Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review
Abstract
:1. Introduction
2. Ionic Liquids as Modifiers for HER and OER Electrocatalysts
3. Ionic Liquids as Reactive Reagents for Electrocatalysts of HER and OER
3.1. Ionic Liquids as Reactants to Prepare Heteroatom-Doped Carbon Materials as the Electro Catalysts for Water Splitting
3.2. Ionic Liquids as Reactants to Prepare Transition-Metal Electrocatalysts for Water Splitting
3.2.1. IL-Derived Single Transition Metal or Alloy
3.2.2. IL-Derived Metal Sulfides
3.2.3. IL-Derived Metal Phosphides or Phosphates
3.2.4. IL-Derived Metal Carbides
3.2.5. IL-Derived Metal Nitrides
4. Summary and Outlook
4.1. Problem about Theoretical Guidance and Controllable Preparation of Electrocatalysts in Ionic Liquids
4.2. Problem about the Post-Treatment for Ionic Liquids
4.3. Research on More Environmentally Friendly Alternatives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Nordness, O.; Brennecke, J.F. Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 2020, 120, 12873–12902. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Yang, Q.; Zhu, S. Comparing ion transport in ionic liquids and polymerized ionic liquids. Sci. Rep. 2020, 10, 7825. [Google Scholar] [CrossRef]
- Rout, A.; Mishra, S. Ligand effect on physicochemical properties of ionic liquid. ChemPhysChem 2023. [Google Scholar] [CrossRef]
- Amarasekara, A.S. Acidic ionic liquids. Chem. Rev. 2016, 116, 6133–6183. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kitagawa, H. Chromic ionic liquids. ACS Appl. Electron. Mater. 2021, 3, 2468–2482. [Google Scholar] [CrossRef]
- Rauber, D.; Philippi, F.; Becker, J.; Zapp, J.; Morgenstern, B.; Kuttich, B.; Kraus, T.; Hempelmann, R.; Hunt, P.; Tom Welton, T.; et al. Anion and ether group influence in protic guanidinium ionic liquids. Phys. Chem. Chem. Phys. 2023, 25, 6436–6453. [Google Scholar] [CrossRef]
- Ahmed, M.; Rao, S.S.; Filippov, A.; Johansson, P.; Shah, F.U. Aromatic heterocyclic anion based ionic liquids and electrolytes. Phys. Chem. Chem. Phys. 2023, 25, 3502–3512. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Maciel Filho, R. Are ionic liquids eco-friendly? Renew. Sust. Energ. Rev. 2022, 157, 112039. [Google Scholar] [CrossRef]
- Azizi, D.; Larachi, F. Immiscible dual ionic liquid-ionic liquid mineral separation of rare-earth minerals. Sep. Purif. Technol. 2018, 191, 340–353. [Google Scholar] [CrossRef]
- Gao, M.R.; Yuan, J.; Antonietti, M. Ionic liquids and poly(ionic liquid)s for morphosynthesis of inorganic materials. Chem. Eur. J. 2017, 23, 5391–5403. [Google Scholar] [CrossRef]
- Xin, B.; Zhang, Y.; Cheng, K. Phosphine-free cross-coupling reaction of arylboronic acids with carboxylic anhydrides or acyl chlorides in aqueous media. J. Org. Chem. 2006, 71, 5725–5731. [Google Scholar] [CrossRef]
- Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Zanatta, N.; Bonacorso, H.G. Ionic liquids in heterocyclic synthesis. Chem. Rev. 2008, 108, 2015–2050. [Google Scholar] [CrossRef]
- Patel, H.M. Synthesis of New Mannich Products Bearing Quinoline Nucleous Using Reusable Ionic Liquid and Antitubercular Evaluation. Green Sustain. Chem. 2015, 5, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.M.; Rajani, D.P.; Sharma, M.G.; Bhatt, H.G. Synthesis, Molecular Docking and Biological Evaluation of Mannich Products Based on Thiophene Nucleus using Ionic Liquid. Lett. Drug Des. Discov. 2019, 16, 119–126. [Google Scholar] [CrossRef]
- Patel, D.M.; Sharma, M.G.; Vala, R.M.; Lagunes, I.; Puerta, A.; Padrón, J.M.; Dhanji, P.; Rajani, D.P.; Patel, H.M. Hydroxyl alkyl ammonium ionic liquid assisted green and one-pot regioselective access to functionalized pyrazolodihydropyridine core and their pharmacological evaluation. Bioorg. Chem. 2019, 86, 137–150. [Google Scholar] [CrossRef]
- Zhang, C.; Bai, T.; Sun, Y.; Xin, B.; Zhang, S. Ionic liquid/deep eutectic solvent-mediated Ni-based catalysts and their application in water splitting electrocatalysis. Catalysts 2022, 12, 928. [Google Scholar] [CrossRef]
- Cooper, E.R.; Andrews, C.D.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, 1012–1016. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, Y.; Liang, L.; Feng, Y.; Zhang, J.; Zhang, T.; Zhang, Y. Hypergolic coordination compounds as modifiers for ionic liquid propulsion. Chem. Eng. J. 2021, 423, 130187. [Google Scholar] [CrossRef]
- Li, Y.; Song, J.; Zhang, Y.; Kong, T.; Liu, X.; Bi, D. Multifunctional ionic liquid as an interfacial modifier for high-performance and stable NiOx-based inverted perovskite solar cells. J. Phys. Chem. Lett. 2022, 13, 10597–10602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xue, Y.; Jiang, A.; Xue, Z.; Li, Z.; Hao, J. Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO2 for efficient hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 7217–7223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xin, B.; Xi, Z.; Zhang, B.; Li, Z.; Zhang, H.; Li, Z.; Hao, J. Phosphonium-based ionic liquid, a new phosphorus source toward microwave-driven synthesis of nickel phosphide for efficient hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 1468–1477. [Google Scholar] [CrossRef]
- Ma, Z.; Yu, J.; Dai, S. Preparation of inorganic materials using ionic liquids. Adv. Mater. 2010, 22, 261–285. [Google Scholar] [CrossRef]
- Shahraki, S.; Masrournia, M.; Karimi-Maleh, H. Fabrication of electrochemical sensor for epinine determination amplified with MgO/CNTs nanocomposite and ionic liquid. Curr. Anal. Chem. 2022, 18, 125–132. [Google Scholar] [CrossRef]
- Joy, O.; Al-Zaili, J. On effectiveness of current energy policy instruments to make H2 production projects financially viable for developers: Case of the UK. Int. J. Hydrogen Energy 2021, 46, 32735–32749. [Google Scholar] [CrossRef]
- Bie, C.; Wang, L.; Yu, J. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574. [Google Scholar] [CrossRef]
- Sun, H.N.; Li, L.L.; Chen, Y.H.; Kim, H.; Xu, X.M.; Guan, D.Q.; Hu, Z.W.; Zhang, L.J.; Shao, Z.P.; Jung, W. Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Appl. Catal. B Environ. 2023, 325, 122388. [Google Scholar] [CrossRef]
- Sun, H.N.; Liu, J.P.; Kim, H.; Song, S.Z.; Fei, L.S.; Hu, Z.W.; Lin, H.J.; Chen, C.T.; Ciucci, F.; Jung, W. Ni-doped CuO Nanoarrays Activate Urea Adsorption and Stabilizes Reaction Intermediates to Achieve High-performance Urea Oxidation Catalysts. Adv. Sci. 2022, 9, 2204800. [Google Scholar] [CrossRef]
- Wang, C.P.; Lin, Y.X.; Cui, L.; Zhu, J.; Bu, X. 2D Metal–organic frameworks as competent electrocatalysts for water splitting. Small 2023, 19, 2207342. [Google Scholar] [CrossRef]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Sarkar, S.; Peter, S.C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg. Chem. Front. 2018, 5, 2060–2080. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 2020, 78, 105270. [Google Scholar] [CrossRef]
- Guan, X.; Zong, S.; Shen, S. Homojunction photocatalysts for water splitting. Nano Res. 2022, 15, 10171–10184. [Google Scholar] [CrossRef]
- Li, S.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: Current status and perspectives. J. Mater. Chem. A 2019, 7, 18674–18707. [Google Scholar] [CrossRef]
- Watanabe, M.; Thomas, M.L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 2017, 117, 7190–7239. [Google Scholar] [CrossRef] [Green Version]
- Eshetu, G.G.; Armand, M.; Scrosati, B.; Passerini, S. Energy storage materials synthesized from ionic liquids. Angew. Chem. Int. Ed. 2014, 53, 13342–13359. [Google Scholar] [CrossRef]
- Xin, B.; Hao, J. Imidazolium-based ionic liquids grafted on solid surfaces. Chem. Soc. Rev. 2014, 43, 7171–7187. [Google Scholar] [CrossRef]
- Pandey, D.K.; Kagdada, H.L.; Materny, A.; Singh, D.K. Hybrid structure of ionic liquid and TiO2 nanoclusters for efficient hydrogen evolution reaction. J. Phys. Chem. A 2021, 125, 2653–2665. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.; Hu, W.; Yuan, W.; Zhao, Q.; Yao, Y.; Zhang, B.; Qiu, C.; Li, C. Ionic liquid in situ functionalized carbon nanotubes as metal-free catalyst for efficient electrocatalytic hydrogen evolution reaction. Nanoscale 2021, 13, 4444–4450. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Song, Y.; Sha, W.; Wang, Z.; Cao, H.; Zhao, M.; Liu, P.; Guo, J. Ionic liquid modified active edge-rich antimonene nanodots for highly efficient electrocatalytic hydrogen evolution reaction. Chemcatchem 2022, 14, e202101765. [Google Scholar] [CrossRef]
- Nasri, A.; Jaleh, B.; Shabanlou, E.; Nasrollahzadeh, M.; Khonakdar, H.A.; Kruppke, B. Ionic liquid-based (nano)catalysts for hydrogen generation and storage. J. Mol. Liq. 2022, 365, 120142. [Google Scholar] [CrossRef]
- Zhang, G.R.; Shen, L.L.; Mei, D. Enhanced electrocatalysis at ionic liquid modified solid–liquid interfaces. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, S.; Yu, C.; Zhang, J.; Pan, X.; Li, G. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15767–15773. [Google Scholar] [CrossRef]
- Zhao, M.; Li, T.; Jia, L.; Li, H.; Yuan, W.; Li, C.M. Pristine-graphene-supported nitrogen-doped carbon self-assembled from glucaminium-based ionic liquids as metal-free catalyst for oxygen evolution. Chemsuschem 2019, 12, 5041–5050. [Google Scholar] [CrossRef]
- Chaugule, A.A.; Mane, V.S.; Bandal, H.A.; Kim, H.; Kumbhar, A.S. Ionic liquid-derived Co3O4-N/S-doped carbon catalysts for the enhanced water oxidation. ACS Sustain. Chem. Eng. 2019, 7, 14889–14898. [Google Scholar] [CrossRef]
- Shahsavarifar, S.; Masteri-Farahani, M.; Ganjali, M.R. Design and application of a polyoxometalate-ionic liquid-graphene oxide hybrid nanomaterial: New electrocatalyst for water oxidation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127812. [Google Scholar] [CrossRef]
- Wu, H.; Shi, L.; Lei, J.; Liu, D.; Qu, D.; Xie, Z.; Du, X.; Yang, P.; Hu, X.; Li, J.; et al. Nitrogen and sulfur co-doped carbon with three-dimensional ordered macroporosity: An efficient metal-free oxygen reduction catalyst derived from ionic liquid. J. Power Sources 2016, 323, 90–96. [Google Scholar] [CrossRef]
- Wang, H.; Min, S.; Ma, C.; Liu, Z.; Zhang, W.; Wang, Q.; Li, D.; Li, Y.; Turner, S.; Han, Y. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nat. Commun. 2017, 8, 13592–13600. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.Z.; Bencherif, S.; Pham-Truong, T.N.; Ghilane, J. Immobilization of molecule-based ionic liquids: A promising approach to improve elecrocatalyst performance towards the hydrogen evolution reaction. New J. Chem. 2022, 46, 454–464. [Google Scholar] [CrossRef]
- Truong, T.N.P.; Randriamahazaka, H.; Ghilane, J. Polymer brushes ionic liquid as a catalyst for oxygen reduction and oxygen evolution reactions. ACS Catal. 2018, 8, 869–875. [Google Scholar] [CrossRef]
- Phamtruong, T.; Ranjan, C.; Randriamahazaka, H.; Ghilane, J. Nitrogen doped carbon dots embedded in poly(ionic liquid) as high efficient metal-free electrocatalyst for oxygen reduction reaction. Catal. Today 2019, 335, 381–387. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, Y.; Ma, Z.; Zhang, Y.; Ni, W.; Younus, H.A.; Zhang, C.; Chen, Z.; Zhang, S. Supported ionic liquid phase-boosted highly active and durable electrocatalysts towards hydrogen evolution reaction in acidic electrolyte. J. Energy Chem. 2021, 54, 342–351. [Google Scholar] [CrossRef]
- Pham-Truong, T.N.; Mebarki, O.; Ranjan, C.; Randriamahazaka, H.; Ghilane, J. Electrochemical growth of metallic nanoparticles onto immobilized polymer brush ionic liquid as a hybrid electrocatalyst for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 38265–38275. [Google Scholar] [CrossRef]
- Ding, Y.; Klyushin, A.; Huang, X.; Jones, T.E.; Teschner, D.; Girgsdies, F.; Rodenas, T.; Schlogl, R.; Heumann, S. Cobalt-bridged ionic liquid polymer on a carbon nanotube for enhanced oxygen evolution reaction activity. Angew. Chem. Int. Ed. 2018, 57, 3514–3518. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Coello, S.; Palenzuela, J.A.; Afonso, M.M.; Pastora, E.; García, G. WC modified with ionic liquids for the hydrogen evolution reaction in alkaline solution. J. Electroanal. Chem. 2021, 880, 114878. [Google Scholar] [CrossRef]
- Díaz-Coello, S.; Afonso, M.M.; Palenzuela, J.A.; Pastor, E.; García, G. Composite materials from transition metal carbides and ionic liquids as electrocatalyst for hydrogen evolution in alkaline media. J. Electroanal. Chem. 2021, 898, 115620. [Google Scholar] [CrossRef]
- Mao, H.; Guo, X.; Fan, Q.; Fu, Y.; Yang, H.; Liu, D.; Wu, S.; Wu, Q.; Song, X. Improved hydrogen evolution activity by unique NiS2-MoS2 heterostructures with misfit lattices supported on poly(ionic liquid)s functionalized polypyrrole/graphene oxide nanosheets. Chem. Eng. J. 2021, 404, 126253. [Google Scholar] [CrossRef]
- Mao, H.; Yang, H.; Liu, J.; Zhang, S.; Liu, D.; Wu, Q.; Sun, W.; Song, X.; Ma, T. Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly (zwitterionic liquids) functionalized polypyrrole/graphene oxide. Chin. J. Catal. 2022, 43, 1341–1350. [Google Scholar] [CrossRef]
- Xue, Z.; Qin, L.; Jiang, J.; Mu, T.; Gao, G. Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys. 2018, 20, 8382–8402. [Google Scholar] [CrossRef]
- Lovelock, K.R.J.; Armstrong, J.; Licence, P.; Jones, R.G. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids. Phys. Chem. Chem. Phys. 2014, 16, 1339–1353. [Google Scholar] [CrossRef] [PubMed]
- Maton, C.; De Vos, N.; Stevens, C.V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42, 5963–5977. [Google Scholar] [CrossRef] [PubMed]
- Sa, Y.J.; Park, C.; Jeong, H.Y.; Park, S.; Lee, Z.; Kim, K.T.; Park, G.; Joo, S.H. Carbon nanotubes/heteroatom-doped carbon core–sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells. Angew. Chem. Int. Ed. 2014, 53, 4102–4106. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Truong, Q.D.; Ling, Y. Synthesis of nitrogen-doped graphene by pyrolysis of ionic-liquid-functionalized graphene. J. Mater. Chem. C 2013, 1, 1713–1716. [Google Scholar] [CrossRef]
- Zhang, S.; Dokko, K.; Watanabe, M. Carbon materialization of ionic liquids: From solvents to materials. Mater. Horiz. 2015, 2, 168–197. [Google Scholar] [CrossRef]
- Chen, K.; Xu, B.; Shen, L.; Shen, D.; Li, M.; Guo, L. Functions and performance of ionic liquids in enhancing electrocatalytic hydrogen evolution reactions: A comprehensive review. RSC Adv. 2022, 12, 19452–19469. [Google Scholar] [CrossRef]
- Anjali, J.; Jose, V.; Lee, J. Carbon-based hydrogels: Synthesis and their recent energy applications. J. Mater. Chem. A 2019, 7, 15491–15518. [Google Scholar] [CrossRef]
- Murugesan, B.; Pandiyan, N.; Arumugam, M.; Veerasingam, M.; Sonamuthu, J.; Jeyaraman, A.R.; Samayanan, S.; Mahalingam, S. Two dimensional graphene oxides converted to three dimensional P, N, F and B, N, F tri-doped graphene by ionic liquid for efficient catalytic performance. Carbon 2019, 151, 53–67. [Google Scholar] [CrossRef]
- Chen, S.; Duan, J.; Zheng, Y.; Chen, X.; Du, X.; Jaroniec, M.; Qiao, S. Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energy Storage Mater. 2015, 1, 17–24. [Google Scholar] [CrossRef]
- Gao, J.; He, C.; Liu, J.; Ren, P.; Lu, H.; Feng, J.; Zou, Z.; Yin, Z.; Wen, X.; Tan, X. Polymerizable ionic liquid as a precursor for N, P co-doped carbon toward the oxygen reduction reaction. Catal. Sci. Technol. 2018, 8, 1142–1150. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Cheng, H.; Schmidt, J.; Thomas, A. Ionic liquid-assisted synthesis of mesoporous carbons with surface-enriched nitrogen for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 3912–3920. [Google Scholar] [CrossRef]
- She, Y.; Lu, Z.; Ni, M.; Li, L.; Leung, M.K.H. Facile synthesis of nitrogen and sulfur codoped carbon from ionic liquid as metal-free catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 7214–7221. [Google Scholar] [CrossRef]
- Guo, L.; Wang, M.; Lin, R.; Ma, J.; Zheng, S.; Mou, X.; Zhang, J.; Wu, Z.; Ding, Y. Assembly of N- and P-functionalized carbon nanostructures derived from precursor-defined ternary copolymers for high-capacity lithium-ion batteries. Chin. J. Chem. Eng. 2023, 53, 280–288. [Google Scholar] [CrossRef]
- Li, T.; Tang, D.; Wang, M.; Song, Q.; Li, C. Ionic liquid originated synthesis of n, p-doped graphene for hydrogen evolution reaction. ChemistrySelect 2018, 3, 6814–6820. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Song, H.; Song, P.; Wang, R.; Xiong, Y. Nitrogen and sulfur-codoped porous carbon derived from a BSA/ionic liquid polymer complex: Multifunctional electrode materials for water splitting and supercapacitors. RSC Adv. 2019, 9, 5189–5196. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Wang, X.; Luo, H.; Baker, G.A.; Dai, S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 2009, 131, 4596–4597. [Google Scholar] [CrossRef]
- Paraknowitsch, J.P.; Zhang, J.; Su, D.; Thomas, A.; Antonietti, M. Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 2010, 22, 87–92. [Google Scholar] [CrossRef]
- Su, Y.; Wang, H.; Zhao, J.; Rummeli, M.H.; Gao, Y.; Jiang, Y.; Zhang, L.; Zou, G. Nitrile chain reactions for cyano-based ionic liquid derived mesoporous carbon as efficient bifunctional electrocatalyst. Electrochim. Acta 2018, 280, 258–265. [Google Scholar] [CrossRef]
- Li, Y.; Bao, X.; Chen, D.; Wang, Z.; Dewangan, N.; Li, M.; Xu, Z.; Wang, J.; Kawi, S.; Zhong, Q. A Minireview on nickel-based heterogeneous electrocatalysts for water splitting. ChemCatChem 2019, 11, 5913–5928. [Google Scholar] [CrossRef]
- Burke, M.S.; Enman, L.J.; Batchellor, A.S.; Zou, S.; Boettcher, S.W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558. [Google Scholar] [CrossRef]
- Menezes, P.W.; Indra, A.; Das, C.; Walter, C.; Göbel, C.; Gutkin, V.; Schmeiβer, D.; Driess, M. Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting. ACS Catal. 2017, 7, 103–109. [Google Scholar] [CrossRef]
- Wang, C.; Bai, S.; Xiong, Y. Recent advances in surface and interface engineering for electrocatalysis. Chin. J. Catal. 2015, 36, 1476–1493. [Google Scholar] [CrossRef]
- Renjith, A.; Lakshminarayanan, V. Single-step electrochemical synthesis of cobalt nanoclusters embedded on dense graphite sheets for electrocatalysis of the oxygen evolution reaction. ACS Appl. Nano Mater. 2020, 3, 2705–2712. [Google Scholar] [CrossRef]
- Chen, C.H.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C.; Zhao, X.; Dong, C.; Qiao, S.; Liu, H.; Du, X. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Q.B.; Abbott, A.P. Facile fabrication of nickel nanostructures on a copper-based template via a galvanic replacement reaction in a deep eutectic solvent. Electrochem. Commun. 2016, 70, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Herranz, J.; Jaouen, F.; Lefèvre, M.; Kramm, U.I.; Proietti, E.; Dodelet, J.; Bogdanoff, P.; Fiechter, S.; Abswurmbach, I.; Bertrand, P. Anion-binding effects on Fe/N/C catalysts for O2 reduction in proton-exchange-membrane fuel cells. J. Phys. Chem. C 2011, 115, 16087–16097. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, Y.; Gong, Y.; Zhang, P.; Li, H.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012, 134, 16987–16990. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, N.; Peng, P.; Wang, R.; Jin, Y.; Lv, Y.K.; Wang, X.; Wei, W.; Zang, S. Uniformly dispersed Ru nanoparticles constructed by in situ confined polymerization of ionic liquids for the electrocatalytic hydrogen evolution reaction. Small Methods 2021, 5, 2100505. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Deng, M.; Luo, J.; Yang, G.; Zhang, S.; Zhang, J.; Zhang, Q. From energetic cobalt pentazolate to cobalt@nitrogen-doped carbons as efficient electrocatalysts for oxygen reduction. Sci. China Mater. 2019, 62, 1403–1411. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ma, N.; Zheng, Y.; Zhang, J.; Gui, J.; Guo, C.; An, H.; Tan, X.; Yin, Z.; Ma, D. Cobalt/nitrogen-doped porous carbon nanosheets derived from polymerizable ionic liquids as bifunctional electrocatalyst for oxygen evolution and oxygen reduction reaction. ChemCatChem 2017, 9, 1601–1609. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Jin, H.; Chen, D.; Zhu, J.; Hempelmann, R.; Chen, L.; Mu, S. Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries. J. Alloys Compd. 2022, 908, 164565. [Google Scholar] [CrossRef]
- Qin, Q.; Chen, L.; Wei, T.; Liu, X. MoS2/NiS yolk–shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor. Small 2019, 15, 1803639. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, G.; Cui, Y.; Sun, Y.; Qin, Q.; Zhang, J.; Zheng, W. One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4–MoS2 heterojunction electrodes for supercapacitors. J. Mater. Chem. A 2017, 5, 11278–11285. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Y.; Tian, Z.; Shi, Y.; Wang, Z.; Zheng, W. Fabrication of heterogeneous interface and phosphorus doping in MoS2 for efficient hydrogen evolution in both acid and alkaline electrolytes. Electrochim. Acta 2021, 385, 138429. [Google Scholar] [CrossRef]
- Tang, C.; Asiri, A.M.; Luo, Y.; Sun, X. Electrodeposited Ni-P alloy nanoparticle films for efficiently catalyzing hydrogen-and oxygen-evolution reactions. ChemNanoMat 2015, 1, 558–561. [Google Scholar] [CrossRef]
- Rahman, M.H.; Khajeh, A.; Panwar, P.; Patel, M.; Martini, A.; Menezes, P.L. Recent progress on phosphonium-based room temperature ionic liquids: Synthesis, properties, tribological performances and applications. Tribol. Int. 2022, 167, 107331. [Google Scholar] [CrossRef]
- Li, T.; Tang, D.; Li, C.M. Microwave-assisted synthesis of cobalt phosphide using ionic liquid as Co and P dual-source for hydrogen evolution reaction. Electrochim. Acta 2019, 295, 1027–1033. [Google Scholar] [CrossRef]
- Tang, D.; Li, T.; Li, C.M. Metal and phosphonium-based ionic liquid: A new Co and P dual-source for synthesis of cobalt phosphide toward hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 1720–1726. [Google Scholar] [CrossRef]
- Zhao, X.; Xue, Z.; Chen, W.; Wang, Y.; Mu, T. Eutectic synthesis of high entropy metal phosphide for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042. [Google Scholar] [CrossRef]
- Frade, R.F.; Simeonov, S.; Rosatella, A.A.; Siopa, F.; Afonso, C.A. Toxicological evaluation of magnetic ionic liquids in human cell lines. Chemosphere 2013, 92, 100–105. [Google Scholar] [CrossRef]
- Hitchcock, P.B.; Seddon, R.K.; Welton, T. Hydrogen-bond acceptor abilities of tetrachlorometalate (II) complexes in ionic liquids. J. Chem. Soc. Dalton Trans. 1993, 17, 2639–2643. [Google Scholar] [CrossRef]
- Kozlova, S.A.; Verevkin, S.P.; Heintz, A.; Peppel, T.; Ockerling, M.K. Paramagnetic ionic liquid 1-butyl-3-methylimidazolium tetrabromidocobaltate (II): Activity coefficients at infinite dilution of organic solutes and crystal structure. J. Chem. Eng. Data 2009, 54, 1524–1528. [Google Scholar] [CrossRef]
- Chinnappan, A.; Bandal, H.; Ramakrishna, S.; Kim, H. Facile synthesis of polypyrrole/ionic liquid nanoparticles and use as an electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2018, 335, 215–220. [Google Scholar] [CrossRef]
- Cui, Z.; Li, T.; Tang, D.; Li, C. Ionic liquids-based iron phosphide/carbon nanotubes composites: High active electrocatalysts towards hydrogen evolution reaction. ChemistrySelect 2017, 2, 1019–1024. [Google Scholar] [CrossRef]
- Abouserie, A.; El-Nagar, G.A.; Heyne, B.; Gunter, C.; Taubert, A. Facile synthesis of hierarchical CuS and CuCO2S4 structures from an ionic liquid precursor for electrocatalysis applications. ACS Appl. Mater. Interfaces 2020, 12, 52560–52570. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.; Zhao, Q.; Liu, D.; Li, C. The in situ preparation of iron phosphide using ionic liquids as iron and phosphorus sources for efficient hydrogen evolution reactions. RSC Adv. 2020, 10, 33026–33032. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Q.; Yao, Y.; Li, T. The preparation of ionic liquid based iron phosphate/CNTs composite via microwave radiation for hydrogen evolution reaction and oxygen evolution reaction. Arab. J. Chem. 2021, 14, 103440. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, C.; Chen, T.; Zhao, X.; Hao, J. A new phosphonium-based ionic liquid to synthesize nickel metaphosphate for hydrogen evolution reaction. Nanotechnology 2020, 31, 505402. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Z.; Zhang, Y.; Lv, Q.; Jing, F.; Chi, K.; Wang, S. Large-scale printing synthesis of transition metal phosphides encapsulated in N,P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy 2018, 51, 223–230. [Google Scholar] [CrossRef]
- Ma, J.; Chi, X.; Huang, Y.; Zou, R.; Li, D.; Li, Z.; Li, X.; Liu, C.; Peng, X. Biomass-based protic ionic liquid derived N, P, co-doped porous carbon-coated CoP nanocrystals for efficient hydrogen evolution reaction. J. Mater. Sci. 2021, 56, 18188–18199. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Chen, Z.; Ni, Y.; Kong, F.; Kong, A.; Shan, Y. Ionic liquid-derived MoC nanocomposites with ordered mesoporosity as efficient Pt-free electrocatalyst for hydrogen evolution and oxygen reduction. Catal. Lett. 2017, 147, 253–260. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Yang, N.; Tantai, X.; Xiao, X.; Dou, H.; Zhang, L.; Jiang, B.; Wang, D. Synthesis of RGO-supported molybdenum carbide (Mo2C-RGO) for hydrogen evolution reaction under the function of poly(ionic liquid). Ind. Eng. Chem. Res. 2019, 58, 8996–9005. [Google Scholar] [CrossRef]
- Li, S.S.; Li, E.Z.; An, X.W.; Hao, X.G.; Jiang, Z.Q.; Guan, G.Q. Transition metal -based catalysts for electrochemical water splitting at high current density: Current status and perspectives. Nanoscale 2021, 13, 12788–12817. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912–19933. [Google Scholar] [CrossRef]
- Batool, M.; Hameed, A.; Nadeem, M.A. Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: A critical review. Coordin. Chem. Rev. 2023, 480, 215029. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Q.; Xu, G.; Ning, Y.; Huang, K.; He, F.; Wu, Z.; Zhang, J. Phosphorus and fluorine co-doping induced enhancement of oxygen evolution reaction in bimetallic nitride nanorods arrays: Ionic liquid-driven and mechanism. Chem. Eur. J. 2017, 23, 16862–16870. [Google Scholar] [CrossRef]
- Sun, J.; Guo, N.; Shao, Z.; Huang, K.; Li, Y.; He, F.; Wang, Q. Electrocatalysts: A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant. Adv. Energy Mater. 2018, 8, 1800980. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Huang, K.; Li, K.; Wang, Q. Interfacial electronic structure and electrocatalytic performance modulation in Cu0.81Ni0.19 nanoflowers by heteroatom doping engineering using ionic liquid dopant. Appl. Surf. Sci. 2020, 500, 144052. [Google Scholar] [CrossRef]
- Sun, H.N.; Xu, X.M.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z.P. Electrochemical Water Splitting: Bridging the Gaps between Fundamental Research and Industrial Applications. Energy Environ. Mater. 2022, 0, e12441. [Google Scholar] [CrossRef]
- Sun, H.N.; Kim, H.; Xu, X.M.; Fei, L.S.; Jung, W.; Shao, Z.P. Thin Films Fabricated by Pulsed Laser Deposition for Electrocatalysis. Renewables 2023, 1, 21–38. [Google Scholar] [CrossRef]
- Li, L.; Lin, R.; Tong, Z.; Feng, Q. Crystallization control of SrCO3 nanostructure in imidazolium-based temperature ionic liquids. Mater. Res. Bull 2012, 47, 3100–3106. [Google Scholar] [CrossRef]
- Li, L.; Lin, R.; Tong, Z.; Feng, Q. Facile synthesis of SrCO3 nanostructures in methanol/water solution without additives. Nanoscale Res. Lett. 2012, 7, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegner, S.; Janiak, C. Metal nanoparticles in ionic liquids. In Ionic Liquids II; Springer: Berlin/Heidelberg, Germany, 2018; pp. 153–184. [Google Scholar]
- Seitkalieva, M.M.; Samoylenko, D.E.; Lotsman, K.A.; Rodygin, K.S.; Ananikov, V.P. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordin. Chem. Rev. 2021, 445, 213982. [Google Scholar] [CrossRef]
- Griffin, P.; Ramer, S.; Winfough, M.; Kostal, J. Practical guide to designing safer ionic liquids for cellulose dissolution using a tiered computational framework. Green Chem. 2020, 22, 3626–3637. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2020, 121, 1232–1285. [Google Scholar] [CrossRef]
Catalyst | Applied IL | The Role of IL | Preparation on Method | Catalytic Performance | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HER | OER | Overall Water Splitting | ||||||||||
Electrolyte | ƞ (mV)@ Current Density (mA cm−2) | Tafel Slope (mV dec−1) | Electrolyte | ƞ (mV)@ Current Density (mA cm−2) | Tafel Slope (mV dec−1) | Electrolyte | Potential (V)@Current Density (mA cm−2) | |||||
NiP2 | [P4444]Cl | As a solvent, template and reactant (providing P) | microwave | 0.5 M H2SO4 | 102@10 | 46 | [24] | |||||
CNT−IM−Cl | [BMIM]Cl | As a modifier | reflux | 0.5 M H2SO4 | 135@10 | 38 | [41] | |||||
CoW12−IL−GO | imidazolium Ils | As a modifier; Regulating catalytic activity | reflux | 0.1 M Na2SO4 | 269@10 | 92 | [48] | |||||
Co−N−C | interpolyelectrolyte complexation between [PCMVIM]Tf2N and PAA | As a modifier | direct pyrolysis | 1 M KOH | 158@10 | 93.4 | 1 M KOH | 199@10 | 66.8 | [50] | ||
imidazolium-based poly(IL) | poly(VIMM) | As a catalyst | surface initiated atom transfer radical polymerization | 0.1 M KOH | [52] | |||||||
Pt/C/poly(IL) | poly(VIMM) | As a modifier | surface initiated atom transfer radical polymerization | 0.1 M KOH | [52] | |||||||
GC/Poly(IL)/Pd | PAMI | As a modifier | surface initiated atom transfer radical polymerization | 0.5 M H2SO4 | 170@10 | 83 | [55] | |||||
Co−poly(IL)/CNT | SSIL | As a modifier and dispersant | assembly | 1 M KOH | 430@10 | 41.6 | [56] | |||||
NiS2−MoS2/PVEIB/Ppy/GO | PVEIB | As a modifier | surface initiated atom transfer radical polymerization | 0.5 M H2SO4 | 45@10 | 32.5 | [59] | |||||
P,N,F−rGO | [BMIM]PF6 | As a reagent (providing P, N, F and C) | carbonization | 1 M KOH | 170@176 | 73 | [69] | |||||
BNF−rGO | [BMIM]BF4 | As a reagent (providing B, N, F and C) | carbonization | 1 M KOH | 110@236 | 90 | [69] | |||||
N,S−graphene | [NMP]HSO4 | As a reagent (providing N, S and C) | carbonization | 0.1 M KOH | 310@10 | 65 | [70] | |||||
N−C | [EMIM]DCA | As a reagent (providing N and C) | evaporation-induced self-assembly method | 0.5 M H2SO4 | 384.7@10 | 134 | [72] | |||||
N,P−graphene | [MBMG]PF6 | As a reagent (providing N, P and C) | carbonization | 0.5 M H2SO4 | 210 | 88 | [75] | |||||
N,S,P−C | [PCMVIM]Tf2N | As a reagent (providing N, S, P and C) | carbonization | 0.5 M H2SO4 | 172 | 44.3 | 0.1 M KOH | 460@10 | 88 | [76] | ||
N,S−C | Cyano-based Ils | As a reagent (providing N, S and C) | carbonization | 0.1 M KOH | 450@10 | 216 | [79] | |||||
PIL−Ru/C | [MBVIM]Br | As a reagent (providing N and C) and dispersant | polymerize | 1 M KOH | 16@10 | 42 | [89] | |||||
Co−N−C | Poly[HVIM]NO3 | As a reagent (providing N and C) and dispersant | carbonization | 1 M KOH | 400@10 | 127.4 | [91] | |||||
Fe, Co−N−C | [EMIM]DCA | As a solvent and reagent (providing N and C) | pyrolysis | 1 M KOH | 280@10 | 153 | [92] | |||||
MoS2/NiS | [BMIM]SCN | As a solvent, templet and reagent (providing S); Changing the reaction path | hydrothermal method | 1 M KOH | 244@10 | 97 | 1 M KOH | 350@10 | 108 | [93] | ||
P−CoS1.097@MoS2 | [BMIM]SCN | As solvent, templet and reagent (providing S); Changing the reaction path | hydrothermal reaction | 0.5 M H2SO4 | 98@10 | 51 | [95] | |||||
P−CoS1.097@MoS2 | [BMIM]SCN | As a solvent, templet and reagent (providing S); Changing the reaction path | hydrothermal reaction | 1 M KOH | 88@10 | 74.4 | [95] | |||||
Co2P/CNTs | [P66614]2CoCl4 | As a solventand reagent (providing Co and P) | microwave method | 0.5 M H2SO4 | 135@10 | 58 | [98] | |||||
Co2P/CNTs | [P66614]2CoCl4 | As a solvent and reagent (providing Co and P) | annealing method | 0.5 M H2SO4 | 150@10 | 47 | [99] | |||||
CNT−supported iron phosphating | [MBMG]FeCl3Br | As a reagent (providing Fe) | heated in an inert atmosphere | 0.5 M H2SO4 | 155@10 | 75.9 | [105] | |||||
CuCo2S4 | [BuPy]CoCl4 | As a reagent (providing Co) | hot-injection method | 1 M KOH | 230@10 | 211 | [106] | |||||
Fe2P/CNTs | [P(C6H13)3C14H29]FeCl4 | As a solvent and reagent (providing Fe and P) | annealing method | 0.5 M H2SO4 | 115@10 | 68 | [107] | |||||
Fe7(PO4)6 | [P(C4H9)4] FeCl4 | As a solvent and reagent (providing Fe and P) | microwave radiation | 0.5 M H2SO4 | 32.9 | 1 M KOH | 73.3 | [108] | ||||
Ni2P4O12 | Octylamine/hypophosphorous | As a solvent and reagent (providing P) | annealing method | 0.5 M H2SO4 | 116@10 | 97 | [109] | |||||
MoP wrapped by carbon fiber | [BMIM]PF6 | As a reagent (providing P) | inkjet printing technology | 0.5 M H2SO4 | 87@10 | 49.1 | [110] | |||||
MoC | [BMIM]2MoO4 | As a reagent (providing Mo and C) | annealing method | 0.5 M H2SO4 | 110@10 | [112] | ||||||
Mo2C−RGO | imidazolium Ils | As a reagent (providing C) and dispersant | annealing method | 0.5 M H2SO4 | 99@10 | 54.6 | [113] | |||||
P,F−Ni1.5Co1.5N | [BMIM]PF6 | As a solvent and reagent (providing P, F and N) | solvothermal method | 1 M KOH | 280@10 | 66.1 | [117] | |||||
Cu0.81Ni0.19 | [BMIM]PF6 | As a solvent | a hydrothermal treatment | 1 M KOH | 88@10 | 91 | 1 M KOH | 198@10 | 76 | 1 M KOH | 1.58@10 | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Qu, P.; Zhou, M.; Qian, L.; Bai, T.; Jin, J.; Xin, B. Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review. Molecules 2023, 28, 3051. https://doi.org/10.3390/molecules28073051
Zhang C, Qu P, Zhou M, Qian L, Bai T, Jin J, Xin B. Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review. Molecules. 2023; 28(7):3051. https://doi.org/10.3390/molecules28073051
Chicago/Turabian StyleZhang, Chenyun, Puyu Qu, Mei Zhou, Lidong Qian, Te Bai, Jianjiao Jin, and Bingwei Xin. 2023. "Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review" Molecules 28, no. 7: 3051. https://doi.org/10.3390/molecules28073051
APA StyleZhang, C., Qu, P., Zhou, M., Qian, L., Bai, T., Jin, J., & Xin, B. (2023). Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review. Molecules, 28(7), 3051. https://doi.org/10.3390/molecules28073051