Ultrasound-Assisted Extraction of Protein from Moringa oleifera Seeds and Its Impact on Techno-Functional Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Ultrasonic-Assisted Extraction (UAE) of Protein
2.1.1. Fitting the Proposed Model
2.1.2. Single-Factor Analysis for Protein Yield
2.1.3. Effect of Mutual Interactions on Protein Yield
2.1.4. Optimization and Validation
2.2. Functional Properties of MOSP
2.2.1. Solubility
2.2.2. Water (WHC)- and Oil-Holding Capacity (OHC)
2.2.3. Emulsion Capacity and Emulsion Stability
2.2.4. Foaming Capacity and Foaming Stability
2.3. Structural Study of MOSP
2.3.1. FT-IR Analysis
2.3.2. Intrinsic Fluorescence Patterns
3. Material and Methods
3.1. Raw Materials and Chemicals
3.2. Ultrasonic-Assisted Extraction (UAE) of Seed Protein
3.3. Protein Quantification by Bradford Method
3.4. Isolation of Seed Protein
3.5. Functional Properties of M. oleifera Seed Protein (MOSP)
3.5.1. Solubility
3.5.2. Water- and Oil-holding Capacity
3.5.3. Emulsion Capacity and Emulsion Stability
3.5.4. Foaming Capacity and Stability
3.6. Fourier-Transform Infrared (FT-IR) Spectroscopy
3.7. Fluorescence Spectroscopy
3.8. Experimental Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kristo, E.; Corredig, M. Functional properties of food proteins. In Applied Food Protein Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 47–73. [Google Scholar]
- Mune, M.A.M.; Bassogog, C.B.B.; Nyobe, E.C.; Minka, S.R.R. Physicochemical and functional properties of moringa oleifera seed and leaf flour. Cogent Food Agric. 2016, 2, 1220352. [Google Scholar] [CrossRef]
- Sujatha, B.; Patel, P. Moringa oleifera–nature’s gold. Imp. J. Interdiscip. Res. 2017, 3, 1175–1179. [Google Scholar]
- Abbas, R.; Elsharbasy, F.; Fadlelmula, A. Nutritional values of moringa oleifera, total protein, Amino Acid Vitamins Minerals, Carbohydrates, Total Fat and Crude Fiber, under the Semi-Arid Conditions of Sudan. J. Microb. Biochem. Technol. 2018, 10, 56–58. [Google Scholar]
- Chumark, P.; Khunawat, P.; Sanvarinda, Y.; Phornchirasilp, S.; Morales, N.P.; Phivthong-ngam, L.; Ratanachamnong, P.; Srisawat, S.; Pongrapeeporn, K.-u.S. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of moringa oleifera lam. Leaves. J. Ethnopharmacol. 2008, 116, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Jahan, S.; Shahjahan, M.; Rasna, S.S.; Aktar, M.; Sultana, S.; Ahmed, S.M.; Sabrin, F.; Nahar, S. Antibacterial effect of moringa (moringa oleifera) leaf ethanolic extract against staphylococcus aureus and escherichia coli. Mymensingh Med. J. 2022, 31, 976–982. [Google Scholar] [PubMed]
- Saleem, A.; Saleem, M.; Akhtar, M.F. Antioxidant, anti-inflammatory and antiarthritic potential of moringa oleifera lam: An ethnomedicinal plant of moringaceae family. S. Afr. J. Bot. 2020, 128, 246–256. [Google Scholar] [CrossRef]
- Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS ONE 2015, 10, e0135814. [Google Scholar] [CrossRef]
- Buddin, M.; Rithuan, M.A.; Surni, M.; Jamal, N.M.; Faiznur, M. Ultrasonic assisted extraction (uae) of moringa oleifera seed oil: Kinetic study. ASM Sci. J. 2018, 11, 158–166. [Google Scholar]
- El-Hack, A.; Mohamed, E.; Alagawany, M.; Elrys, A.S.; Desoky, E.-S.M.; Tolba, H.; Elnahal, A.S.; Elnesr, S.S.; Swelum, A.A. Effect of forage moringa oleifera l.(moringa) on animal health and nutrition and its beneficial applications in soil, plants and water purification. Agriculture 2018, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, X.-Y.; Liu, L.-N.; Xie, Y.-P.; Ke, Y.-J.; Cai, Z.-J.; Wu, G.-J. Ultrasonic-assisted extraction and functional properties of wampee seed protein. Food Sci. Technol. 2019, 39, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Phongthai, S.; Lim, S.T.; Rawdkuen, S. Ultrasonic-assisted extraction of rice bran protein using response surface methodology. J. Food Biochem. 2017, 41, e12314. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Liu, Z.D.; Guo, B.H.; Su, M.Y.; Wang, Y.Y. Effect of ultrasonic treatment on the functional properties of whey protein isolates. Adv. Mater. Res. 2012, 443, 660–665. [Google Scholar] [CrossRef]
- Aguilar-Acosta, L.A.; Serna-Saldivar, S.O.; Rodríguez-Rodríguez, J.; Escalante-Aburto, A.; Chuck-Hernández, C. Effect of ultrasound application on protein yield and fate of alkaloids during lupin alkaline extraction process. Biomolecules 2020, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Elhag, H.E.E.A.; Naila, A.; Nour, A.H.; Ajit, A.; Sulaiman, A.Z.; Abd Aziz, B. Optimization of protein yields by ultrasound assisted extraction from eurycoma longifolia roots and effect of agitation speed. J. King Saud Univ. -Sci. 2019, 31, 913–930. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, C.; Feng, Y.; Zhang, J.; He, Y.; Duan, Y.; Zhang, H.; Ma, H. Effects of ultrasound-assisted extraction on the structural, functional and antioxidant properties of dolichos lablab l. Protein. Process Biochem. 2021, 101, 274–284. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Xu, L.; Ma, H. An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT 2020, 127, 109348. [Google Scholar] [CrossRef]
- Gadalkar, S.M.; Rathod, V.K. Extraction of watermelon seed proteins with enhanced functional properties using ultrasound. Prep. Biochem. Biotechnol. 2020, 50, 133–140. [Google Scholar] [CrossRef]
- Dabbour, M.; He, R.; Ma, H.; Musa, A. Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. J. Food Process Eng. 2018, 41, e12799. [Google Scholar] [CrossRef]
- Ly, H.L.; Tran, T.M.C.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Application of ultrasound to protein extraction from defatted rice bran. Int. Food Res. J. 2018, 25, 695–701. [Google Scholar]
- Yucetepe, A.; Saroglu, O.; Bildik, F.; Ozcelik, B.; Daskaya-Dikmen, C. Optimisation of ultrasound-assisted extraction of protein from spirulina platensis using rsm. Czech J. Food Sci. 2018, 36, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Kramer, R.M.; Shende, V.R.; Motl, N.; Pace, C.N.; Scholtz, J.M. Toward a molecular understanding of protein solubility: Increased negative surface charge correlates with increased solubility. BpJ 2012, 102, 1907–1915. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.-Q.; Du, Q.-H.; Fu, Z. Ultrasonic treatment on physicochemical properties of water-soluble protein from moringa oleifera seed. Ultrason. Sonochemistry 2021, 71, 105357. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Mason, T.J.; Lelas, V.; Herceg, Z.; Herceg, I.L. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J. Food Eng. 2008, 86, 281–287. [Google Scholar] [CrossRef]
- Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.M.; Almajwal, A.; Abulmeaty, M.M.; Feng, H. Modifying the physicochemical properties of pea protein by ph-shifting and ultrasound combined treatments. Ultrason. Sonochemistry 2017, 38, 835–842. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, T.; Niu, S.; Cao, F.; Wu-Chen, R.A.; Luo, L.; Ma, H. Impact of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrason. Sonochemistry 2018, 42, 704–713. [Google Scholar] [CrossRef]
- Malik, M.A.; Sharma, H.K.; Saini, C.S. High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrason. Sonochemistry 2017, 39, 511–519. [Google Scholar] [CrossRef]
- Zhao, C.-B.; Zhou, L.-Y.; Liu, J.-Y.; Zhang, Y.; Chen, Y.; Wu, F. Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar maillard reaction products. J. Food Sci. Technol. 2016, 53, 2342–2351. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Li, P.; Zhang, K.; Wang, L.; Zhang, M.; Sun, Z.; Sun, C.; Geng, Z.; Xu, W.; Wang, D. Effects of ultrasound-assisted alkaline extraction on the physiochemical and functional characteristics of chicken liver protein isolate. Poult. Sci. 2017, 96, 2975–2985. [Google Scholar] [CrossRef]
- Zayas, J.F. Water holding capacity of proteins. In Functionality of Proteins in Food; Springer: Berlin/Heidelberg, Germany, 1997; pp. 76–133. [Google Scholar]
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D.-U. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
- Barekat, S.; Soltanizadeh, N. Application of high-intensity ultrasonic radiation coupled with papain treatment to modify functional properties of beef longissimus lumborum. J. Food Sci. Technol. 2019, 56, 224–232. [Google Scholar] [CrossRef]
- Biswas, B.; Sit, N. Effect of ultrasonication on functional properties of tamarind seed protein isolates. J. Food Sci. Technol. 2020, 57, 2070–2078. [Google Scholar] [CrossRef]
- Haque, M.A.; Timilsena, Y.P.; Adhikari, B. Food proteins, structure, and function. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–8. [Google Scholar]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Omura, M.H.; de Oliveira, A.P.H.; de Souza Soares, L.; dos Reis Coimbra, J.S.; de Barros, F.A.R.; Vidigal, M.C.T.R.; Baracat-Pereira, M.C.; de Oliveira, E.B. Effects of protein concentration during ultrasonic processing on physicochemical properties and techno-functionality of plant food proteins. Food Hydrocoll. 2021, 113, 106457. [Google Scholar] [CrossRef]
- Li, C.; Yang, F.; Huang, Y.; Huang, C.; Zhang, K.; Yan, L. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. J. Food Eng. 2020, 265, 109697. [Google Scholar]
- Khatkar, A.B.; Kaur, A.; Khatkar, S.K.; Mehta, N. Optimization of processing time, amplitude and concentration for ultrasound-assisted modification of whey protein using response surface methodology. J. Food Sci. Technol. 2018, 55, 2298–2309. [Google Scholar] [CrossRef]
- O’sullivan, J.; Murray, B.; Flynn, C.; Norton, I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocoll. 2016, 53, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Mauer, L. Protein | heat treatment for food proteins. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 4868–4872. [Google Scholar]
- Alavi, F.; Chen, L.; Emam-Djomeh, Z. Effect of ultrasound-assisted alkaline treatment on functional property modifications of faba bean protein. Food Chem. 2021, 354, 129494. [Google Scholar] [CrossRef]
- Tan, M.C.; Chin, N.L.; Yusof, Y.A.; Abdullah, J. Effect of high power ultrasonic treatment on whey protein foaming quality. Int. J. Food Sci. Technol. 2016, 51, 617–624. [Google Scholar] [CrossRef]
- Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.; Pilosof, A. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Tabtabaei, S.; Hijar, B.; Chen, B.K.; Diosady, L.L. Functional properties of protein isolates produced by aqueous extraction of de-hulled yellow mustard. J. Am. Oil Chem. Soc. 2017, 94, 149–160. [Google Scholar] [CrossRef]
- Xiong, T.; Xiong, W.; Ge, M.; Xia, J.; Li, B.; Chen, Y. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res. Int. 2018, 109, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Nham Tran, T.L.; Miranda, A.F.; Mouradov, A.; Adhikari, B. Physicochemical characteristics of protein isolated from thraustochytrid oilcake. Foods 2020, 9, 779. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Structural modification of quinoa seed protein isolates (qpis) by variable time sonification for improving its physicochemical and functional characteristics. Ultrason. Sonochemistry 2019, 58, 104700. [Google Scholar] [CrossRef]
- Du, Q.-H.; Wu, Y.-H.; Tang, S.-Q.; Ren, M.-H.; Fu, Z. Influences of ultrasonic treatment on structure and functional properties of salt-soluble protein from moringa oleifera seeds. Int. J. Food Sci. Technol. 2021, 56, 5871–5880. [Google Scholar] [CrossRef]
- Aderinola, T.A.; Fagbemi, T.N.; Enujiugha, V.N.; Alashi, A.M.; Aluko, R.E. Amino acid composition and antioxidant properties of moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon 2018, 4, e00877. [Google Scholar] [CrossRef] [Green Version]
- Cattan, Y.a.; Patil, D.; Vaknin, Y.; Rytwo, G.; Lakemond, C.; Benjamin, O. Characterization of moringa oleifera leaf and seed protein extract functionality in emulsion model system. Innov. Food Sci. Emerg. Technol. 2022, 75, 102903. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, W.; Yi, J.; Liu, N.; Cao, Y.; Lu, J.; Decker, E.A.; McClements, D.J. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res. Int. 2018, 106, 853–861. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Z.; Han, D.; Li, Y.; Sun, X.; Wang, Z.; Jin, H. Structural and functional properties changes of β-conglycinin exposed to hydroxyl radical-generating systems. Molecules 2017, 22, 1893. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, L.; Bailina, Y.; Ge, Z.; Ding, T.; Ye, X.; Liu, D. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J. Food Eng. 2014, 126, 72–81. [Google Scholar] [CrossRef]
- Kruger, N.J. The bradford method for protein quantitation. In The Protein Protocols Handbook; Humana Press: Totowa, NJ, USA, 2009; pp. 17–24. [Google Scholar]
- Kusumah, S.; Andoyo, R.; Rialita, T. Protein isolation techniques of beans using different methods: A review. IOP Conf. Ser. Earth Environ. Sci. 2020, 443, 012053. [Google Scholar] [CrossRef]
- Yılmaz, E.; Hüriyet, Z. Physico-chemical and functional properties of extracted capia pepperseed (capsicum annuum l.) proteins. Waste Biomass Valorization 2017, 8, 871–881. [Google Scholar] [CrossRef]
- Saha, J.; Deka, S.C. Functional properties of sonicated and non-sonicated extracted leaf protein concentrate from diplazium esculentum. Int. J. Food Prop. 2017, 20, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Chen, J.; Xiong, Y.L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline ph-shifting processes. J. Agric. Food Chem. 2009, 57, 7576–7583. [Google Scholar] [CrossRef]
- Phongthai, S.; Lim, S.-T.; Rawdkuen, S. Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J. Cereal Sci. 2016, 70, 146–154. [Google Scholar] [CrossRef]
Run | Independent Variables (Coded Values) | Independent Variables (Actual Values) | Response (MOSP Yield (%)) | |||||
---|---|---|---|---|---|---|---|---|
A: Amplitude (%) | B: Solute-to-Solvent Ratio (g/mL) | C: pH | A: Amplitude (%) | B: Solute-to-Solvent Ratio (g/mL) | C: pH | Measured | Predicted | |
1 | 0 | 0 | −1 | 50 | 1:20 | 9 | 34.76 | 34.77 |
2 | 1 | −1 | 1 | 75 | 1:10 | 13 | 37.34 | 37.32 |
3 | −1 | 0 | 0 | 25 | 1:20 | 11 | 33.15 | 33.13 |
4 | −1 | 1 | 1 | 25 | 1:30 | 13 | 32.10 | 32.11 |
5 (c.p.) | 0 | 0 | 0 | 50 | 1:20 | 11 | 36.62 | 36.59 |
6 (c.p.) | 0 | 0 | 0 | 50 | 1:20 | 11 | 36.52 | 36.59 |
7 | 1 | −1 | −1 | 75 | 1:10 | 9 | 37.06 | 37.07 |
8 | −1 | −1 | 1 | 25 | 1:10 | 13 | 31.17 | 31.18 |
9 | 0 | −1 | 0 | 50 | 1:10 | 11 | 36.22 | 36.20 |
10 | 1 | 0 | 0 | 75 | 1:20 | 11 | 39.30 | 39.29 |
11 | 1 | 1 | 1 | 75 | 1:30 | 13 | 38.28 | 38.29 |
12 (c.p.) | 0 | 0 | 0 | 50 | 1:20 | 11 | 36.57 | 36.59 |
13 | 0 | 0 | 1 | 50 | 1:20 | 13 | 35.02 | 34.99 |
14 | −1 | 1 | −1 | 25 | 1:30 | 9 | 31.94 | 31.93 |
15 | 0 | 1 | 0 | 50 | 1:30 | 11 | 37.20 | 37.19 |
16 | −1 | −1 | −1 | 25 | 1:10 | 9 | 30.92 | 30.91 |
17 | 1 | 1 | −1 | 75 | 1:30 | 9 | 38.11 | 38.10 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 111.81 | 9 | 12.42 | 11,418.21 | <0.0001 ** |
A: Amplitude | 94.93 | 1 | 94.93 | 87,243.93 | <0.0001 ** |
B: Solute-to-solvent ratio | 2.42 | 1 | 2.42 | 2224.75 | <0.0001 ** |
C: pH | 0.1254 | 1 | 0.1254 | 115.29 | <0.0001 ** |
AB | 0.0002 | 1 | 0.0002 | 0.1838 | 0.6810 ns |
AC | 0.0002 | 1 | 0.0002 | 0.1838 | 0.6810 ns |
BC | 0.0050 | 1 | 0.0050 | 4.60 | 0.0693 ns |
A2 | 0.3720 | 1 | 0.3720 | 341.87 | <0.0001 ** |
B2 | 0.0338 | 1 | 0.0338 | 31.11 | 0.0008 ** |
C2 | 7.81 | 1 | 7.81 | 7180.25 | <0.0001 ** |
Residual | 0.0076 | 7 | 0.0011 | ||
Lack of Fit | 0.0026 | 5 | 0.0005 | 0.2093 | 0.9308 ns |
Pure Error | 0.0050 | 2 | 0.0025 | ||
Cor Total | 111.82 | 16 | |||
R2 | 0.9999 | ||||
R2 adjusted | 0.9998 |
Factor | Coefficient Estimate | df | Standard Error | 95% CI Low | 95% CI High | VIF |
---|---|---|---|---|---|---|
Intercept | 36.59 | 1 | 0.0141 | 36.55 | 36.62 | |
A: Amplitude | 3.08 | 1 | 0.0104 | 3.06 | 3.11 | 1.0000 |
B: Solute to solvent ratio | 0.4920 | 1 | 0.0104 | 0.4673 | 0.5167 | 1.0000 |
C: pH | 0.1120 | 1 | 0.0104 | 0.0873 | 0.1367 | 1.0000 |
AB | 0.0050 | 1 | 0.0117 | −0.0226 | 0.0326 | 1.0000 |
AC | 0.0050 | 1 | 0.0117 | −0.0226 | 0.0326 | 1.0000 |
BC | −0.0250 | 1 | 0.0117 | −0.0526 | 0.0026 | 1.0000 |
A2 | −0.3726 | 1 | 0.0202 | −0.4203 | −0.3250 | 1.54 |
B2 | 0.1124 | 1 | 0.0202 | 0.0647 | 0.1600 | 1.54 |
C2 | −1.71 | 1 | 0.0202 | −1.76 | −1.66 | 1.54 |
Functional Properties | MOSP (CE) | MOSP (UAE) |
---|---|---|
Solubility (%) | 5.56 ± 0.13 | 29.82 ± 0.21 |
WHC (g/g) | 0.86 ± 0.009 | 1.02 ± 0.006 |
OHC (g/g) | 0.91 ± 0.015 | 1.91 ± 0.013 |
Emulsion capacity (mg/mL) | 58.39 ± 1.68 | 75.93 ± 1.19 |
Foaming capacity (%) | 13.21 ± 0.27 | 24.23 ± 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, K.; Imran, M.; Ahmad, M.H.; Khan, M.K.; Khalid, W.; AL-Farga, A.; Alansari, W.S.; Shamlan, G.; Eskandrani, A.A. Ultrasound-Assisted Extraction of Protein from Moringa oleifera Seeds and Its Impact on Techno-Functional Properties. Molecules 2023, 28, 2554. https://doi.org/10.3390/molecules28062554
Fatima K, Imran M, Ahmad MH, Khan MK, Khalid W, AL-Farga A, Alansari WS, Shamlan G, Eskandrani AA. Ultrasound-Assisted Extraction of Protein from Moringa oleifera Seeds and Its Impact on Techno-Functional Properties. Molecules. 2023; 28(6):2554. https://doi.org/10.3390/molecules28062554
Chicago/Turabian StyleFatima, Khushar, Muhammad Imran, Muhammad Haseeb Ahmad, Muhammad Kamran Khan, Waseem Khalid, Ammar AL-Farga, Wafa S. Alansari, Ghalia Shamlan, and Areej A. Eskandrani. 2023. "Ultrasound-Assisted Extraction of Protein from Moringa oleifera Seeds and Its Impact on Techno-Functional Properties" Molecules 28, no. 6: 2554. https://doi.org/10.3390/molecules28062554
APA StyleFatima, K., Imran, M., Ahmad, M. H., Khan, M. K., Khalid, W., AL-Farga, A., Alansari, W. S., Shamlan, G., & Eskandrani, A. A. (2023). Ultrasound-Assisted Extraction of Protein from Moringa oleifera Seeds and Its Impact on Techno-Functional Properties. Molecules, 28(6), 2554. https://doi.org/10.3390/molecules28062554