Trap-and-Track for Characterizing Surfactants at Interfaces
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mean Squared Displacement and Its Correlation with a Surfactant Coverage
- I
- Electrostatic concentration range;
- Surfactant molecules are electrostatically adsorbed to charged surface sites.
- Near the initially charged sites, the adsorbed cationic head groups generate additional charged sites.
- II
- Electrostatic and hydrophobic concentration range;
- Adsorption is driven by both hydrophobic interactions among surfactant tails and the electrostatic attraction.
- The adsorbed morphology is described as a “teepee” structure (Figure 2a, II).
- At the end of this concentration range, the substrate ionization is at its maximum, and the overall surface charge is neutralized.
- III
- Hydrophobic concentration range (below the critical micelle; concentration, CMC)
- Hydrophobic interactions are the sole driving force, and surfactant molecules adsorb to the “teepees” with their head groups facing away from the surface (Figure 2a, III).
- This globular micellar structure is referred to as an admicelle.
- The level of counterion adsorption increases noticeably.
- IV
- Hydrophobic concentration range (above the CMC);
- Micelles in the solution can directly adsorb to the interface.
- The surface coverage reaches a plateau, indicating that the surface is fully covered with admicelles.
2.2. Comparison between CTAC and CTAB
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Optical Trapping and Trajectory Recording
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grier, D.G. A Revolution in Optical Manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Neuman, K.C.; Block, S.M. Optical Trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809. [Google Scholar] [CrossRef] [PubMed]
- Bowman, R.W.; Padgett, M.J. Optical Trapping and Binding. Rep. Prog. Phys. 2013, 76, 026401. [Google Scholar] [CrossRef] [PubMed]
- Maragò, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.; Ferrari, A.C. Optical Trapping and Manipulation of Nanostructures. Nat. Nanotechnol. 2013, 8, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [Green Version]
- Ashkin, A.; Dziedzic, J.M. Optical Trapping and Manipulation of Viruses and Bacteria. Science 1987, 235, 1517–1520. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769–771. [Google Scholar] [CrossRef]
- Svoboda, K.; Block, S.M. Biological Applications of Optical Forces. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 247–285. [Google Scholar] [CrossRef]
- Grier, D.G. Optical Tweezers in Colloid and Interface Science. Curr. Opin. Colloid Interface Sci. 1997, 2, 264–270. [Google Scholar] [CrossRef]
- McCann, L.I.; Dykman, M.; Golding, B. Thermally Activated Transitions in a Bistable Three-Dimensional Optical Trap. Nature 1999, 402, 785–787. [Google Scholar] [CrossRef]
- Carberry, D.M.; Reid, J.C.; Wang, G.M.; Sevick, E.M.; Searles, D.J.; Evans, D.J. Fluctuations and Irreversibility: An Experimental Demonstration of a Second-Law-Like Theorem Using a Colloidal Particle Held in an Optical Trap. Phys. Rev. Lett. 2004, 92, 140601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polin, M.; Grier, D.G.; Quake, S.R. Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays. Phys. Rev. Lett. 2006, 96, 088101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franosch, T.; Grimm, M.; Belushkin, M.; Mor, F.M.; Foffi, G.; Forró, L.; Jeney, S. Resonances Arising From Hydrodynamic Memory in Brownian Motion. Nature 2011, 478, 85–88. [Google Scholar] [CrossRef]
- Bérut, A.; Arakelyan, A.; Petrosyan, A.; Ciliberto, S.; Dillenschneider, R.; Lutz, E. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 2012, 483, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Saxton, M.J.; Jacobson, K. SINGLE-PARTICLE TRACKING: Applications to Membrane Dynamics. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 373–399. [Google Scholar] [CrossRef]
- Manzo, C.; Garcia-Parajo, M.F. A review of progress in single particle tracking: From methods to biophysical insights. Rep. Prog. Phys. 2015, 78, 124601. [Google Scholar] [CrossRef]
- Shen, H.; Tauzin, L.J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C.F. Single Particle Tracking: From Theory to Biophysical Applications. Chem. Rev. 2017, 117, 7331–7376. [Google Scholar] [CrossRef]
- Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 2010, 82, 041914. [Google Scholar] [CrossRef] [Green Version]
- Dunderdale, G.; Ebbens, S.; Fairclough, P.; Howse, J. Importance of Particle Tracking and Calculating the Mean-Squared Displacement in Distinguishing Nanopropulsion from Other Processes. Langmuir 2012, 28, 10997–11006. [Google Scholar] [CrossRef]
- Jeon, J.H.; Leijnse, N.; Oddershede, L.B.; Metzler, R. Anomalous diffusion and power-law relaxation of the time averaged mean squared displacement in worm-like micellar solutions. New J. Phys. 2013, 15, 045011. [Google Scholar] [CrossRef]
- Gal, N.; Lechtman-Goldstein, D.; Weihs, D. Particle tracking in living cells: A review of the mean square displacement method and beyond. Rheol. Acta 2013, 52, 425–443. [Google Scholar] [CrossRef]
- Sikora, G.; Burnecki, K.; Wyłomańska, A. Mean-squared-displacement statistical test for fractional Brownian motion. Phys. Rev. E 2017, 95, 032110. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, G. Three-Dimensional Single Particle Tracking and Its Applications in Confined Environments. Annu. Rev. Anal. Chem. 2020, 13, 381–403. [Google Scholar] [CrossRef] [Green Version]
- Yao, A.; Tassieri, M.; Padgett, M.; Cooper, J. Microrheology with Optical Tweezers. Lab Chip 2009, 9, 2568–2575. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Martin, O.J.F. Surfactants Control Optical Trapping near a Glass Wall. J. Phys. Chem. C 2022, 126, 378–386. [Google Scholar] [CrossRef]
- Kim, J.; Martin, O.J.F. Probing Surfactant Bilayer Interactions by Tracking Optically Trapped Single Nanoparticles. Adv. Mater. Interfaces 2022, 10, 2201793. [Google Scholar] [CrossRef]
- Allen, G.C.; Flores-Vergara, M.; Krasynanski, S.; Kumar, S.; Thompson, W. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Dong, S.; Wang, E. Synthesis and self-assembly of cetyltrimethylammonium bromide-capped gold nanoparticles. Langmuir 2003, 19, 9434–9439. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B 2004, 108, 3955–3958. [Google Scholar] [CrossRef]
- Ito, E.; Yip, K.W.; Katz, D.; Fonseca, S.B.; Hedley, D.W.; Chow, S.; Xu, G.W.; Wood, T.E.; Bastianutto, C.; Schimmer, A.D.; et al. Potential use of cetrimonium bromide as an apoptosis-promoting anticancer agent for head and neck cancer. Mol. Pharmacol. 2009, 76, 969–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyrode, E.; Rutland, M.W.; Bain, C.D. Adsorption of CTAB on Hydrophilic Silica Studied by Linear and Nonlinear Optical Spectroscopy. J. Am. Chem. Soc. 2008, 130, 17434–17445. [Google Scholar] [CrossRef] [PubMed]
- Atkin, R.; Craig, V.; Wanless, E.; Biggs, S. Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Adv. Colloid Interface Sci. 2003, 103, 219–304. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Gu, X.; Chen, C.; Zhang, Y.; Hu, D. Study on the Assembly Structure Variation of Cetyltrimethylammonium Bromide on the Surface of Gold Nanoparticles. ACS Omega 2020, 5, 4943–4952. [Google Scholar] [CrossRef]
- Qian, H.; Sheetz, M.; Elson, E. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 1991, 60, 910–921. [Google Scholar] [CrossRef] [Green Version]
- Atkins, P.; De Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Chen, Y.L.; Chen, S.; Frank, C.; Israelachvili, J. Molecular mechanisms and kinetics during the self-assembly of surfactant layers. J. Colloid Interface Sci. 1992, 153, 244–265. [Google Scholar] [CrossRef]
- Magid, L.; Han, Z.; Warr, G.; Cassidy, M.; Butler, P.; Hamilton, W. Effect of counterion competition on micellar growth horizons for cetyltrimethylammonium micellar surfaces: Electrostatics and specific binding. J. Phys. Chem. B 1997, 101, 7919–7927. [Google Scholar] [CrossRef]
- Velegol, S.B.; Fleming, B.D.; Biggs, S.; Wanless, E.J.; Tilton, R.D. Counterion effects on hexadecyltrimethylammonium surfactant adsorption and self-assembly on silica. Langmuir 2000, 16, 2548–2556. [Google Scholar] [CrossRef]
- Bartet, D.; Gamboa, C.; Sepulveda, L. Association of anions to cationic micelles. J. Phys. Chem. 1980, 84, 272–275. [Google Scholar] [CrossRef]
- Allan, D.B.; Caswell, T.; Keim, N.C.; van der Wel, C.M.; Verweij, R.W. Soft-Matter/Trackpy: Trackpy v0.5.0. 2021. Available online: https://zenodo.org/record/4682814#.ZBff3HZByUk (accessed on 7 February 2023).
- Crocker, J.C.; Grier, D.G. Methods of Digital Video Microscopy for Colloidal Studies. J. Colloid Interface Sci. 1996, 179, 298–310. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Martin, O.J.F. Trap-and-Track for Characterizing Surfactants at Interfaces. Molecules 2023, 28, 2859. https://doi.org/10.3390/molecules28062859
Kim J, Martin OJF. Trap-and-Track for Characterizing Surfactants at Interfaces. Molecules. 2023; 28(6):2859. https://doi.org/10.3390/molecules28062859
Chicago/Turabian StyleKim, Jeonghyeon, and Olivier J. F. Martin. 2023. "Trap-and-Track for Characterizing Surfactants at Interfaces" Molecules 28, no. 6: 2859. https://doi.org/10.3390/molecules28062859
APA StyleKim, J., & Martin, O. J. F. (2023). Trap-and-Track for Characterizing Surfactants at Interfaces. Molecules, 28(6), 2859. https://doi.org/10.3390/molecules28062859