Milk Thistle Oil Extracted by Enzyme-Mediated Assisted Solvent Extraction Compared with n-Hexane and Cold-Pressed Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Conditions for the Enzyme-Mediated Solvent Extraction
2.2. Comparison of Total Phenolic, Flavonoids, and α-Tocopherol Content of Milk Thistle Oil
2.3. Comparison of Antioxidant Activity of Milk Thistle Oil
2.4. Fatty Acid Composition of Milk Thistle Oil
2.5. Comparison of POV, TBARS, AV, and P-AnV of Milk Thistle Oil
3. Materials Procedures
3.1. Material and Reagents
3.2. Instruments and Equipment
4. Methods
4.1. Extraction by Enzyme-Mediated Solvent
4.2. Extraction with n-Hexane
4.3. The Content of Silymarin
4.4. Fatty Acids Composition
4.5. Determination of Total Phenolic Content
4.6. Determination of Flavonoids Content
4.7. Determination of α-Tocopherol
4.8. Antioxidant Activity Assays of Milk Thistle Seed Oil
4.8.1. DPPH Radical Scavenging Assay
4.8.2. ABTS Radical Scavenging Assay
4.8.3. Hydroxyl Radical Scavenging Ability
4.8.4. Total Antioxidant Capacity
4.9. Peroxide Value and Thiobarbituric Acid Reactants Measurement
4.10. Acid Value and P-Anisidine Value Measurement
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Harrabi, S.; Ferchichi, A.; Bacheli, A.; Fellah, H. Policosanol composition, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil at different seed maturity stages. Lipids Health Dis. 2018, 17, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermenean, A.; Stan, M.; Ardelean, A.; Pilat, L.; Mihali, C.V.; Popescu, C.; Nagy, L.; Deák, G.; Zsuga, M.; Kéki, S.; et al. Antioxidant and hepatoprotective activity of milk thistle (Silybum marianum L. Gaertn.) seed oil. Open Life Sci. 2014, 10. [Google Scholar] [CrossRef]
- Marszałkiewicz, S.; Siger, A.; Gawrysiak-Witulska, M.; Kmiecik, D.; Rudzińska, M. The effect of drying temperature of milk thistle seeds on quality and bioactive compounds in the lipid fraction. J. Food Sci. Technol. 2020, 57, 4003–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albassam, A.A.; Frye, R.F.; Markowitz, J.S. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes. Chem. Interact. 2017, 271, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Ben Rahal, N.; Barba, F.J.; Barth, D.; Chevalot, I. Supercritical CO2 extraction of oil, fatty acids and flavonolignans from milk thistle seeds: Evaluation of their antioxidant and cytotoxic activities in Caco-2 cells. Food Chem. Toxicol. 2015, 83, 275–282. [Google Scholar] [CrossRef]
- Fathi-Achachlouei, B.; Azadmard-Damirchi, S. Milk Thistle Seed Oil Constituents from Different Varieties Grown in Iran. J. Am. Oil Chem. Soc. 2009, 86, 643–649. [Google Scholar] [CrossRef]
- Lucini, L.; Kane, D.; Pellizzoni, M.; Ferrari, A.; Trevisi, E.; Ruzickova, G.; Arslan, D. Phenolic profile and in vitro antioxidant power of different milk thistle [Silybum marianum (L.) Gaertn.] cultivars. Ind. Crop. Prod. 2016, 83, 11–16. [Google Scholar] [CrossRef]
- Polyak, S.J.; Ferenci, P.; Pawlotsky, J.-M. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. Hepatology 2012, 57, 1262–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.-S.; Wang, S.; Liu, H.; Li, B.-Z.; Che, L. Constituents and thermal properties of milk thistle seed oils extracted with three methods. LWT 2020, 126, 109282. [Google Scholar] [CrossRef]
- Hadolin, M.; Škerget, M.; Knez, Z.; Bauman, D. High pressure extraction of vitamin E-rich oil from Silybum marianum. Food Chem. 2001, 74, 355–364. [Google Scholar] [CrossRef]
- Li, F.; Yang, L.; Zhao, T.; Zhao, J.; Zou, Y.; Zou, Y.; Wu, X. Optimization of enzymatic pretreatment for n-hexane extraction of oil from Silybum marianum seeds using response surface methodology. Food Bioprod. Process. 2011, 90, 87–94. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food Funct. 2014, 6, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Wu, X.; Zhao, T.; Li, F.; Zhao, J.; Yang, L. Extraction, Physicochemical, and Functional Properties of Proteins from Milk Thistle Silybum Marianum L. Gaernt Seeds. Int. J. Food Prop. 2013, 16, 1750–1763. [Google Scholar] [CrossRef]
- Fan, H.; Wang, J.; Meng, Q.; Jin, Z. Extraction optimization, preliminary characterization, and bioactivities of polysaccharides from Silybum marianum meal. J. Food Meas. Charact. 2019, 13, 1031–1039. [Google Scholar] [CrossRef]
- Arampatzis, D.A.; Karkanis, A.C.; Tsiropoulos, N.G. Silymarin content and antioxidant activity of seeds of wild Silybum marianum populations growing in Greece. Ann. Appl. Biol. 2018, 174, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Köksal, E.; Gülçin, I.; Beyza, S.; Sarikaya, O.; Bursal, E. In vitro antioxidant activity of silymarin. J. Enzym. Inhib. Med. Chem. 2009, 24, 395–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz, A.C.; Almeida, L.T.; Caetano, C.C.D.S.; Menegatto, M.B.D.S.; Lima, R.L.S.; de Senna, J.P.N.; Cardoso, J.M.D.O.; Perucci, L.O.; Talvani, A.; de Lima, W.G.; et al. Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antivir. Res. 2021, 194, 105168. [Google Scholar] [CrossRef]
- Sherikar, A.; Siddique, M.U.M.; More, M.; Goyal, S.N.; Milivojevic, M.; Alkahtani, S.; Alarifi, S.; Hasnain, S.; Nayak, A.K. Preparation and Evaluation of Silymarin-Loaded Solid Eutectic for Enhanced Anti-Inflammatory, Hepatoprotective Effect: In Vitro–In Vivo Prospect. Oxidative Med. Cell. Longev. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Viktorová, J.; Dobiasová, S.; Řehořová, K.; Biedermann, D.; Káňová, K.; Šeborová, K.; Václavíková, R.; Valentová, K.; Ruml, T.; Křen, V.; et al. Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives. Antioxidants 2019, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-H.; Huang, T.-S.; Wong, C.-H.; Hong, C.-L.; Tsai, Y.-H.; Liang, C.-C.; Lu, F.-J.; Chang, W.-H. Synergistic anti-cancer effect of baicalein and silymarin on human hepatoma HepG2 Cells. Food Chem. Toxicol. 2009, 47, 638–644. [Google Scholar] [CrossRef]
- Won, D.-H.; Kim, L.-H.; Jang, B.; Yang, I.-H.; Kwon, H.-J.; Jin, B.; Oh, S.H.; Kang, J.-H.; Hong, S.-D.; Shin, J.-A.; et al. In vitro and in vivo anti-cancer activity of silymarin on oral cancer. Tumor Biol. 2018, 40, 776170. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Wang, S.; Nan, J.; Li, S. The fatty acid compositions of Silybum marianum by GC-MS.J. Yanbian Univ. Sci. 1998, 24, 26–28. [Google Scholar]
- El-Mallah, M.H.; El-Shami, S.M.; Hassanein, M.M. Detailed studies on some lipids of Silybum marianum (L.) seed oil. Grasas y Aceites 2003, 54, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Fathi-Achachlouei, B.; Azadmard-Damirchi, S.; Zahedi, Y.; Shaddel, R. Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Ind. Crop. Prod. 2019, 128, 527–533. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, X.; Lan, Y.; Shi, J.; Xue, S.J.; Liu, C. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds. Sep. Purif. Technol. 2009, 70, 34–40. [Google Scholar] [CrossRef]
- Momenkiaei, F.; Raofie, F. Preparation of Silybum marianum seeds extract nanoparticles by supercritical solution expansion. J. Supercrit. Fluids 2018, 138, 46–55. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Y.; Shehzad, Q.; Liu, Z.; Zeng, R. Effect of Different Solvents on the Extraction of Oil from Peony Seeds (Paeonia suffruticosa Andr.): Oil Yield, Fatty Acids Composition, Minor Components, and Antioxidant Capacity. J. Oleo Sci. 2022, 71, 333–342. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Z.; Yin, F.; Li, D.; Liu, H.; Song, L.; Zhou, D. Comparison of different solvents for extraction of oils from by-products of shrimps Penaeus vannamei and Procambarus clarkia. J. Food Process. Preserv. 2021, 45, e15754. [Google Scholar] [CrossRef]
- Kurmudle, N.; Kagliwal, L.D.; Bankar, S.B.; Singhal, R.S. Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Biosci. 2013, 3, 36–41. [Google Scholar] [CrossRef]
- Lu, X.; Du, H.; Liu, Y.; Wang, Y.; Li, D.; Wang, L. Effect of Ultrasound-Assisted Solvent Enzymatic Extraction on Fatty Acid Profiles, Physicochemical Properties, Bioactive Compounds, and Antioxidant Activity of Elaeagnus mollis Oil. Foods 2022, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Wei, S.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Secondary structure of proteins on oil release in aqueous enzymatic extraction of rapeseed oil as affected hydrolysis state. Int. J. Food Prop. 2018, 21, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, F.; Rong, Y.; Yuan, Y.; Ding, Y.; Shi, W.; Wang, Z. Effects of different proteases enzymatic extraction on the lipid yield and quality of Antarctic krill oil. Food Sci. Nutr. 2019, 7, 2224–2230. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Liu, R.; Jin, Q.; Wang, X. Comparison of solvents for extraction of walnut oils: Lipid yield, lipid compositions, minor-component content, and antioxidant capacity. LWT 2019, 110, 346–352. [Google Scholar] [CrossRef]
- Guan, X.; Jin, S.; Li, S.; Huang, K.; Liu, J. Process Optimization, Characterization and Antioxidant Capacity of Oat (Avena sativa L.) Bran Oil Extracted by Subcritical Butane Extraction. Molecules 2018, 23, 1546. [Google Scholar] [CrossRef] [Green Version]
- Malićanin, M.; Rac, V.; Antic, V.; Antić, M.; Palade, L.M.; Kefalas, P.; Rakić, V. Content of Antioxidants, Antioxidant Capacity and Oxidative Stability of Grape Seed Oil Obtained by Ultra Sound Assisted Extraction. J. Am. Oil Chem. Soc. 2014, 91, 989–999. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, S.; Gan, J.; Li, Z.; Nirasawa, S.; Yin, L. New insights into the antioxidant activity and components in crude oat oil and soybean oil. J. Food Sci. Technol. 2015, 53, 808–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.; Chen, D.; Chen, X.; Jia, S. Refining process quality comparison of Chinese giant salamander oils acted by aqueous enzymatic method and hot melt method. Chin. Oils Fats 2018, 43, 26–30. [Google Scholar]
- Çelik, H.T.; Gürü, M. Extraction of oil and silybin compounds from milk thistle seeds using supercritical carbon dioxide. J. Supercrit. Fluids 2015, 100, 105–109. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in Major Antioxidants and Total Antioxidant Activity of Yuzu (Citrus junos Sieb ex Tanaka) during Maturation and between Cultivars. J. Agric. Food Chem. 2004, 52, 5907–5913. [Google Scholar] [CrossRef]
- Berker, K.I.; Olgun, F.A.O.; Ozyurt, D.; Demirata, B.; Apak, R. Modified Folin–Ciocalteu Antioxidant Capacity Assay for Measuring Lipophilic Antioxidants. J. Agric. Food Chem. 2013, 61, 4783–4791. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Uluata, S.; Özdemir, N. Antioxidant Activities and Oxidative Stabilities of Some Unconventional Oilseeds. J. Am. Oil Chem. Soc. 2011, 89, 551–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhu, F.; Zeng, Z. Effects of different extraction methods on antioxidant properties of blueberry anthocyanins. Open Chem. 2021, 19, 138–148. [Google Scholar] [CrossRef]
- Ozkan, G.; Şimşek, B.; Kuleasan, H. Antioxidant activities of Satureja cilicica essential oil in butter and in vitro. J. Food Eng. 2007, 79, 1391–1396. [Google Scholar] [CrossRef]
- AOCS. Peroxide Value Acetic Acid-Isooctane Method. Official Methods and Recommended Practices of the American Oil Chemists Society; Cd 8b-90; AOCS Press: Urbana, IL, USA, 2017. [Google Scholar]
- AOCS. 2-Thiobarbituric Acid Value Direct Method. Official Methods and Recommended Practices of the American Oil Chemists Society; Cd 19-90; AOCS Press: Urbana, IL, USA, 2017. [Google Scholar]
- AOCS. Acid Value. Official Methods and Recommended Practices of the American Oil Chemists Society; Cd 3d-63; AOCS Press: Urbana, IL, USA, 2017. [Google Scholar]
- European Directorate for the Quality of Medicines & Health Care. European Pharmacopoeia, 8th ed.; Ph. Eur. 8.0; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2013. [Google Scholar]
Number | A (mg/mL) | B (°C) | C (min) | Y (mg/100 mg Oil) |
---|---|---|---|---|
1 | 2 | 50 | 60 | 0.5873 |
2 | 4 | 50 | 60 | 1.2027 |
3 | 2 | 60 | 60 | 0.5533 |
4 | 4 | 60 | 60 | 0.5733 |
5 | 2 | 55 | 40 | 0.7760 |
6 | 4 | 55 | 40 | 0.6033 |
7 | 2 | 55 | 80 | 1.2633 |
8 | 4 | 55 | 80 | 1.1147 |
9 | 3 | 50 | 40 | 0.7667 |
10 | 3 | 60 | 40 | 0.2500 |
11 | 3 | 50 | 80 | 0.5413 |
12 | 3 | 60 | 80 | 1.2133 |
13 | 3 | 55 | 60 | 1.4460 |
14 | 3 | 55 | 60 | 1.7393 |
15 | 3 | 55 | 60 | 1.6373 |
16 | 3 | 55 | 60 | 1.6180 |
17 | 3 | 55 | 60 | 1.6193 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Model | 3.41 | 9 | 0.38 | 10.55 | 0.0026 ** |
A | 0.012 | 1 | 0.012 | 0.34 | 0.5762 |
B | 0.032 | 1 | 0.032 | 0.90 | 0.3746 |
C | 0.38 | 1 | 0.38 | 10.51 | 0.0142 |
AB | 0.089 | 1 | 0.089 | 2.47 | 0.1601 |
AC | 1.440 × 104 | 1 | 1.440 × 104 | 4.013 × 103 | 0.9513 |
BC | 0.35 | 1 | 0.35 | 9.84 | 0.0164 * |
A2 | 0.43 | 1 | 0.43 | 11.88 | 0.0107 * |
B2 | 1.34 | 1 | 1.34 | 37.41 | 0.0005 ** |
C2 | 0.53 | 1 | 0.53 | 14.75 | 0.0064 ** |
Residual | 0.25 | 7 | 0.036 | ||
Lack of Fit | 0.21 | 3 | 0.069 | 6.19 | 0.0553 |
Pure Error | 0.045 | 4 | 0.011 | ||
Cor Total | 3.66 | 16 |
Fatty Acids | Enzyme-Mediated Solvent Extraction | Hexane Extraction | Cold Press |
---|---|---|---|
C14:0 | 0.12 ± 0.01 a | 0.12 ± 0.02 a | 0.09 ± 0.01 b |
C16:0 | 8.88 ± 0.03 a | 8.85 ± 0.02 a | 7.55 ± 0.94 b |
C16:1n7 | 0.09 ± 0.00 a | 0.07 ± 0.01 b | 0.06 ± 0.01 b |
C17:0 | 0.08 ± 0.01 a | 0.07 ± 0.00 a | 0.07 ± 0.01 a |
C18:0 | 4.08 ± 0.01 b | 4.34 ± 0.03 b | 5.14 ± 0.55 a |
C18:1n9c | 16.80 ± 0.01 a | 17.07 ± 0.02 a | 22.72 ± 2.81 a |
C18:2n6C | 64.22 ± 0.04 a | 63.21 ± 0.04 a | 50.51 ± 6.25 b |
C20:0 | 2.13 ± 0.03 b | 2.32 ± 0.02 b | 3.32 ± 0.05 a |
C20:1 | 0.96 ± 0.02 a | 1.03 ± 0.02 a | 1.04 ± 0.13 a |
C18:3n3 | 0.36 ± 0.00 a | 0.38 ± 0.01 a | 0.22 ± 0.03 b |
C22:0 | 1.79 ± 0.03 b | 2.01 ± 0.02 a | 2.23 ± 0.27 a |
C24:0 | 0.50 ± 0.01 b | 0.53 ± 0.00 b | 0.72 ± 0.08 a |
SFA | 17.58 ± 0.12 a | 18.24 ± 0.11 a | 19.12 ± 1.91 a |
MUFA | 17.85 ± 0.04 b | 18.17 ± 0.05 b | 23.82 ± 2.9 a |
PUFA | 64.58 ± 0.04 a | 63.59 ± 0.05 a | 50.72 ± 6.28 a |
Indicators | Enzyme-Mediated Assisted Solvent | Hexane Extraction | Cold Press |
---|---|---|---|
AV (mg/g) | 2.20 ± 0.01 a | 2.23 ± 0.11 a | 1.03 ± 0.03 b |
POV (mmol/kg) | 0.24 ± 0.00 b | 0.24 ± 0.00 b | 0.82 ± 0.10 a |
TBARS (mg/kg) | 0.21 ± 0.02 b | 0.37 ± 0.03 a | 0.24 ± 0.01 b |
p-AnV | 26.28 ± 0.43 c | 36.76 ± 0.28 b | 44.00 ± 0.32 a |
Factors | Coded Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Enzyme-added content (mg/mL) | 2 | 3 | 4 |
Enzymatic hydrolysis temperature (°C) | 50 | 55 | 60 |
Enzymatic hydrolysis time (min) | 40 | 60 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, H. Milk Thistle Oil Extracted by Enzyme-Mediated Assisted Solvent Extraction Compared with n-Hexane and Cold-Pressed Extraction. Molecules 2023, 28, 2591. https://doi.org/10.3390/molecules28062591
Liu L, Zhang H. Milk Thistle Oil Extracted by Enzyme-Mediated Assisted Solvent Extraction Compared with n-Hexane and Cold-Pressed Extraction. Molecules. 2023; 28(6):2591. https://doi.org/10.3390/molecules28062591
Chicago/Turabian StyleLiu, Longlong, and Hua Zhang. 2023. "Milk Thistle Oil Extracted by Enzyme-Mediated Assisted Solvent Extraction Compared with n-Hexane and Cold-Pressed Extraction" Molecules 28, no. 6: 2591. https://doi.org/10.3390/molecules28062591
APA StyleLiu, L., & Zhang, H. (2023). Milk Thistle Oil Extracted by Enzyme-Mediated Assisted Solvent Extraction Compared with n-Hexane and Cold-Pressed Extraction. Molecules, 28(6), 2591. https://doi.org/10.3390/molecules28062591