Comprehensive Evaluation of End-Point Free Energy Techniques in Carboxylated-Pillar[6]arene Host–Guest Binding: III. Force-Field Comparison, Three-Trajectory Realization and Further Dielectric Augmentation
Abstract
:1. Introduction
2. Results and Discussions
2.1. A Detailed View of GAFF Derivatives
2.2. Dynamic Behaviors of the Macrocyclic Host
2.3. GAFF vs. GAFF2 in Single-Trajectory Estimates
2.4. Three-Trajectory End-Point Free Energy Estimates
2.5. Dielectric-Constant-Augmented Three-Trajectory Estimates
3. Computational Details
3.1. Model Construction
3.2. Sampling and Free Energy Estimation
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, W.; Liu, Z.; Liu, H.; Westerhoff, L.M.; Zheng, Z. Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein–Ligand Sampling. J. Chem. Inf. Model. 2022, 62, 5645–5665. [Google Scholar]
- Wang, C.; Greene, D.A.; Xiao, L.; Qi, R.; Luo, R. Recent developments and applications of the MMPBSA method. Front. Mol. Biosci. 2018, 4, 87. [Google Scholar]
- Wang, C.; Nguyen, P.H.; Pham, K.; Huynh, D.; Le, T.-B.N.; Wang, H.; Ren, P.; Luo, R. Calculating protein–ligand binding affinities with MMPBSA: Method and error analysis. J. Comput. Chem. 2016, 37, 2436–2446. [Google Scholar] [PubMed] [Green Version]
- Zhai, J.; He, X.; Sun, Y.; Wan, Z.; Ji, B.; Liu, S.; Li, S.; Wang, J. In silico binding affinity prediction for metabotropic glutamate receptors using both endpoint free energy methods and a machine learning-based scoring function. Phys. Chem. Chem. Phys. 2022, 24, 18291–18305. [Google Scholar] [PubMed]
- Sokouti, B.; Dastmalchi, S.; Hamzeh-Mivehroud, M. The impact of simulation time in predicting binding free energies using end-point approaches. J. Bioinf. Comput. Biol. 2022, 20, 2250024. [Google Scholar]
- Huai, Z.; Yang, H.; Sun, Z. Binding thermodynamics and interaction patterns of human purine nucleoside phosphorylase-inhibitor complexes from extensive free energy calculations. J. Comput. Aided Mol. Des. 2021, 35, 643–656. [Google Scholar]
- Sun, Z.; Wang, X.; Zhang, J.Z. Theoretical understanding of the thermodynamics and interactions in transcriptional regulator TtgR-ligand binding. Phys. Chem. Chem. Phys. 2020, 22, 1511–1524. [Google Scholar] [PubMed]
- Wang, X.; Sun, Z. Understanding PIM-1 kinase inhibitor interactions with free energy simulation. Phys. Chem. Chem. Phys. 2019, 21, 7544–7558. [Google Scholar]
- Huai, Z.; Yang, H.; Li, X.; Sun, Z. SAMPL7 TrimerTrip host-guest binding affinities from extensive alchemical and end-point free energy calculations. J. Comput. Aided Mol. Des. 2021, 35, 117–129. [Google Scholar]
- Sun, Z. SAMPL7 TrimerTrip Host-Guest Binding Poses and Binding Affinities from Spherical-Coordinates-Biased Simulations. J. Comput. Aided Mol. Des. 2021, 35, 105–115. [Google Scholar]
- Khalak, Y.; Tresadern, G.; de Groot, B.L.; Gapsys, V. Non-equilibrium approach for binding free energies in cyclodextrins in SAMPL7: Force fields and software. J. Comput. Aided Mol. Des. 2021, 35, 49–61. [Google Scholar]
- Casbarra, L.; Procacci, P. Binding free energy predictions in host-guest systems using Autodock4. A retrospective analysis on SAMPL6, SAMPL7 and SAMPL8 challenges. J. Comput. Aided Mol. Des. 2021, 35, 721–729. [Google Scholar]
- Liu, X.; Zheng, L.; Cong, Y.; Gong, Z.; Yin, Z.; Zhang, J.Z.; Liu, Z.; Sun, Z. Comprehensive Evaluation of End-Point Free Energy Techniques in Carboxylated-Pillar[6]arene Host-guest Binding: II. Regression and Dielectric Constant. J. Comput. Aided Mol. Des. 2022, 36, 879–894. [Google Scholar]
- Liu, X.; Zheng, L.; Qin, C.; Zhang, J.Z.H.; Sun, Z. Comprehensive Evaluation of End-Point Free Energy Techniques in Carboxylated-Pillar[6]arene Host-guest Binding: I. Standard Procedure. J. Comput. Aided Mol. Des. 2022, 36, 735–752. [Google Scholar] [PubMed]
- Homeyer, N.; Gohlke, H. Free Energy Calculations by the Molecular Mechanics Poisson−Boltzmann Surface Area Method. Mol. Inform. 2012, 31, 114–122. [Google Scholar] [PubMed]
- Pearlman, D.A. Evaluating the molecular mechanics Poisson− Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J. Med. Chem. 2005, 48, 7796–7807. [Google Scholar] [PubMed]
- Wan, S.; Knapp, B.; Wright, D.W.; Deane, C.M.; Coveney, P.V. Rapid, precise, and reproducible prediction of peptide–MHC binding affinities from molecular dynamics that correlate well with experiment. J. Chem. Theory Comput. 2015, 11, 3346–3356. [Google Scholar]
- Miller, B.R.; Mcgee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1173. [Google Scholar]
- Sun, Z.; Zheng, L.; Kai, W.; Huai, Z.; Liu, Z. Primary vs Secondary: Directionalized Guest Coordination in β-Cyclodextrin Derivatives. Carbohydr. Polym. 2022, 297, 120050. [Google Scholar]
- Sun, Z.; He, Q.; Zhihao, G.; Payam, K.; Huai, Z.; Liu, Z. A General Picture of Cucurbitbianhao]uril Host-Guest Binding: Recalibrating Bonded Interactions. chemrxiv 2022. [Google Scholar] [CrossRef]
- Sun, Z.; Huai, Z.; He, Q.; Liu, Z. A General Picture of Cucurbit[8]uril Host–Guest Binding. J. Chem. Inf. Model. 2021, 61, 6107–6134. [Google Scholar] [CrossRef]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Pearlman, D.A.; Charifson, P.S. Are Free Energy Calculations Useful in Practice? A Comparison with Rapid Scoring Functions for the p38 MAP Kinase Protein System. J. Med. Chem. 2001, 44, 3417–3423. [Google Scholar] [PubMed]
- Available online: https://github.com/samplchallenges/SAMPL9 (accessed on 22 February 2023.).
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1992, 97, 10269–10280. [Google Scholar] [CrossRef]
- Mcweeny, R.; Diercksen, G. Self-Consistent Perturbation Theory. II. Extension to Open Shells. J. Chem. Phys. 1968, 49, 4852–4856. [Google Scholar] [CrossRef]
- Pople, J.A.; Nesbet, R.K. Self-Consistent Orbitals for Radicals. J. Chem. Phys. 1954, 22, 571–572. [Google Scholar] [CrossRef]
- Roothaan, C.C.J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23, 69–89. [Google Scholar] [CrossRef]
- Dong, X.; Yuan, X.; Song, Z.; Wang, Q. The development of an Amber-compatible organosilane force field for drug-like small molecules. Phys. Chem. Chem. Phys. 2021, 23, 12582–12591. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Price, D.J.; Brooks, C.L., III. A Modified TIP3P Water Potential for Simulation with Ewald Summation. J. Chem. Phys. 2004, 121, 10096–10103. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P.J. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Joung, I.S.; Cheatham, T.E., III. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. [Google Scholar] [CrossRef] [Green Version]
- Joung, I.S.; Cheatham, T.E. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B 2009, 113, 13279–13290. [Google Scholar] [CrossRef] [Green Version]
- Genheden, S.; Ryde, U. Comparison of end-point continuum-solvation methods for the calculation of protein–ligand binding free energies. Proteins Struct. Funct. Bioinform. 2012, 80, 1326–1342. [Google Scholar]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of The Cartesian Equations of Motion of A System with Constraints: Molecular Dynamics of n -alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, S.; Kollman, P.A. Settle: An Analytical Version of The SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952–962. [Google Scholar] [CrossRef]
- Pastor, R.W.; Brooks, B.R.; Szabo, A. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys. 1988, 65, 1409–1419. [Google Scholar] [CrossRef]
- Tuckerman, M.E.; Berne, B.J.; Martyna, G.J. Molecular dynamics algorithm for multiple time scales: Systems with long range forces. J. Chem. Phys. 1991, 94, 6811–6815. [Google Scholar] [CrossRef] [Green Version]
- Case, D.A.; Cheatham, T.E.; Tom, D.; Holger, G.; Luo, R.; Merz, K.M.; Alexey, O.; Carlos, S.; Bing, W.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [Green Version]
- Case, D.A. Normal mode analysis of protein dynamics. Curr. Opin. Struct. Biol. 2010, 4, 285–290. [Google Scholar]
- Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 2000, 18, 113–135. [Google Scholar] [CrossRef]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct. Funct. Bioinform. 2004, 55, 383–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feig, M.; Onufriev, A.; Lee, M.S.; Im, W.; Case, D.A. Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J. Comput. Chem. 2004, 25, 265–284. [Google Scholar] [PubMed]
- Weiser, J.; Shenkin, P.S.; Still, W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999, 20, 217–230. [Google Scholar] [CrossRef]
- Sun, Z.; He, Q.; Li, X.; Zhu, Z. SAMPL6 host–guest binding affinities and binding poses from spherical-coordinates-biased simulations. J. Comput. Aided Mol. Des. 2020, 34, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Zeng, J.; Liu, X.; Chen, J.; Zhang, J.Z.; Zhu, T. Understanding the selectivity of inhibitors toward PI4KIIIα and PI4KIIIβ based molecular modeling. Phys. Chem. Chem. Phys. 2019, 21, 22103–22112. [Google Scholar] [CrossRef]
- Sangpheak, W.; Khuntawee, W.; Wolschann, P.; Pongsawasdi, P.; Rungrotmongkol, T. Enhanced stability of a naringenin/2, 6-dimethyl β-cyclodextrin inclusion complex: Molecular dynamics and free energy calculations based on MM-and QM-PBSA/GBSA. J. Mol. Graph. Model. 2014, 50, 10–15. [Google Scholar] [CrossRef]
Host | Guest | ΔGexp | GAFF | GAFF2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TIP3P | ± | SPC/E | ± | TIP3P | SD | SPC/E | ± | |||
WP6 | G1 | −6.53 | −22.5 | 0.2 | −23.2 | 0.1 | –22.7 | 0.2 | –21.1 | 0.2 |
G2 | –10.59 | –14.1 | 0.2 | –14.2 | 0.1 | –18.1 | 0.2 | –18.2 | 0.2 | |
G3 | –8.03 | –33.7 | 0.1 | –32.4 | 0.2 | –30.6 | 0.2 | –28.7 | 0.2 | |
G4 | –6.50 | –22.8 | 0.2 | –21.3 | 0.2 | –18.2 | 0.2 | –12.0 | 0.2 | |
G5 | –5.46 | –18.3 | 0.1 | –19.7 | 0.1 | –24.0 | 0.2 | –24.1 | 0.2 | |
G6 | –8.08 | –32.5 | 0.2 | –26.3 | 0.1 | –25.7 | 0.2 | –23.4 | 0.2 | |
G7 | –7.07 | –27.7 | 0.1 | –25.9 | 0.2 | –23.1 | 0.2 | –21.0 | 0.2 | |
G8 | –6.04 | 5.9 | 0.2 | 9.2 | 0.2 | –2.4 | 0.2 | –3.7 | 0.2 | |
G9 | –6.32 | –33.9 | 0.2 | –33.6 | 0.1 | –33.5 | 0.1 | –30.1 | 0.1 | |
G10 | –9.96 | –6.6 | 0.2 | –6.4 | 0.2 | –11.8 | 0.2 | –12.0 | 0.2 | |
G11 | –6.26 | –28.7 | 0.2 | –23.7 | 0.2 | –21.8 | 0.2 | –18.8 | 0.2 | |
G12 | –11.02 | –15.2 | 0.1 | –15.5 | 0.1 | –19.0 | 0.2 | –18.8 | 0.2 | |
G13 | –8.58 | –3.3 | 0.2 | –5.1 | 0.1 | –3.6 | 0.2 | –5.0 | 0.2 | |
RMSE | 17.2 | 16.0 | 15.1 | 13.3 | ||||||
MSE | 11.8 | 10.6 | 11.9 | 10.5 | ||||||
τ | –0.1 | –0.1 | –0.1 | –0.1 | ||||||
PI | –0.1 | –0.1 | –0.1 | –0.1 |
Host | Guest | ΔGexp | GAFF | GAFF2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TIP3P | ± | SPC/E | ± | TIP3P | SD | SPC/E | ± | |||
WP6 | G1 | –6.53 | –21.3 | 0.2 | –18.0 | 0.1 | –17.7 | 0.2 | –16.8 | 0.2 |
G2 | –10.59 | –15.8 | 0.2 | –16.1 | 0.1 | –18.8 | 0.2 | –19.0 | 0.2 | |
G3 | –8.03 | –28.6 | 0.1 | –27.7 | 0.2 | –25.7 | 0.2 | –24.1 | 0.2 | |
G4 | –6.50 | –13.7 | 0.2 | –12.9 | 0.2 | –10.8 | 0.2 | –7.2 | 0.2 | |
G5 | –5.46 | –19.0 | 0.1 | –20.7 | 0.1 | –24.2 | 0.2 | –24.5 | 0.2 | |
G6 | –8.08 | –27.5 | 0.1 | –24.3 | 0.1 | –22.0 | 0.2 | –20.2 | 0.2 | |
G7 | –7.07 | –25.0 | 0.1 | –22.2 | 0.2 | –20.5 | 0.2 | –18.4 | 0.2 | |
G8 | –6.04 | 4.6 | 0.2 | 7.3 | 0.2 | –0.9 | 0.2 | –1.7 | 0.2 | |
G9 | –6.32 | –40.5 | 0.2 | –39.7 | 0.1 | –40.1 | 0.1 | –36.7 | 0.1 | |
G10 | –9.96 | –9.3 | 0.2 | –9.4 | 0.2 | –13.1 | 0.2 | –13.1 | 0.2 | |
G11 | –6.26 | –23.0 | 0.2 | –19.9 | 0.2 | –17.6 | 0.2 | –15.8 | 0.2 | |
G12 | –11.02 | –14.1 | 0.1 | –14.6 | 0.1 | –17.0 | 0.2 | –17.1 | 0.2 | |
G13 | –8.58 | –9.6 | 0.2 | –11.8 | 0.1 | –9.5 | 0.2 | –11.3 | 0.2 | |
RMSE | 15.6 | 14.7 | 14.1 | 12.9 | ||||||
MSE | 10.9 | 10.0 | 10.6 | 9.6 | ||||||
τ | –0.1 | –0.1 | –0.1 | 0.0 | ||||||
PI | –0.1 | 0.0 | –0.1 | 0.0 |
Host | Guest | ΔGexp | GAFF | GAFF2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TIP3P | ± | SPC/E | ± | TIP3P | SD | SPC/E | ± | |||
WP6 | G1 | –6.53 | –43.7 | 0.4 | –181.3 | 0.5 | –293.9 | 1.1 | –131.3 | 0.5 |
G2 | –10.59 | –54.9 | 0.4 | –178.7 | 0.5 | –295.8 | 1.1 | –140.3 | 0.5 | |
G3 | –8.03 | –44.6 | 0.4 | –169.4 | 0.5 | –281.7 | 1.1 | –127.3 | 0.5 | |
G4 | –6.50 | –37.4 | 0.4 | –159.6 | 0.5 | –272.0 | 1.1 | –122.6 | 0.5 | |
G5 | –5.46 | –38.9 | 0.4 | –174.0 | 0.5 | –293.2 | 1.1 | –137.9 | 0.5 | |
G6 | –8.08 | –47.7 | 0.4 | –159.6 | 0.5 | –287.8 | 1.1 | –131.7 | 0.5 | |
G7 | –7.07 | –36.0 | 0.4 | –167.4 | 0.5 | –276.8 | 1.1 | –122.3 | 0.6 | |
G8 | –6.04 | –36.8 | 0.4 | –155.0 | 0.5 | –279.0 | 1.1 | –126.2 | 0.5 | |
G9 | –6.32 | –59.6 | 0.4 | –183.9 | 0.5 | –289.7 | 1.1 | –131.2 | 0.5 | |
G10 | –9.96 | –47.5 | 0.4 | –170.0 | 0.5 | –288.9 | 1.1 | –134.3 | 0.6 | |
G11 | –6.26 | –31.7 | 0.4 | –155.2 | 0.5 | –272.7 | 1.1 | –119.5 | 0.6 | |
G12 | –11.02 | –59.6 | 0.4 | –183.8 | 0.5 | –298.2 | 1.1 | –142.8 | 0.5 | |
G13 | –8.58 | –45.8 | 0.4 | –169.1 | 0.5 | –279.6 | 1.1 | –125.5 | 0.5 | |
RMSE | 38.0 | 162.3 | 277.7 | 122.6 | ||||||
MSE | 37.2 | 162.0 | 277.6 | 122.5 | ||||||
τ | 0.5 | 0.3 | 0.3 | 0.4 | ||||||
PI | 0.6 | 0.4 | 0.4 | 0.5 |
Host | Guest | ΔGexp | GAFF | GAFF2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TIP3P | ± | SPC/E | ± | TIP3P | SD | SPC/E | ± | |||
WP6 | G1 | –6.53 | 4.0 | 0.3 | –32.2 | 0.2 | –82.8 | 0.3 | –53.2 | 0.3 |
G2 | –10.59 | –2.9 | 0.2 | –35.4 | 0.2 | –89.6 | 0.3 | –64.1 | 0.3 | |
G3 | –8.03 | –3.5 | 0.2 | –35.4 | 0.2 | –82.0 | 0.3 | –56.3 | 0.3 | |
G4 | –6.50 | 11.4 | 0.2 | –20.2 | 0.2 | –68.2 | 0.3 | –45.0 | 0.3 | |
G5 | –5.46 | 6.7 | 0.2 | –31.7 | 0.2 | –88.4 | 0.3 | –62.8 | 0.2 | |
G6 | –8.08 | –2.3 | 0.2 | –29.2 | 0.2 | –83.3 | 0.3 | –56.5 | 0.3 | |
G7 | –7.07 | 0.5 | 0.2 | –32.1 | 0.3 | –78.9 | 0.3 | –51.4 | 0.3 | |
G8 | –6.04 | 15.1 | 0.3 | –13.4 | 0.3 | –69.9 | 0.3 | –45.6 | 0.3 | |
G9 | –6.32 | –22.5 | 0.2 | –55.0 | 0.2 | –98.3 | 0.3 | –69.6 | 0.2 | |
G10 | –9.96 | 2.8 | 0.3 | –28.7 | 0.3 | –83.1 | 0.3 | –57.6 | 0.3 | |
G11 | –6.26 | 6.7 | 0.3 | –23.7 | 0.3 | –74.0 | 0.3 | –48.5 | 0.3 | |
G12 | –11.02 | –4.9 | 0.2 | –37.7 | 0.2 | –89.9 | 0.3 | –64.2 | 0.2 | |
G13 | –8.58 | –0.5 | 0.3 | –33.0 | 0.2 | –78.5 | 0.3 | –53.8 | 0.2 | |
RMSE | 12.1 | 25.3 | 74.7 | 48.8 | ||||||
MSE | –8.5 | 23.6 | 74.3 | 48.3 | ||||||
τ | 0.5 | 0.3 | 0.3 | 0.4 | ||||||
PI | 0.4 | 0.3 | 0.3 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zheng, L.; Qin, C.; Cong, Y.; Zhang, J.Z.H.; Sun, Z. Comprehensive Evaluation of End-Point Free Energy Techniques in Carboxylated-Pillar[6]arene Host–Guest Binding: III. Force-Field Comparison, Three-Trajectory Realization and Further Dielectric Augmentation. Molecules 2023, 28, 2767. https://doi.org/10.3390/molecules28062767
Liu X, Zheng L, Qin C, Cong Y, Zhang JZH, Sun Z. Comprehensive Evaluation of End-Point Free Energy Techniques in Carboxylated-Pillar[6]arene Host–Guest Binding: III. Force-Field Comparison, Three-Trajectory Realization and Further Dielectric Augmentation. Molecules. 2023; 28(6):2767. https://doi.org/10.3390/molecules28062767
Chicago/Turabian StyleLiu, Xiao, Lei Zheng, Chu Qin, Yalong Cong, John Z. H. Zhang, and Zhaoxi Sun. 2023. "Comprehensive Evaluation of End-Point Free Energy Techniques in Carboxylated-Pillar[6]arene Host–Guest Binding: III. Force-Field Comparison, Three-Trajectory Realization and Further Dielectric Augmentation" Molecules 28, no. 6: 2767. https://doi.org/10.3390/molecules28062767
APA StyleLiu, X., Zheng, L., Qin, C., Cong, Y., Zhang, J. Z. H., & Sun, Z. (2023). Comprehensive Evaluation of End-Point Free Energy Techniques in Carboxylated-Pillar[6]arene Host–Guest Binding: III. Force-Field Comparison, Three-Trajectory Realization and Further Dielectric Augmentation. Molecules, 28(6), 2767. https://doi.org/10.3390/molecules28062767