoles, isothiazolo[5,4-b]pyridines, and heterocyclic disulfides. Chem. Heterocycl. Compd. 2013, 49, 636–644. [Google Scholar] [CrossRef]
- Litvinov, V.P.; Rodinovskaya, L.A.; Sharanin, Y.A.; Shestopalov, A.M.; Senning, A. Advances in the chemistry of 3-cyanopyridin-2 (1H)-ones, -thiones, and -selenones. Sulfur Rep. 1992, 13, 1–142. [Google Scholar] [CrossRef]
- Becker, J.; Stidsen, C.E. Recent Developments in the Synthesis and Chemistry of 2(1H)-Pyridinethiones and Related Compounds. Sulfur Rep. 1988, 8, 105–146. [Google Scholar] [CrossRef]
- Litvinov, V.P. Advances in the Chemistry of Hydrogenated 3-Cyanopyridine-2(1H)-Thiones and -Selenones. Phosphorus Sulfur Silicon Relat. Elem. 1993, 74, 139–156. [Google Scholar] [CrossRef]
- Krivokolysko, S.G.; Rusanov, E.B.; Litvinov, V.P. Reaction of N-methylmorpholinium 5-cyano-2-oxo-4-(2-thienyl)-1,2,3,4-tetrahydropyridine-6-thiolate with α-bromo ketones. Chem. Heterocycl. Compd. 2002, 38, 1397–1405. [Google Scholar] [CrossRef]
- Sander, T. OSIRIS Property Explorer. Idorsia Pharmaceuticals Ltd., Switzerland. Available online: http://www.organic-chemistry.org/prog/peo/ (accessed on 27 February 2023).
- Parrino, B.; Carbone, D.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Deng, D.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cusimano, M.G.; et al. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur. J. Med. Chem. 2021, 209, 112892. [Google Scholar] [CrossRef]
- Kaur, J.; Utreja, D.; Jain, N.; Sharma, S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth. 2019, 16, 17–37. [Google Scholar] [CrossRef]
- Nieto, M.J.; Lupton, H.K. Indole and indoline scaffolds in antimicrobials: Overview, synthesis and recent advances in antimicrobial research. Curr. Med. Chem. 2021, 28, 4828–4844. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019, 89, 103021. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef]
- Ilangovan, A.; Fletcher, M.; Rampioni, G.; Pustelny, C.; Rumbaugh, K.; Heeb, S.; Cámara, M.; Truman, A.; Chhabra, S.R.; Emsley, J.; et al. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog. 2013, 9, e1003508. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Peterson, M.A.; McMaster, S.A.; Riechers, D.E.; Skelton, J.; Stahlman, P.W. 2,4-D past, present, and future: A review. Weed Technol. 2016, 30, 303–345. [Google Scholar] [CrossRef]
- Chkanikov, N.D.; Spiridonov, Y.Y.; Khalikov, S.S.; Muzafarova, A.M. Antidotes for reduction of phytotoxicity of the residues of sulfonylurea herbicides. INEOS Open 2019, 2, 145–152. [Google Scholar] [CrossRef]
- Deng, X. Current advances in the action mechanisms of safeners. Agronomy 2022, 12, 2824. [Google Scholar] [CrossRef]
- Jia, L.; Jin, X.Y.; Zhao, L.X.; Fu, Y.; Ye, F. Research progress in the design and synthesis of herbicide safeners: A review. J. Agric. Food Chem. 2022, 70, 5499–5515. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Buryi, D.S.; Lukina, D.Y.; Stolyarova, A.N.; Aksenov, N.A.; Aksenova, I.V.; Strelkov, V.D.; Dyadyuchenko, L.V. Substituted N-(thieno[2,3-b]pyridine-3-yl)acetamides: Synthesis, reactions, and biological activity. Monatsh. Chem. 2019, 150, 1973–1985. [Google Scholar] [CrossRef]
- Dotsenko, V.V.; Muraviev, V.S.; Lukina, D.Y.; Strelkov, V.D.; Aksenov, N.A.; Aksenova, I.V.; Krapivin, G.D.; Dyadyuchenko, L.V. Reaction of 3-Amino-4,6-diarylthieno[2,3-b]pyridine-2-carboxamides with ninhydrin. Russ. J. Gen. Chem. 2020, 90, 948–960. [Google Scholar] [CrossRef]
- Buryi, D.S.; Dotsenko, V.V.; Aksenov, N.A.; Aksenova, I.V.; Krivokolysko, S.G.; Dyadyuchenko, L.V. Synthesis and properties of 4,6-dimethyl-5-pentyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile and 3-amino-4,6-dimethyl-5-pentylthieno[2,3-b]pyridines. Russ. J. Gen. Chem. 2019, 89, 1575–1585. [Google Scholar] [CrossRef]
- Stroganova, T.A.; Vasilin, V.K.; Krapivin, G.D.; Strelkov, V.D.; Dyadyuchenko, L.V. Synthesis of N-alkylated benzo- and pyridothienopyrrolo[1,2 a][1,4]diazepin-6-ones acting as antidotes against the herbicide 2,4-D. Chem. Heterocycl. Compd. 2016, 52, 45–51. [Google Scholar] [CrossRef]
- Dyadyuchenko, L.V.; Dmitrieva, I.G.; Aksenov, N.A.; Dotsenko, V.V. Synthesis, structure, and biological activity of 2, 6-diazido-4-methylnicotinonitrile derivatives. Chem. Heterocycl. Compd. 2018, 54, 964–970. [Google Scholar] [CrossRef]
N | Compound | Docking Score, kcal/mol |
---|---|---|
1 | −6.2 | |
2 | −6.7 | |
3 | −5.8 | |
4 | −6.1 | |
5 | −8.2 | |
6 | −8.0 | |
7 | −7.3 | |
8 | −6.7 |
Sample | Concentration of 17a, µg/mL | ||||
---|---|---|---|---|---|
100,000 | 10,000 | 1000 | 100 | ||
Inhibition, I (%) | Ascorbic acid | 66 | 74 | 78 | 86 |
17a | 28 | 83 | 90 | 88 |
N | Compound | Organ | Antidote Effect A at Different Concentrations, % 1 | |||
---|---|---|---|---|---|---|
10−2 | 10−3 | 10−4 | 10−5 | |||
1 | 16a | roots | 123 | 121 | 125 | 122 |
hypocotyls | 127 | 130 | 124 | 127 | ||
2 | 17a | roots | 114 | 120 | 117 | 117 |
hypocotyls | 130 | 129 | 133 | 131 | ||
3 | 17b | roots | 112 | 119 | 125 | 114 |
hypocotyls | 117 | 116 | 119 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dotsenko, V.V.; Jassim, N.T.; Temerdashev, A.Z.; Abdul-Hussein, Z.R.; Aksenov, N.A.; Aksenova, I.V. New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity. Molecules 2023, 28, 3161. https://doi.org/10.3390/molecules28073161
Dotsenko VV, Jassim NT, Temerdashev AZ, Abdul-Hussein ZR, Aksenov NA, Aksenova IV. New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity. Molecules. 2023; 28(7):3161. https://doi.org/10.3390/molecules28073161
Chicago/Turabian StyleDotsenko, Victor V., Nawras T. Jassim, Azamat Z. Temerdashev, Zainab R. Abdul-Hussein, Nicolai A. Aksenov, and Inna V. Aksenova. 2023. "New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity" Molecules 28, no. 7: 3161. https://doi.org/10.3390/molecules28073161
APA StyleDotsenko, V. V., Jassim, N. T., Temerdashev, A. Z., Abdul-Hussein, Z. R., Aksenov, N. A., & Aksenova, I. V. (2023). New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity. Molecules, 28(7), 3161. https://doi.org/10.3390/molecules28073161