Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antimicrobial Evaluation
2.3. Cytotoxic Evaluation
2.4. Docking
3. Materials and Methods
3.1. Chemistry
3.1.1. General Comments
3.1.2. Synthesis of 4-Amino-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione
3.1.3. Synthesis of Schiff Base Derivatives
- 5-(3-fluorophenyl)-4-[(4-methylbenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO1) [50] CAS 1631040-03-3
- 5-(3-fluorophenyl)-4-[(4-nitrobenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO3)
- 5-(3-fluorophenyl)-4-[(4-methoxybenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO4) [51] CAS 2362542-60-5
- 5-(3-fluorofenylo)-4-[(4-propoxybenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO6)
- 4-[(4-fluorobenzylidene)amino]-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO7) [37] CAS 1642872-25-0
- 4-[(4-butoxybenzylidene)amino]-5-(3-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO8)
- 5-(3-fluorophenyl)-4-[(3-methylbenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO9) [51] CAS 1631041-01-1
- 5-(3-fluorophenyl)-4-[(2-methylbenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO10)
- 5-(3-fluorophenyl)-4-[(3-methoxybenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO11)
- 5-(3-fluorophenyl)-4-[(2-methoxybenzylidene)amino]-2,4-dihydro-3H-1,2,4-triazole-3-thione (RO12)
3.2. Microbiology
3.2.1. General Comments
3.2.2. Bacterial and Fungal Strains
3.2.3. Antimicrobial Activity Determination
Antibacterial Activity Determination
Antifungal Activity Determination
Determination of the Minimum Bactericidal (MBC) or Fungicidal (MFC) Concentration
3.3. Cell Viability Assay
3.3.1. General Comments
3.3.2. MTT Assay
3.4. Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Neu, H.C. The Crisis in Antibiotic Resistance. Science 1992, 257, 1064–1073. [Google Scholar] [CrossRef] [Green Version]
- Holmes, C.B.; Losina, E.; Walensky, R.P.; Yazdanpanah, Y.; Freedberg, K.A. Review of Human Immunodeficiency Virus Type 1-Related Opportunistic Infections in Sub-Saharan Africa. Clin. Infect. Dis. 2003, 36, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic Resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharb, R.; Chander, P.; Mohammed, S.; Yar, S. Pharmacological Significance of Triazole Scaffold. J. Enzym. Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar] [CrossRef]
- Cossar, P.J.; Lewis, P.J.; McCluskey, A. Protein-protein Interactions as Antibiotic Targets: A Medicinal Chemistry Perspective. Med. Res. Rev. 2020, 40, 469–494. [Google Scholar] [CrossRef] [PubMed]
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
- Caputo, A.; Sartini, S.; Levati, E.; Minato, I.; Elisi, G.M.; di Stasi, A.; Guillou, C.; Goekjian, P.G.; Garcia, P.; Gueyrard, D.; et al. An Optimized Workflow for the Discovery of New Antimicrobial Compounds Targeting Bacterial RNA Polymerase Complex Formation. Antibiotics 2022, 11, 1449. [Google Scholar] [CrossRef]
- Zhang, Y.; Chowdhury, S.; Rodrigues, J.V.; Shakhnovich, E. Development of Antibacterial Compounds That Constrain Evolutionary Pathways to Resistance. Elife 2021, 10. [Google Scholar] [CrossRef]
- Gomtsyan, A. Heterocycles in Drugs and Drug Discovery. Chem. Heterocycl. Compd. N. Y. 2012, 48, 7–10. [Google Scholar] [CrossRef]
- Popiołek, Ł.; Kosikowska, U.; Wujec, M.; Malm, A. Synthesis and Antimicrobial Evaluation of New Schiff Base Hydrazones Bearing 1,2,4-Triazole Moiety. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 1611–1623. [Google Scholar] [CrossRef]
- Turan-Zitouni, G.; Kaplancikli, Z.A.; Erol, K.; Kiliç, F.S. Synthesis and Analgesic Activity of Some Triazoles and Triazolothiadiazines. Il Farm. 1999, 54, 218–223. [Google Scholar] [CrossRef]
- Güzeldemirci, N.U.; Küçükbasmaci, Ö. Synthesis and Antimicrobial Activity Evaluation of New 1,2,4-Triazoles and 1,3,4-Thiadiazoles Bearing Imidazo[2,1-b]Thiazole Moiety. Eur. J. Med. Chem. 2010, 45, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, N.; Gürsoy, A.; Otuk, G. Synthesis and Antimicrobial Activity of Some 1,2,4-Triazole-3-Mercaptoacetic Acid Derivatives. Il Farm. 2001, 56, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Collin, X.; Sauleau, A.; Coulon, J. 1,2,4-Triazolo Mercapto and Aminonitriles as Potent Antifungal Agents. Bioorg. Med. Chem. Lett. 2003, 13, 2601–2605. [Google Scholar] [CrossRef]
- Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, Ö.; Köysal, Y.; Kiliç, E.; Işik, Ş.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-Triazole-5(4H)-Thiones, 1,3,4-Thiadiazoles and Hydrazones Containing 5-Methyl-2-Benzoxazolinones: Synthesis, Analgesic-Anti-Inflammatory and Antimicrobial Activities. Bioorg. Med. Chem. 2007, 15, 5738–5751. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Dogan, H.N.; Rollas, S. Synthesis and Preliminary Anticancer Activity of New 1,4-Dihydro-3-(3-Hydroxy-2-Naphthyl)-4-Substituted-5H-1,2,4-Triazoline-5-Thiones. Il Farm. 2002, 57, 559–564. [Google Scholar] [CrossRef]
- Al-Soud, Y.A.; Al-Dweri, M.N.; Al-Masoudi, N.A. Synthesis, Antitumor and Antiviral Properties of Some 1,2,4-Triazole Derivatives. Il Farm. 2004, 59, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Shiradkar, M.R.; Murahari, K.K.; Gangadasu, H.R.; Suresh, T.; Kalyan, C.A.; Panchal, D.; Kaur, R.; Burange, P.; Ghogare, J.; Mokale, V.; et al. Synthesis of New S-Derivatives of Clubbed Triazolyl Thiazole as Anti-Mycobacterium Tuberculosis Agents. Bioorg. Med. Chem. 2007, 15, 3997–4008. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mi, Y.; Li, Q.; Dong, F.; Guo, Z. Synthesis of Schiff Bases Modified Inulin Derivatives for Potential Antifungal and Antioxidant Applications. Int. J. Biol. Macromol. 2020, 143, 714–723. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Balakrishnan, R.; Selvaraj, A. A Comparative Study on Biological Activity of Schiff Bases Derived from 2-(2-Amino)-3-(1H-Indol-3-Yl)Propanoic Acid. Orient. J. Chem. 2020, 36, 780–787. [Google Scholar] [CrossRef]
- Sadiq, H.M.; Al-Labban, H.M.Y.; Aljanaby, A.A.J. Schiff Bases Derivatives: Synthesis, Identification, and Antibacterial Activity against Pathogenic Bacteria Isolated from Patients Infected with Wound Infection. Int. J. Res. Pharm. Sci. 2020, 11, 2993–2998. [Google Scholar] [CrossRef]
- Nowicka, A.; Liszkiewicz, H.; Paulina, W. Schiff Bases-Selected Syntheses, Reactions and Biological Activity. Wiadomości Chem. 2014, 68, 3–4. [Google Scholar]
- Da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff Bases: A Short Review of Their Antimicrobial Activities. J. Adv. Res. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xavier, A.; Srividhya, N. Synthesis and Study of Schiff Base Ligands. IOSR J. Appl. Chem. 2014, 7, 6–15. [Google Scholar] [CrossRef]
- Przybylski, P.; Huczynski, A.; Pyta, K.; Brzezinski, B.; Bartl, F. Biological Properties of Schiff Bases and Azo Derivatives of Phenols. Curr. Org. Chem. 2009, 13, 124–148. [Google Scholar] [CrossRef]
- Hassan, A.S.; Askar, A.A.; Nossier, E.S.; Naglah, A.M.; Moustafa, G.O.; Al-Omar, M.A. Antibacterial Evaluation, In Silico Characters and Molecular Docking of Schiff Bases Derived from 5-Aminopyrazoles. Molecules 2019, 24, 3130. [Google Scholar] [CrossRef] [Green Version]
- Arulmurugan, S.; Kavitha, H.P.; Venkatraman, B.R. Biological Activities of Schiff Base and Its Complexes: A Review. Rasayan J. Chem. 2010, 3, 385–410. [Google Scholar]
- Uluçam, G.; Okan, Ş.E.; Aktaş, Ş.; Yentürk, B. New Schiff-Base Ligands Containing Thiophene Terminals: Synthesis, Characterization and Biological Activities. J. Mol. Struct. 2021, 1230, 129941. [Google Scholar] [CrossRef]
- Xie, H.; Niu, C.; Chao, Z.; Mamat, N.; Akber Aisa, H. Synthesis and Activity of New Schiff Bases of Furocoumarin. Heterocycl. Comm. 2021, 26, 176–184. [Google Scholar] [CrossRef]
- Zeyrek, C.T.; Boyacıoğlu, B.; Demir, N.; Tümer, Y.; Kiraz, A.; Ünver, H.; Yıldız, M. Synthesis, Molecular Structure, Biological Activity, and Sensor Properties of (E)-2-[(3,5-Bis(Trifluoromethyl)Phenylimino)Methyl]-4,6-Dichlorophenol. Russ. J. Gen. Chem. 2021, 91, 279–284. [Google Scholar] [CrossRef]
- Tamer, T.M.; Hassan, M.A.; Omer, A.M.; Baset, W.M.A.; Hassan, M.E.; El-Shafeey, M.E.A.; Eldin, M.S.M. Synthesis, Characterization and Antimicrobial Evaluation of Two Aromatic Chitosan Schiff Base Derivatives. Process Biochem. 2016, 51, 1721–1730. [Google Scholar] [CrossRef]
- Raman, N.; Dhaveethu Raja, J.; Sakthivel, A. Synthesis, Spectral Characterization of Schiff Base Transition Metal Complexes: DNA Cleavage and Antimicrobial Activity Studies. J. Chem. Sci. 2007, 119, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.T.; Sheng, J.; Yin, D.W.; Xin, H.; Yang, X.M.; Qiao, Q.Y.; Yang, Z.J. Ferrocenyl Chalcone-Based Schiff Bases and Their Metal Complexes: Highly Efficient, Solvent-Free Synthesis, Characterization, Biological Research. J. Organomet. Chem. 2018, 856, 27–33. [Google Scholar] [CrossRef]
- Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics 2022, 11, 191. [Google Scholar] [CrossRef]
- Hamad, A.; Chen, Y.; Khan, M.A.; Jamshidi, S.; Saeed, N.; Clifford, M.; Hind, C.; Sutton, J.M.; Rahman, K.M. Schiff Bases of Sulphonamides as a New Class of Antifungal Agent against Multidrug-Resistant Candida Auris. Microbiologyopen 2021, 10, e1218. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, T.F.F.; da Silva, C.M.; dos Santos, L.B.F.; Santos, D.A.; Silva, L.M.; Fuchs, B.B.; Mylonakis, E.; Martins, C.V.B.; de Resende-Stoianoff, M.A.; de Fatima, A.; et al. Cinnamyl Schiff Bases: Synthesis, Cytotoxic Effects and Antifungal Activity of Clinical Interest. Lett. Appl. Microbiol. 2020, 71, 490–497. [Google Scholar] [CrossRef]
- Aouad, M. Synthesis, Characterization and Antimicrobial Evaluation of Some New Schiff, Mannich and Acetylenic Mannich Bases Incorporating a 1,2,4-Triazole Nucleus. Molecules 2014, 19, 18897–18910. [Google Scholar] [CrossRef] [Green Version]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef] [PubMed]
- Dannaoui, E.; Espinel-Ingroff, A. Antifungal Susceptibly Testing by Concentration Gradient Strip Etest Method for Fungal Isolates: A Review. J. Fungi 2019, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.; Lago, M.; Branco, L.; Vale-Silva, L.A.; Pinheiro, M.D. Evaluation of Etest Performed in Mueller–Hinton Agar Supplemented with Glucose for Antifungal Susceptibility Testing of Clinical Isolates of Filamentous Fungi. Mycopathologia 2014, 177, 157–166. [Google Scholar] [CrossRef]
- Turecka, K.; Chylewska, A.; Kawiak, A.; Waleron, K.F. Antifungal Activity and Mechanism of Action of the Co(III) Coordination Complexes with Diamine Chelate Ligands against Reference and Clinical Strains of Candida spp. Front. Microbiol. 2018, 9, 1594. [Google Scholar] [CrossRef] [Green Version]
- Roemer, T.; Krysan, D.J. Antifungal Drug Development: Challenges, Unmet Clinical Needs, and New Approaches. Cold Spring Harb. Perspect. Med. 2014, 4, a019703. [Google Scholar] [CrossRef]
- Sun, L.; Liao, K.; Wang, D. Effects of Magnolol and Honokiol on Adhesion, Yeast-Hyphal Transition, and Formation of Biofilm by Candida Albicans. PLoS ONE 2015, 10, e0117695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henriques, M. Candida Species Biofilms’ Antifungal Resistance. J. Fungi 2017, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, K.U.; Mani, A.; Parmar, R.; Thawani, V. Antifungal Susceptibility Pattern of Candida Albicans in Human Infections. Open Biol. Sci. J. 2018, 4, 1–6. [Google Scholar] [CrossRef]
- Wróbel, T.M.; Kosikowska, U.; Kaczor, A.A.; Andrzejczuk, S.; Karczmarzyk, Z.; Wysocki, W.; Urbańczyk-Lipkowska, Z.; Morawiak, M.; Matosiuk, D. Synthesis, Structural Studies and Molecular Modelling of a Novel Imidazoline Derivative with Antifungal Activity. Molecules 2015, 20, 14761–14776. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.C.; Tan, C.K.; Huang, Y.T.; Shao, P.L.; Hsueh, P.R. Current Challenges in the Management of Invasive Fungal Infections. J. Infect. Chemother. 2008, 14, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Ganal, S.C.; Sanos, S.L.; Kallfass, C.; Oberle, K.; Johner, C.; Kirschning, C.; Lienenklaus, S.; Weiss, S.; Staeheli, P.; Aichele, P.; et al. Priming of Natural Killer Cells by Nonmucosal Mononuclear Phagocytes Requires Instructive Signals from Commensal Microbiota. Immunity 2012, 37, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.-H.; Hameed, S.; Yasin, K.A.; Akhtar, T.; Khan, K.M. Design, Synthesis, and Urease Inhibition Studies of a Series of 4-Amino-5-Aryl-3H-1,2,4-Triazole-3-Thiones. Mon. Chem. Chem. Mon. 2010, 141, 479–484. [Google Scholar] [CrossRef]
- Zhang, Y. Terminal-Substituted Phenyl Triazole Schiff Base Compound as PAR-1 Antagonist Useful in Treatment of Thrombotic Disease and Its Preparation. Chinese Patent CN104098520A, 8 October 2014. [Google Scholar]
- Bihdan, O.; Parchenko, V.; Zazharskyi, V.; Fotina, T.; Davydenko, P. Influence of 3-(3-Fluorophenyl)-6-(4-Methoxyphenyl)-7H-[1,2,4]-Triazolo-[3,4-b][1,3,4]Thiadiazine on the Cultural Properties of Pathogenic Mycobacterium Bovis. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 166–170. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0, 2022 Ecast: EUCAST. Available online: https://www.eucast.org/ (accessed on 2 February 2023).
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition. CLSI Document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute, 2015 Ecast: EUCAST. Available online: https://www.eucast.org/ (accessed on 2 February 2023).
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A Study of the Antimicrobial Activity of Selected Synthetic and Naturally Occurring Quinolines. Int. J. Antimicrob. Agents 2010, 35, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A.; Rajtar, B.; Polz-Dacewicz, M. Synthesis and in Vitro Activity of 1,2,4-Triazole-Ciprofloxacin Hybrids against Drug-Susceptible and Drug-Resistant Bacteria. Eur. J. Med. Chem. 2013, 60, 128–134. [Google Scholar] [CrossRef]
- Ameryckx, A.; Pochet, L.; Wang, G.; Yildiz, E.; Saadi, B.E.; Wouters, J.; van Bambeke, F.; Frédérick, R. Pharmacomodulations of the Benzoyl-Thiosemicarbazide Scaffold Reveal Antimicrobial Agents Targeting d-Alanyl-d-Alanine Ligase in Bacterio. Eur. J. Med. Chem. 2020, 200, 112444. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A.; Khodarahmi, G.; Forootanfar, H.; Hassanzadeh, F.; Hakimelahi, G.H. Hybrid Pharmacophore Design, Molecular Docking, Synthesis, and Biological Evaluation of Novel Aldimine-Type Schiff Base Derivatives as Tubulin Polymerization Inhibitor. Chem. Biodivers. 2018, 15, e1700518. [Google Scholar] [CrossRef] [PubMed]
- Gavara, L.; Sevaille, L.; de Luca, F.; Mercuri, P.; Bebrone, C.; Feller, G.; Legru, A.; Cerboni, G.; Tanfoni, S.; Baud, D.; et al. 4-Amino-1,2,4-Triazole-3-Thione-Derived Schiff Bases as Metallo-β-Lactamase Inhibitors. Eur. J. Med. Chem. 2020, 208, 112720. [Google Scholar] [CrossRef]
- Sharma, P.S.R.T.R.S. Semi-Empirical Calculations on Paullones, a Promising Class of Cyclin-Dependent Kinase Inhibitors. Indian J. Biochem. Biophys. 2008, 45, 416–420. [Google Scholar]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1639, 19, 16391662. [Google Scholar] [CrossRef]
- Zhu, K.; Borrelli, K.W.; Greenwood, J.R.; Day, T.; Abel, R.; Farid, R.S.; Harder, E. Docking Covalent Inhibitors: A Parameter Free Approach to Pose Prediction and Scoring. J. Chem. Inf. Model. 2014, 54, 1932–1940. [Google Scholar] [CrossRef]
- Santos-Martins, D.; Forli, S.; Ramos, M.J.; Olson, A.J. AutoDock4Zn: An Improved AutoDock Force Field for Small-Molecule Docking to Zinc Metalloproteins. J. Chem. Inf. Model. 2014, 54, 2371–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
Compounds | Staphylococcus aureus ATCC 6538 | Staphylococcus epidermidis ATCC 12228 | Micrococcus luteus ATCC 10240 | Bacillus subtilis ATCC 6633 | Escherichia coli ATCC 25922 | Klebsiella pneumoniae ATCC 13883 | Pseudomonas aeruginosa ATCC 27853 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
RO1 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO3 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO4 | 500 | >1000 | 500 | >1000 | 125 | >1000 | 1000 | nd * | 1000 | nd * | 1000 | nd * | >1000 | >1000 |
RO6 | 1000 | nd * | 1000 | nd * | 250 | >1000 | 1000 | nd * | 1000 | nd * | 1000 | nd * | 1000 | nd * |
RO7 | 500 | >1000 | 500 | >1000 | 250 | >1000 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO8 | 250 | >1000 | 250 | >1000 | 125 | >1000 | 1000 | nd * | 1000 | nd * | >1000 | nd * | >1000 | nd * |
RO9 | 125 | >1000 | 250 | >1000 | 125 | >1000 | 500 | >1000 | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO10 | 125 | >1000 | 1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO11 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO12 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
Compounds | Candida albicans ATCC 10231 | Candida glabrata ATCC 90030 | Candida glabrata ATCC 15126 | Candida krusei ATCC 14243 | Candida auris CDC B11903 | Candida lusitaniae ATCC 3449 | Candida tropicalis ATCC 1369 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |
RO1 | 250 | >1000 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO3 | 500 | nd * | >1000 | nd * | 1000 | nd * | 1000 | nd * | 1000 | nd * | 1000 | nd * | 500 | nd * |
RO4 | 62.5 | >1000 | >1000 | nd * | 1000 | nd * | 500 | >1000 | 1000 | nd * | 1000 | nd * | 1000 | nd * |
RO6 | 1000 | nd * | >1000 | nd * | 1000 | nd * | 500 | >1000 | 500 | >1000 | >1000 | nd * | >1000 | nd * |
RO7 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO8 | 500 | >1000 | >1000 | nd * | 500 | >1000 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO9 | 1000 | >1000 | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * | >1000 | nd * |
RO10 | 500 | >1000 | 500 | >1000 | 500 | >1000 | >1000 | nd * | 1000 | nd * | >1000 | nd * | 500 | >1000 |
RO11 | 500 | 1000 | 500 | >1000 | >1000 | nd * | 1000 | nd * | 1000 | nd * | >1000 | nd * | 1000 | nd * |
RO12 | 125 | >1000 | 500 | >1000 | >1000 | nd * | 1000 | nd * | 500 | >1000 | 500 | >1000 | 500 | >1000 |
Compound | MDA-MB-231 d | PC3 e | HaCaT f | ||
---|---|---|---|---|---|
IC50 b | SI c | IC50 | SI | IC50 | |
RO1 | >100 µM/ 31.21 µg/mL | 1 | >100 µM/ 31.21 µg/mL | 1 | >100 µM/ 31.21 µg/mL |
RO3 | >100 µM/ 34.33 µg/mL | 1 | >100 µM/ 34.33 µg/mL | 1 | >100 µM/ 34.33 µg/mL |
RO4 | >100 µM/ 38.84 µg/mL | 1 | >100 µM/ 38.84 µg/mL | 1 | >100 µM/ 38.84 µg/mL |
RO6 | >100 µM/ 35.64 µg/mL | 1 | >100 µM/ 35.64 µg/mL | 1 | >100 µM/ 35.64 µg/mL |
RO7 | >100 µM/ 31.63 µg/mL | 1 | >100 µM/ 31.63 µg/mL | 1 | >100 µM/ 31.63 µg/mL |
RO8 | >100 µM/ 37.04 µg/mL | 1 | >100 µM/ 37.04 µg/mL | 1 | >100 µM/ 37.04 µg/mL |
RO9 | >100 µM/ 31.21 µg/mL | 1 | >100 µM/ 31.21 µg/mL | 1 | >100 µM/ 31.21 µg/mL |
RO10 | >100 µM/ 31.21 µg/mL | 1 | >100 µM/ 31.21 µg/mL | 1 | >100 µM/ 31.21 µg/mL |
RO11 | >100 µM/ 38.84 µg/mL | 1 | >100 µM/ 38.84 µg/mL | 1 | >100 µM/ 38.84 µg/mL |
RO12 | >100 µM/ 38.84 µg/mL | 0.98 | >100 µM/ 38.84 µg/mL | 0.98 | 98.08 µM ± 0.5/38.09 µg/mL |
Doxorubicin g | 0.83 µM ± 0.03 | 0.36 | 0.3 µM ± 0.1 | 1 | 0.3 µM ± 0.1 |
Cisplatin h | 3.95 µM ± 1.1 | 1.59 | 13.2 µM ± 2.1 | 0.47 | 6.3 µM ± 0.7 |
Compounds | Ti IV PDB 3LTN | Ddl PDB 1IOV | DR PDB 1M7A | MBL PBD 6YRP | |||
---|---|---|---|---|---|---|---|
Binding Energy | Inhibition Constants, µM | Binding Energy | Inhibition Constants, µM | Binding Energy | Inhibition Constants, µM | Binding Energy | |
RO1 | −8.32 | 0.792 | −8.41 | 0.688 | −8.82 | 0.339 | −7.23 |
RO3 | −7.45 | 3.49 | −6.77 | 10.81 | −6.15 | 30.81 | −7.29 |
RO4 | −8.45 | 0.639 | −8.24 | 0.907 | −9.35 | 0.139 | −6.89 |
RO6 | −8.03 | 1.30 | −7.99 | 1.39 | −8.02 | 1.31 | −7.18 |
RO7 | −8.24 | 0.905 | −8.13 | 1.09 | −7.52 | 3.05 | −7.19 |
RO8 | −8.68 | 0.436 | −8.71 | 0.412 | −7.75 | 2.09 | −7.07 |
RO9 | −9.25 | 0.165 | −9.16 | 0.192 | −7.74 | 2.11 | −7.31 |
RO10 | −8.99 | 0.258 | −8.47 | 0.621 | −7.71 | 2.23 | −7.38 |
RO11 | −8.46 | 0.629 | −8.80 | 0.357 | −8.97 | 0.266 | −7.33 |
RO12 | −8.62 | 0.483 | −8.38 | 0.721 | −9.00 | 0.254 | −7.12 |
PDQ 1 | −12.31 | 0.00094 | - | - | - | - | - |
POB 2 | - | - | −9.79 | 0.067 | - | - | - |
MQU 3 | - | - | - | - | 9.82 | 0.063 | - |
PJQ 4 | −7.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janowska, S.; Khylyuk, D.; Janowski, M.; Kosikowska, U.; Strzyga-Łach, P.; Struga, M.; Wujec, M. Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione. Molecules 2023, 28, 2718. https://doi.org/10.3390/molecules28062718
Janowska S, Khylyuk D, Janowski M, Kosikowska U, Strzyga-Łach P, Struga M, Wujec M. Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione. Molecules. 2023; 28(6):2718. https://doi.org/10.3390/molecules28062718
Chicago/Turabian StyleJanowska, Sara, Dmytro Khylyuk, Michał Janowski, Urszula Kosikowska, Paulina Strzyga-Łach, Marta Struga, and Monika Wujec. 2023. "Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione" Molecules 28, no. 6: 2718. https://doi.org/10.3390/molecules28062718
APA StyleJanowska, S., Khylyuk, D., Janowski, M., Kosikowska, U., Strzyga-Łach, P., Struga, M., & Wujec, M. (2023). Synthesis and Biological Evaluation of New Schiff Bases Derived from 4-Amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione. Molecules, 28(6), 2718. https://doi.org/10.3390/molecules28062718