Theoretical Study of Si/C Equally Mixed Dodecahedrane Analogues
Abstract
:1. Introduction
2. Methods
3. Structures
4. Regression Analyses for the RE of Isomers
4.1. Relative Energy vs. Strain Energy
4.2. Relative Energy vs. the Number of C–Si Bonds
4.3. Relative Energy vs. Five-Membered Rings of the Molecular Skeletons
4.4. Multiple Regression Analysis of SE and NC−Si
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unno, M. Substituted Polyhedral Silicon and Germanium Clusters. In Functional Molecular Silicon Compounds II: Low Oxidation States; Springer: Berlin/Heidelberg, Germany, 2014; Volume 156, pp. 49–84. [Google Scholar]
- Maier, G.; Pfriem, S.; Schafer, U.; Matusch, R. Tetra-tert-butyltetrahedrane. Angew. Chem. Int. Ed. Engl. 1978, 17, 520–521. [Google Scholar] [CrossRef]
- Maier, G.; Neudert, J.; Wolf, O.; Pappusch, P.; Sekiguchi, A.; Tanaka, M.; Matsuo, T. Tetrakis (trimethylsilyl)tetrahedrane. J. Am. Chem. Soc. 2002, 124, 13819–13826. [Google Scholar] [CrossRef]
- Tanaka, M.; Sekiguhi, A. Hexakis(trimethylsilyl)tetrahedranyltetrahedrane. Angew. Chem. Int. Ed. Engl. 2005, 44, 5751. [Google Scholar] [CrossRef]
- Nakamoto, M.; Inagaki, Y.; Nishina, M.; Sekiguchi, A. Perfluoroaryltetrahedranes: Tetrahedranes with Extended σ-π Conjugation. J. Am. Chem. Soc. 2009, 131, 3172–3173. [Google Scholar] [CrossRef] [PubMed]
- Eaton, P.E.; Cole, T.W. Cubane. J. Am. Chem. Soc. 1964, 86, 3157–3158. [Google Scholar] [CrossRef]
- Ternansky, R.J.; Balogh, D.W.; Paquette, L.A. Dodecahedrane. J. Am. Chem. Soc. 1982, 104, 4503–4504. [Google Scholar] [CrossRef]
- Paquette, L.A.; Ternansky, R.J.; Balogh, D.W.; Taylor, W.J. Total synthesis of a monosubstituted dodecahedrane. The methyl derivative. J. Am. Chem. Soc. 1983, 105, 5441–5446. [Google Scholar] [CrossRef]
- Paquette, L.A.; Ternansky, R.J.; Balogh, D.W.; Kentgen, G. Total synthesis of dodecahedrane. J. Am. Chem. Soc. 1983, 105, 5446–5450. [Google Scholar] [CrossRef]
- Gallucci, J.C.; Doecke, C.W.; Paquette, L.A. X-ray structure analysis of the pentagonal dodecahedrane hydrocarbon (CH)20. J. Am. Chem. Soc. 1986, 108, 1343–1344. [Google Scholar] [CrossRef]
- Prinzbach, H.; Weller, A.; Landenberger, P.; Wahl, F.; Worth, J.; Scott, L.T.; Gelmont, M.; Olevano, D.; von Issendorff, B. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 2000, 407, 60–63. [Google Scholar] [CrossRef]
- Jarrold, M.F. The smallest fullerene. Nature 2000, 407, 26–27. [Google Scholar] [CrossRef]
- Bamberg, M.; Bamberg, M.; Bursch, M.; Hansen, A.; Brandl, M.; Sentis, G.; Kunze, L.; Bolte, M.; Lerner, H.W.; Grimme, S.; et al. [Cl@Si20H20]−: Parent Siladodecahedrane with Endohedral Chloride Ion. J. Am. Chem. Soc. 2021, 143, 10865–10871. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, J.; Wender, J.H.; Bahr, U.; Bolte, M.; Lerner, H.-W.; Holthausen, M.C.; Wagner, M. One-Step Synthesis of a [20]-Silafullerane with an Endohedral Chloride Ion. Angew. Chem. Int. Ed. 2015, 54, 5429–5433. [Google Scholar] [CrossRef]
- Earley, C.W. Ab Initio Investigation of Strain in Group 14 Polyhedrane Clusters (MnHn: N = 4, 6, 8, 10,12, 16, 20, 24). J. Phys. Chem. A 2000, 104, 6622–6627. [Google Scholar] [CrossRef]
- Beckhaus, H.-D.; Ruchardt, C.; Lagerwall, D.R.; Paquette, L.A.; Wahl, F.; Prinzbach, H. Experimental Enthalpies of Formation and Strain Energies for the Caged C20H20 Pagodane and Dodecahedrane Frameworks. J. Am. Chem. Soc. 1994, 116, 11775–11778. [Google Scholar] [CrossRef]
- Beckhaus, H.-D.; Ruchardt, C.; Lagerwall, D.R.; Paquette, L.A.; Wahl, F.; Prinzbach, H. Experimental Enthalpies of Formation and Strain Energies for the Caged C20H20 Pagodane and Dodecahedrane Frameworks. [Erratum to document cited in CA122:80644]. J. Am. Chem. Soc. 1995, 117, 8885. [Google Scholar] [CrossRef]
- Wiberg, K.B. The Concept of Strain in Organic Chemistry. Angew. Chem. Int. Ed. Engl. 1986, 25, 312–322. [Google Scholar] [CrossRef]
- Nagase, S.; Nakano, M.; Kudo, T. Strain and structures in the silicon analogues of tetrahedrane, prismane, and cubane. A theoretical study. J. Chem. Soc. Chem. Commun. 1987, 60–62. [Google Scholar] [CrossRef]
- Nagase, S. Much Less Strained Cubane Analogues with Si, Ge, Sn, and Pb Skeletons. Angew. Chem. Int. Ed. Engl. 1989, 28, 329–330. [Google Scholar] [CrossRef]
- Ray, C.; Pellarin, M.; Lermé, J.L.; Vialle, J.L.; Broyer, M.; Blase, X.; Mélinon, P.; Kéghélian, P.; Perez, A. Synthesis and Structure of Silicon-doped Heterofullerenes. Phys. Rev. Lett. 1998, 80, 5365–5368. [Google Scholar] [CrossRef]
- Billas, I.M.L.; Tast, F.; Branz, W.; Malinowski, N.; Heinebrodt, M.; Martin, T.P.; Boeroa, M.; Massobriob, C.; Parrinello, M. Experimental and computational studies of Si-doped fullerenes. Eur. Phys. J. D 1999, 9, 337–340. [Google Scholar] [CrossRef]
- Pellarin, M.; Ray, C.; Lermé, J.; Vialle, J.L.; Broyer, M.J. Photolysis experiments on SiC mixed clusters: From silicon carbide clusters to silicon doped fullerenes. J. Chem. Phys. 1999, 110, 6927–6938. [Google Scholar]
- Kudo, T.; Schmidt, M.W.; Matsunaga, N. Ab Initio Molecular Orbital Study of the First Four Si/C Alternately Substituted Annulenes. J. Phys. Chem. A 2019, 123, 4588–4598. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Mesuda, A.; Kudo, T. Theoretical Study of the Si/C Mixed Benzenes and Their Major Valence Isomers. Organometallics 2020, 39, 3041–3049. [Google Scholar] [CrossRef]
- Nakamura, T.; Kudo, T. The Planarity of the Heteroatom Analogues of Benzene: Energy Component Analysis and the Planarization of Hexasilabenzene. J. Comput. Chem. 2019, 40, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Fotooh, F.K.; Atashparvar, M. Theoretical Study of the Effect of Simultaneous Doping with Silicon, on Structure and Electronic Properties of Adamantane. Russ. J. Phys. Chem. B 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Miranda, W.D.S.A.; Coutinho, S.S.; Tavares, M.S.; Moreira, E.; Azevedo, D.L. Ab initio vibrational and thermodynamic properties of adamantane, sila-adamantane (Si10H16), and C9Si1H16 isomers. J. Mol. Struct. 2016, 1122, 299–308. [Google Scholar] [CrossRef]
- Rayne, S.; Forest, K. Structures, enthalpies of formation, and ionization energies for the parent and binary mixed carbon, silicon, nitrogen, and phosphorus cubane derivatives: A G4MP2 theoretical study. Nat Prec. 2010. [Google Scholar] [CrossRef]
- Rayne, S.; Forest, K. Binary mixed carbon, silicon, nitrogen, and phosphorus cubane derivatives as potential high energy materials. Comput. Theor. Chem. 2016, 1080, 10–15. [Google Scholar] [CrossRef]
- Nakamura, T.; Uchiyama, T.; Kudo, T. Comparison of group 14 elements in sp3 and sp2 environmentby fragment structure energy analysis. J. Comput. Chem. 2021, 42, 1817–1825. [Google Scholar] [CrossRef]
- Wahl, F.; Wörth, J.; Prinzbach, H. The Pagodane Route to Dodecahedranes: An Improved Approach to the C20H20 Parent Framework; Partial and Total Functionalizations-Does C20-Fullerene Exist? Angew Chem. Int. Ed. Engl. 1993, 32, 1722–1726. [Google Scholar] [CrossRef]
- Fujita, S. Unit Subduced Cycle Indices with and without Chirality Fittingness for Ih Group. An Application to Systematic Enumeration of Dodecahedrane Derivatives. Bull. Chem. Soc. Jpn. 1990, 63, 2759–2769. [Google Scholar] [CrossRef] [Green Version]
- Nemba, R.M. The Denumerants of Icosahedral Group for Symmetry Itemized Enumeration of Coisomeric Dodecahedrane Derivatives and Heteroanalogues. II. MATCH Commun. Math. Comput. Chem. 2021, 86, 85–120. [Google Scholar]
- Roothaan, C.C.J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23, 69–89. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- George, P.; Trachtman, M.; Bock, C.W.; Brett, A.M. An alternative approach to the problem of assessing destabilization energies (strain energies) in cyclic hydrocarbons. Tetrahedron 1976, 32, 317–323. [Google Scholar] [CrossRef]
- Wheeler, S.E.; Houk, K.N.; Schleyer, P.V.R.; Allen, W.D. A Hierarchy of Homodesmotic Reactions for Thermochemistry. J. Am. Chem. Soc. 2009, 131, 2547–2560. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Isomer | Point Group | C–C | C–Si | Si–Si | RE /kcal mol−1 [RE(+ZPC)] ** | SE /kcal mol−1 | Note |
---|---|---|---|---|---|---|---|
a | C2 | 3 | 24 | 3 | 0 [0] | 30.6 | The lowest electronic energy so RE is 0.0, The largest NC–Si |
b | C1 | 3 | 24 | 3 | 0.1 [0.2] | 30.8 | The largest NC–Si |
c | C3v | 3 | 24 | 3 | 0.8 [0.7] | 31.4 | The largest NC–Si |
d | C3 | 3 | 24 | 3 | 0.9 [0.9] | 31.5 | The largest NC–Si |
e | C5v | 5 | 20 | 5 | 1.1 [2.5] | 29.9 | The smallest SE |
f | D5d | 10 | 10 | 10 | 120.5 [123.0] | 81.7 | The largest RE and SE |
g | C3v | 12 | 6 | 12 | 67.7 [72.7] | 50.4 | The smallest NC–Si |
C20H20 | Ih | 30 | 0 | 0 | – | 54.1 (43.7 *) | – |
Si20H20 | Ih | 0 | 0 | 30 | – | 5.8 (32.0 *) | – |
C–C | Si–C | Si–Si | C–H | Si–H | |
---|---|---|---|---|---|
a | 1.58 | 1.89–1.92 | 2.34–2.35 | 1.10 | 1.50 |
b | 1.57–1.58 | 1.89–1.93 | 2.34–2.35 | 1.10 | 1.49–1.50 |
c | 1.58 | 1.88–1.92 | 2.34 | 1.10 | 1.50 |
d | 1.58 | 1.90–1.92 | 2.35 | 1.10 | 1.50 |
e | 1.56 | 1.90–1.92 | 2.36 | 1.10 | 1.50 |
f | 1.58 | 1.96 | 2.30 | 1.10 | 1.49 |
g | 1.55–1.57 | 1.94 | 2.32–2.37 | 1.10 | 1.49–1.50 |
C20H20 | 1.55, (1.55 *) | – | – | 1.1 (1.1 *) | – |
Cl−@Si20H20 | – | – | 2.36 | – | 1.51 |
Si20H20 | – | – | 2.36 (2.39 *) | – | 1.50 (1.49 *) |
C20H20 (expt.) | 1.54 | – | – | – | – |
Cl−@Si20H20 (expt.) | – | – | 2.35–2.36 | – | 1.40 |
HOMO/a.u. | LUMO/a.u. | HOMO–LUMO Gap /eV | |
---|---|---|---|
a | −0.322 | 0.095 | 11.3 |
b | −0.325 | 0.094 | 11.4 |
c | −0.329 | 0.096 | 11.5 |
d | −0.332 | 0.093 | 11.6 |
e | −0.324 | 0.072 | 10.8 |
f | −0.264 | 0.084 | 9.5 |
g | −0.321 | 0.061 | 10.4 |
C20H20 | −0.384 | 0.162 | 14.9 |
Si20H20 | −0.334 | 0.034 | 10.0 |
C30H40 * | −0.364 | 0.165 | 14.4 |
Si30H40 * | −0.325 | 0.056 | 10.4 |
C10Si20H40 * | −0.345 | 0.076 | 11.5 |
C20Si10H40 * | −0.345 | 0.146 | 13.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchiyama, T.; Nakamura, T.; Hiyama, M.; Kudo, T. Theoretical Study of Si/C Equally Mixed Dodecahedrane Analogues. Molecules 2023, 28, 2769. https://doi.org/10.3390/molecules28062769
Uchiyama T, Nakamura T, Hiyama M, Kudo T. Theoretical Study of Si/C Equally Mixed Dodecahedrane Analogues. Molecules. 2023; 28(6):2769. https://doi.org/10.3390/molecules28062769
Chicago/Turabian StyleUchiyama, Tamotsu, Taiji Nakamura, Miyabi Hiyama, and Takako Kudo. 2023. "Theoretical Study of Si/C Equally Mixed Dodecahedrane Analogues" Molecules 28, no. 6: 2769. https://doi.org/10.3390/molecules28062769
APA StyleUchiyama, T., Nakamura, T., Hiyama, M., & Kudo, T. (2023). Theoretical Study of Si/C Equally Mixed Dodecahedrane Analogues. Molecules, 28(6), 2769. https://doi.org/10.3390/molecules28062769