Polyene Carboxylic Acids from a Streptomyces sp. Isolated from Tibet Soil
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Strain and Fermentation
3.3. Extraction and Isolation
3.3.1. Serpentemycin E (1)
3.3.2. Serpentemycin F (2)
3.3.3. Serpentemycin G (3)
3.3.4. Serpentemycin H (4)
3.3.5. Serpentemycin I (5)
3.3.6. Serpentemycin J (6)
3.4. Computational NMR Chemical Shift Calculations for DP4 Analysis
3.5. MTT Assay
3.6. NO Determination Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Choi, S.S.; Kim, H.J.; Lee, H.S.; Kim, P.; Kim, E.S. Genome mining of rare actinomycetes and cryptic pathway awakening. Process Biochem. 2015, 50, 1184–1193. [Google Scholar] [CrossRef]
- Demain, A.L. Importance of microbial natural products and the need to revitalize their discovery. J. Ind. Microbiol. Biotechnol. 2014, 41, 185–201. [Google Scholar] [CrossRef]
- Zhang, H.W.; Bai, X.L.; Zhang, M.; Chen, J.; Wang, H. Bioactive natural products from endophytic microbes. Nat. Prod. J. 2018, 8, 86–108. [Google Scholar] [CrossRef]
- Jose, P.A.; Maharshi, A.; Jha, B. Actinobacteria in natural products research: Progress and prospects. Microbiol. Res. 2021, 246, 14. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.P.; Clement, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, M.S.M.; Abdelhamid, S.A.; Mohamed, S.S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 2021, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Mincer, T.J.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl. Environ. Microbiol. 2002, 68, 5005–5011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dror, B.; Jurkevitch, E.; Cytryn, E. State-of-the-art methodologies to identify antimicrobial secondary metabolites in soil bacterial communities-A review. Soil Biol. Biochem. 2020, 147, 9. [Google Scholar] [CrossRef]
- Ossai, J.; Khatabi, B.; Nybo, S.E.; Kharel, M.K. Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. J. Appl. Microbiol. 2022, 132, 59–77. [Google Scholar] [CrossRef]
- Karuppiah, P.; Mustaffa, M. Antibacterial and antioxidant activities of Musa sp leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pac. J. Trop. Biomed. 2013, 3, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Al-Ansari, M.; Kalaiyarasi, M.; Almalki, M.A.; Vijayaraghavan, P. Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. J. King Saud Univ. Sci. 2020, 32, 1993–1998. [Google Scholar] [CrossRef]
- Yang, C.F.; Qian, R.; Xu, Y.; Yi, J.X.; Gu, Y.W.; Liu, X.Y.; Yu, H.B.; Jiao, B.H.; Lu, X.L.; Zhang, W. Marine actinomycetes-derived natural products. Curr. Top. Med. Chem. 2019, 19, 2868–2918. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.P.; Yang, Y.L.; Zhang, J.P.; Xu, Y.; Lu, X.L. The natural products and extracts: Anti-triple-negative breast cancer in vitro. Chem. Biodivers. 2021, 18, 18. [Google Scholar] [CrossRef]
- Peng, A.H.; Qu, X.Y.; Liu, F.Y.; Li, X.; Li, E.W.; Xie, W.D. Angucycline glycosides from an intertidal sediments strain Streptomyces sp. and their cytotoxic activity against hepatoma carcinoma cells. Mar. Drugs 2018, 16, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, S.C.; Bode, H.B. Novel polyene carboxylic acids from Streptomyces. J. Nat. Prod. 2004, 67, 1631–1633. [Google Scholar] [CrossRef] [PubMed]
- Ohlendorf, B.; Schulz, D.; Beese, P.; Erhard, A.; Schmaljohann, R.; Imhoff, J.F. Diacidene, a polyene dicarboxylic acid from a micromonospora isolate from the german wadden sea. Z. Fur Nat. Sect. C-A J. Biosci. 2012, 67, 445–450. [Google Scholar]
- Mehnaz, S.; Saleem, R.S.Z.; Yameen, B.; Pianet, I.; Schnakenburg, G.; Pietraszkiewicz, H.; Valeriote, F.; Josten, M.; Sahl, H.G.; Franzblau, S.G.; et al. Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain pseudomonas aurantiaca PB-St2. J. Nat. Prod. 2013, 76, 135–141. [Google Scholar] [CrossRef]
- Wink, J.K.M.; Vertesy, L. Polyene carboxylic acid derivatives, method for their production and the use thereof. Patent WO2004005236A1a, 18 June 2004. [Google Scholar]
- Sanchez, L.G.; Castillo, E.N.; Maldonado, H.; Chavez, D.; Somanathan, R.; Aguirre, G. Stereoselective synthesis of rubrenoic and nor-rubrenoic acids. Synth. Commun. 2008, 38, 54–71. [Google Scholar] [CrossRef]
- Liu, D.; Yang, A.G.; Wu, C.M.; Guo, P.; Proksch, P.; Lin, W.H. Lipid-lowering effects of farnesylquinone and related analogues from the marine-derived Streptomyces nitrosporeus. Bioorganic. Med. Chem. Lett. 2014, 24, 5288–5293. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.R.; Liu, J.; Li, T.; Li, H.Y.; Liu, Z.Z.; Dong, Y.J.; Li, W.L. An unusual type II polyketide synthase system involved in cinnamoyl lipid biosynthesis. Angew. Chem. Int. Ed. 2021, 60, 153–158. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, J.; Deng, Z.R.; Li, T.; Liu, Z.Z.; Che, Q.; Li, W.L. Genetic manipulation of an aminotransferase family gene dtlA activates youssoufenes in marine-derived Streptomyces youssoufiensis. Org. Lett. 2020, 22, 7773. [Google Scholar] [CrossRef]
- Shi, J.; Shi, Y.; Li, J.C.; Wei, W.Q.; Chen, Y.; Cheng, P.; Li Liu, C.; Zhang, H.; Wu, R.; Zhang, B.; et al. In vitro reconstitution of cinnamoyl moiety reveals two distinct cyclases for benzene ring formation. J. Am. Chem. Soc. 2022, 144, 7939–7948. [Google Scholar] [CrossRef] [PubMed]
- Grammbitter, G.L.C.; Schmalhofer, M.; Karimi, K.; Shi, Y.M.; Schoner, T.A.; Tobias, N.J.; Morgner, N.; Groll, M.; Bode, H.B. An uncommon type II PKS catalyzes biosynthesis of aryl polyene pigments. J. Am. Chem. Soc. 2019, 141, 16615–16623. [Google Scholar] [CrossRef] [PubMed]
- Ritzau, M.; Drautz, H.; Zahner, H.; Zeeck, A. Serpentene, a novel polyene carboxylic acid from Streptomyces Liebigs. Ann. Der Chem. 1993, 1993, 433–435. [Google Scholar]
- Shen, T.; Qian, H.; Wang, Y.D.; Li, H.B.; Xie, W.D. Terpenoids from the roots of Leontopodium longifoliumand their inhibitory activity on NO production in RAW264.7 cells. Nat. Prod. Res. 2020, 34, 2323–2327. [Google Scholar] [CrossRef]
- Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal. 2001, 13, 85–94. [Google Scholar] [CrossRef]
- Shin, M.S.; Park, J.Y.; Lee, J.; Yoo, H.H.; Hahm, D.H.; Lee, S.C.; Lee, S.; Hwang, G.S.; Jung, K.; Kang, K.S. Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim. Bioorganic. Med. Chem. Lett. 2017, 27, 3076–3080. [Google Scholar] [CrossRef]
- Zhao, J.H.; Shen, T.; Yang, X.; Zhao, H.; Li, X.; Xie, W.D. Sesquiterpenoids from Farfugium japonicum and their inhibitory activity on NO production in RAW264.7 cells. Arch. Pharmacal. Res. 2012, 35, 1153–1158. [Google Scholar] [CrossRef]
- Frisch, M.J.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision, B.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef]
- Qu, X.Y.; Ren, J.W.; Peng, A.H.; Lin, S.Q.; Lu, D.D.; Du, Q.Q.; Liu, L.; Li, X.; Li, E.W.; Xie, W.D. Cytotoxic, anti-migration, and anti-invasion activities on breast cancer cells of angucycline glycosides isolated from a Marine-Derived Streptomyces sp. Mar. Drugs 2019, 17, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, G.M.; Xue, J.F.; Zhao, C.G.; Zhao, Z.Z.; Sun, Y.J.; Du, K.; Li, H.W.; Feng, W.S. Sesquiterpenoids from Artemisia argyi and their NO production inhibitory activity in RAW264.7 cells. Nat. Prod. Res. 2021, 35, 2887–2894. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Nam, B.; Paudel, S.B.; Nam, J.W.; Han, A.R.; Jeong, H.G.; Jin, C.H. 9-Hydroxy-isoegomaketone inhibits LPS-induced NO and inflammatory cytokine production in RAW264.7 cells. Mol. Med. Rep. 2021, 23, 9. [Google Scholar] [CrossRef] [PubMed]
Position | 1a | 2 | 3 | |||
---|---|---|---|---|---|---|
δC a | δH b (J in Hz) | δC a | δH b (J in Hz) | δC a | δH b (J in Hz) | |
1 | 168.7 C | 167.6 C | 167.6 C | |||
2 | 124.4 CH | 6.05 (d, 15.3) | 122.9 CH | 6.04 (d, 15.2) | 122.7 CH | 6.02 (d, 15.5) |
3 | 145.5 CH | 7.49 (dd, 15.3, 11.0) | 144.4 CH | 7.45 (dd, 15.2, 11.0) | 144.2 CH | 7.34 (m) |
4 | 131.2 CH | 7.02 (dd, 15.3, 11.0) | 128.9 CH | 7.04 (dd, 15.2, 11.0) | 127.8 CH | 7.03 (dd, 15.5, 11.2) |
5 | 137.4 CH | 7.47 (d, 15.3) | 136.3 CH | 7.57 (d, 15.2) | 137.2 CH | 7.14 (d, 15.5) |
6 | 136.9 C | 134.5 C | 134.2 C | |||
7 | 128.0 CH | 7.69 (m) | 126.4 CH | 7.71 (m) | 125.8 CH | 7.71 (m) |
8 | 131.4 CH | 7.43 (m) | 129.0 CH | 7.35 (m) | 127.5 CH | 7.31 (m) |
9 | 130.3 CH | 7.37 (m) | 128.5 CH | 7.32 (m) | ||
10 | 128.7 CH | 7.74 (m) | 130.1 CH | 7.23 (m) | ||
11 | 134.1 C | 136.4 C | ||||
12 | 141.8 CH | 7.95 (d, 15.3) | 126.4 CH | 6.53 (d, 11.2) | ||
13 | 123.2 CH | 6.43 (d, 15.3) | 131.1 CH | 6.35 (dd, 11.2, 11.2) | ||
14 | 168.6 C | 136.0 CH | 6.22 (dd, 15.5, 11.2) | |||
15 | 126.1 CH | 5.92 (m) | ||||
16 | 27.6 CH2 | 2.26 (m) | ||||
17 | 33.1 CH2 | 2.27 (m) | ||||
18 | 173.7 C |
Position | 4 | 5 | 6 | |||
---|---|---|---|---|---|---|
δC a | δH b (J in Hz) | δC a | δH b (J in Hz) | δC a | δH b (J in Hz) | |
1 | 168.4 C | 167.6 C | 167.6 C | |||
2 | 123.0 CH | 6.05 (d, 15.2) | 122.4 CH | 6.03 (d, 15.3) | 122.4 CH | 6.03 (d, 15.3) |
3 | 144.3 CH | 7.32 (dd, 15.2, 11.0) | 144.6 CH | 7.45 (dd, 15.3, 11.0) | 144.6 CH | 7.45 (dd, 15.3, 11.0) |
4 | 128.6 CH | 7.02 (dd, 15.6, 11.0) | 128.4 CH | 7.00 (dd, 15.3, 11.0) | 128.4 CH | 7.00 (dd, 15.3, 11.0) |
5 | 138.2 CH | 7.69 (d, 15.6) | 136.9 CH | 7.49 (d, 15.3) | 136.9 CH | 7.49 (d, 15.3) |
6 | 136.4 C | 133.7 C | 133.7 C | |||
7 | 126.9 CH | 7.77 (m) | 126.3 CH | 7.29 (m) | 126.3 CH | 7.29 (m) |
8 | 130.6 CH | 7.56 (m) | 127.7 CH | 7.63 (m) | 127.7 CH | 7.63 (m) |
9 | 131.8 CH | 7.42 (m) | 128.9 CH | 7.63 (m) | 129.0 CH | 7.63 (m) |
10 | 130.3 CH | 7.83 (m) | 125.8 CH | 7.29 (m) | 125.8 CH | 7.29 (m) |
11 | 128.6 C | 135.7 C | 135.7 C | |||
12 | 167.5 C | 128.9 CH | 7.09 (d, 15.3) | 129.0 CH | 7.09 (d, 15.3) | |
13 | 131.6 CH | 6.89 (dd, 15.3, 9.7) | 131.6 CH | 6.89 (dd, 15.3, 9.7) | ||
14 | 133.4 CH | 6.53 (dd, 10.1, 9.7) | 133.4 CH | 6.53 (dd, 15.3, 9.7) | ||
15 | 133.3 CH | 6.48 (dd, 10.1, 9.7) | 133.3 CH | 6.48 (dd, 15.3, 9.7) | ||
16 | 133.2 CH | 6.34 (dd, 15.3, 9.7) | 133.3 CH | 6.34 (dd, 15.3, 9.7) | ||
17 | 132.6 CH | 5.67 (dd, 15.3, 7.6) | 132.0 CH | 5.67 (dd, 15.3, 7.7) | ||
18 | 86.2 CH | 3.48 (m) | 86.1 CH | 3.49 (m) | ||
19 | 68.3 CH | 3.62 (m) | 68.0 CH | 3.63 (m) | ||
20 | 19.3 CH3 | 1.02 (d, 6.4) | 18.7 CH3 | 0.97 (d, 6.4) | ||
21 | 56.1 MeO | 3.20 (s) | 56.2 MeO | 3.20 (s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ren, J.; Luo, Y.; Xie, W.; Li, E. Polyene Carboxylic Acids from a Streptomyces sp. Isolated from Tibet Soil. Molecules 2023, 28, 2579. https://doi.org/10.3390/molecules28062579
Zhang M, Ren J, Luo Y, Xie W, Li E. Polyene Carboxylic Acids from a Streptomyces sp. Isolated from Tibet Soil. Molecules. 2023; 28(6):2579. https://doi.org/10.3390/molecules28062579
Chicago/Turabian StyleZhang, Manyu, Jinwei Ren, Yuanming Luo, Weidong Xie, and Erwei Li. 2023. "Polyene Carboxylic Acids from a Streptomyces sp. Isolated from Tibet Soil" Molecules 28, no. 6: 2579. https://doi.org/10.3390/molecules28062579
APA StyleZhang, M., Ren, J., Luo, Y., Xie, W., & Li, E. (2023). Polyene Carboxylic Acids from a Streptomyces sp. Isolated from Tibet Soil. Molecules, 28(6), 2579. https://doi.org/10.3390/molecules28062579