Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenol Content and Antioxidant Activity
2.2. HPLC Analysis and Compounds’ Identification by UPLC-ESI-MS/MS
2.3. GC-MS Analysis
2.4. Comparison of the Extraction Methods
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Microorganism
3.3. Preparation of Feed Stock and Extraction Methods
Solid-State Fermentation (SSF)
3.4. Total Phenolic Content
3.5. Antioxidant Activity
3.6. HPLC Analysis
3.7. UPLC-ESI-MS/MS Analysis
3.8. GC-MS Analysis
3.9. Statistical Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- da Silveira, J.S.; Durand, N.; Lacour, S.; Belleville, M.P.; Perez, A.; Loiseau, G.; Dornier, M. Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food Bioprod. Process. 2019, 115, 175–184. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture of the United Nations. Agriculture Database. Available online: https://www.fao.org/faostat/en/#search/Avocados (accessed on 16 December 2022).
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT-Food Sci. Technol. 2016, 65, 46–52. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Pasini, F.; Caboni, M.F.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT 2016, 73, 505–513. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Velderrain-Rodríguez, G.R.; Quero, J.; Osada, J.; Martín-Belloso, O.; Rodríguez-Yoldi, M.J. Phenolic-rich extracts from avocado fruit residues as functional food ingredients with antioxidant and antiproliferative properties. Biomolecules 2021, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- García-Vargas, M.C.; Contreras, M.D.M.; Gómez-Cruz, I.; Romero-García, J.M.; Castro, E. Avocado-derived biomass: Chemical composition and antioxidant potential. Proceedings 2021, 70, 100. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Noor, M.H.M.; Abdullah, R.; Saad, M.Z.; Taufiq-Yap, Y.H. Therapeutic uses of epicatechin in diabetes and cancer. Vet. World 2017, 10, 869. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, D.; Liu, H.; Wang, Z.; Hui, T. Chlorogenic acid and Epicatechin: An efficient inhibitor of heterocyclic amines in charcoal roasted lamb meats. Food Chem. 2022, 368, 130865. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef]
- Cui, H.Y.; Niranjana Murthy, H.; Moh, S.H.; Cui, Y.Y.; Lee, E.J.; Paek, K.Y. Comparison of conventional and ultrasound-assisted methods for extraction of nutraceutical compounds from Dendrobium candidum. CyTA J. Food 2014, 12, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Jing, C.L.; Dong, X.F.; Tong, J.M. Optimization of ultrasonic-assisted extraction of flavonoid compounds and antioxidants from alfalfa using response surface method. Molecules 2015, 20, 15550–15571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: Comparison with hot water and organic solvent extractions. Eur. Food Res. Technol. 2018, 244, 1353–1365. [Google Scholar] [CrossRef] [Green Version]
- Tutunchi, P.; Roufegarinejad, L.; Hamishehkar, H.; Alizadeh, A. Extraction of red beet extract with β-cyclodextrin-enhanced ultrasound assisted extraction: A strategy for enhancing the extraction efficacy of bioactive compounds and their stability in food models. Food Chem. 2019, 297, 124994. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Ramos, B.; Maziero, G.; Leone, A.; Dutra, J.; Pereira, R.; Kitagawa, R.R. Avocado seeds (Persea americana Mill.) prevents indomethacin-induced gastric ulcer in mice. Food Res. Int. 2019, 119, 751–760. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.; Visentainer, J.V. Antioxidant activity, phenolics and UPLC–ESI (–)–MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Shi, D.; Xu, W.; Balan, P.; Wong, M.; Chen, W.; Popovich, D.G. In Vitro Antioxidant properties of New Zealand Hass avocado byproduct (Peel and Seed) fractions. ACS Food Sci. Technol. 2021, 1, 579–587. [Google Scholar] [CrossRef]
- Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015, 4, 2167-0412. [Google Scholar]
- Del Castillo-Llamosas, A.; Rodríguez-Martínez, B.; Pablo, G.; Eibes, G.; Garrote, G.; Gullón, B. Hydrothermal treatment of avocado peel waste for the simultaneous recovery of oligosaccharides and antioxidant phenolics. Biores. Technol. 2021, 342, 125981. [Google Scholar] [CrossRef]
- Kamaraj, M.; Dhana Rangesh Kumar, V.; Nithya, T.G.; Danya, U. Assessment of antioxidant, antibacterial activity and phytoactive compounds of aqueous extracts of avocado fruit peel from Ethiopia. Int. J. Pept. Res. Ther. 2020, 26, 1549–1557. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Yeo, J.; Shahidi, F. Critical re-evaluation of DPPH assay: Presence of pigments affects the results. J. Agric. Food Chem. 2019, 67, 7526–7529. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q-TOF. Food Chem. 2018, 245, 707–716. [Google Scholar] [CrossRef]
- Rojas-García, A.; Fuentes, E.; Cádiz-Gurrea, M.D.L.L.; Rodriguez, L.; Villegas-Aguilar, M.D.C.; Palomo, I.; Arráez-Román, D.; Segura-Carretero, A. Biological evaluation of avocado residues as a potential source of bioactive compounds. Antioxidants 2022, 11, 1049. [Google Scholar] [CrossRef]
- Di Stefano, V.; Avellone, G.; Bongiorno, D.; Indelicato, S.; Massenti, R.; Lo Bianco, R. Quantitative evaluation of the phenolic profile in fruits of six avocado (Persea americana) cultivars by ultra-high-performance liquid chromatography-heated electrospray-mass spectrometry. Int. J. Food Prop. 2017, 20, 1302–1312. [Google Scholar] [CrossRef] [Green Version]
- Suleria, H.A.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C.R.F. Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of phenolic composition of byproducts (seeds and peels) of avocado (Persea americana Mill.) cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef] [Green Version]
- Juurlink, B.H.; Azouz, H.J.; Aldalati, A.M.; AlTinawi, B.M.; Ganguly, P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J. 2014, 13, 63. [Google Scholar] [CrossRef]
- Benali, T.; Bakrim, S.; Ghchime, R.; Benkhaira, N.; El Omari, N.; Balahbib, A.; Bouyahya, A.; Taha, D.; Zengin, G.; Hasan, M.M.; et al. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 2022, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Liu, A.; Li, P.; Liu, C.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Advances in physiological functions and mechanisms of (−)-epicatechin. Crit. Rev. Food Sci. Nutr. 2021, 61, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Qi, Q.L.; Wang, M.T.; Li, Q.Y. Therapeutic potential of naringin: An overview. Pharm. Biol. 2016, 54, 3203–3210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talja, R.A.; Roos, Y.H. Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. Thermochim. Acta 2001, 380, 109–121. [Google Scholar] [CrossRef]
- Kövilein, A.; Kubisch, C.; Cai, L.; Ochsenreither, K. Malic acid production from renewables: A review. J. Chem. Technol. Biotechnol. 2020, 95, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Ranjha, M.M.A.; Irfan, S.; Lorenzo, J.M.; Shafique, B.; Kanwal, R.; Pateiro, M.; Aadil, R.M.; Arshad, R.N.; Wang, L.; Nayik, G.A.; et al. Sonication, a potential technique for extraction of phytoconstituents: A systematic review. Processes 2021, 9, 1406. [Google Scholar] [CrossRef]
- Moreira, S.A.; Alexandre, E.M.; Pintado, M.; Saraiva, J.A. Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Res. Int. 2019, 115, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Carrillo-Hormaza, L.; Ramírez, A.M.; Osorio, E.; Gil, A. Optimization of ultrasound-assisted extraction and rapid resolution analysis of flavanols and methylxanthines for the quality control of cocoa-derived products. Food Anal. Methods 2017, 10, 497–507. [Google Scholar] [CrossRef]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
Extraction Method | mg GAE 1/100 g Dry Matter | % DPPH Inhibition |
---|---|---|
M | 972.9 ± 118.6 b | 43.8 ± 3.1 c |
MβC | 845.4 ± 113.2 a,b | 29.2 ± 4.0 b |
WS | 635.9 ± 19.7 a | 25.7 ± 1.0 b |
ES | 953.8 ± 85.6 b | 26.1 ± 0.4 b |
SSF (14 d) | 800.2 ± 72.7 a,b | 23.7 ± 1.2 a,b |
SSF (control) | 649.4 ± 53.5 a | 17.1 ± 2.3 a |
WG | 1562.2 ± 137.9 c | 39.4 ± 1.5 c |
WGM | 2143.1 ± 85.9 d | 28.5 ± 4.6 b |
Title 1 | Chlorogenic Acid (mg/100 g Dry Matter) | Epicatechin (mg/100 g Dry Matter) |
---|---|---|
M | 73.48 ± 19.14 c | 43.83 ± 6.10 a |
MβC | 53.60 ± 4.95 b,c | 45.84 ± 13.81 a |
WS | 29.61 ± 5.25 a,b | 22.85 ± 1.52 a |
ES | 7.22 ± 0.30 a | 24.84 ± 0.66 a |
WG | 241.88 ± 7.42 d | 133.64 ± 8.35 b |
WGM | 244.33 ± 24.44 d | 181.71 ± 31.79 c |
SFF | N.D. * | N.D. a* |
No. | Proposed Compound | RT (min) | m/z | Fragmentations | Molecular Formula | Reference |
---|---|---|---|---|---|---|
1 | Quinic acid * | 0.61 | 191.2 | 85.06 | C7H12O6 | [26] |
2 | shikimic acid * | 0.66 | 173.18 | 111.07 | C7H10O5 | [27] |
3 | Gentisic acid * | 3.44 | 153.15 | 108.2 | C7H6O4 | [26] |
4 | 4-hydroxybenzoic acid * | 3.51 | 137.04 | 93.05 | C7H6O3 | [26] |
5 | Chlorogenic acid * | 3.80 | 353.1 | 191.2 | C16H18O9 | [28] |
6 | 4-O-caffeoylquinic acid | 4.65 | 353.3 | 179.06 | C16H18O9 | [26] |
7 | Vanillic acid * | 4.13 | 167.18 | 152.02 | [26] | |
8 | Caffeic acid * | 4.27 | 179.19 | 135.08 | C9H8O4 | [26] |
9 | Syringic acid * | 4.45 | 197.21 | 182.5 | C9H10O5 | [26] |
10 | Coumaric acid * | 5.45 | 163.24 | 119.09 | C9H8O3 | [26] |
11 | Ellagic acid * | 6.31 | 301 | 229 | C14H6O8 | |
12 | Ferulic acid | 5.99 | 193.24 | 134.04 | C10H10O4 | [23] |
13 | Sinapic acid * | 6.04 | 223.24 | 164.06 | C11H12O5 | [28] |
14 | Benzoic acid * | 6.79 | 121.1 | 77.1 | C7H6O2 | [26] |
15 | trans-cinnamic acid * | 8.83 | 147.17 | 103.08 | C9H8O2 | |
16 | 2-hydrobenzoic acid * | 6.78 | 137.04 | 93.05 | C7H6O3 | [29] |
17 | Diccaffeoylquinic acid | 7.19 | 515.45 | 353.2 | C25H24O12 | [7] |
18 | Coumaric acid (isomer) | 4.0 | 163.24 | 119.08 | C9H8O3 | |
19 | Procyanidin B1 * | 3.45 | 577.44 | 289.18 | C30H26O12 | [26] |
20 | Catechin * | 3.88 | 289.164 | 245.2 | C15H14O6 | [26] |
21 | Procyanidin B2 * | 4.39 | 577.44 | 289.18 | C30H26O12 | [26] |
22 | Epicatechin * | 4.79 | 289.164 | 245.2 | C15H14O6 | [30] |
23 | Quercetin glucoronide | 6.27 | 477.26 | 301.1 | C21H20O12 | [30] |
24 | Quercetin 3-O-glucoside | 6.24 | 463.36 | 300.42 | C21H20O12 | [31] |
25 | Naringin * | 6.94 | 579.32 | 151.02 | C27H32O14 | [28] |
26 | Eriodictyol | 8.33 | 287.28 | 151.04 | C15H12O6 | |
27 | Unknown 2 | 6.61 | 609.28 | 300.24 | C27H30O16 |
No. | TR | Molecular Formula | Molecular Weight (g/mol) | Proposed Compound |
---|---|---|---|---|
1 | 6.448 | C3H6O3 | 90.08 | Lactic acid |
2 | 6.634 | C2H4O3 | 75.06 | Glycolic acid |
3 | 7.019 | C3H7NO2 | 89.09 | Alanine |
4 | 8.424 | C3H4O4 | 104.0615 | Malonic acid |
5 | 8.615 | C5H11NO2 | 117.15 | Valine |
6 | 8.992 | C7H6O2 | 122.12 | Benzoic acid |
7 | 9.186 | C8H16O2 | 144.21 | Octanoic acid |
8 | 9.434 | H3PO4 | 98.0 | Phosphoric acid |
9 | 9.437 | C3H8O3 | 92.09 | Glycerol |
10 | 9.723 | C4H9NO2 | 103.12 | 4-Aminobutanoic acid |
11 | 9.903 | C4H6O4 | 118.09 | Succinic acid |
12 | 10.217 | C3H6O4 | 106.08 | Glyceric acid |
13 | 10.331 | C4H4O4 | 116.1 | Maleic acid |
14 | 10.434 | C5H6O4 | 130.09 | Methylmaleic acid |
15 | 10.611 | C3H7NO3 | 105.09 | Serine |
16 | 10.974 | C4H9NO3 | 119.1192 | Threonine |
17 | 12.262 | C4H6O5 | 134.0874 | Malic acid |
18 | 12.645 | C4H7NO4 | 133.11 | Aspartic acid |
19 | 12.731 | C4H9NO2 | 103.12 | 4-Aminobutanoic acid |
20 | 12.977 | C5H12O5 | 152.15 | Pentitol |
21 | 13.22 | C7H6O5 | 170.12 | 2,3,4-Trihydroxybutiric acid |
22 | 13.294 | C5H6O5 | 146.11 | 2-Oxoglutaric acid |
23 | 13.815 | C5H9NO4 | 147.13 | Glutamic acid |
24 | 13.895 | C9H11NO2 | 165.19 | Phenylalanine |
25 | 15.533 | C5H10N2O3 | 146.14 | Glutamine |
26 | 15.96 | C7H10O5 | 174.15 | Shikimic acid |
27 | 16.115 | C6H8O7 | 192.024 | Citric acid |
28 | 16.772 | C6H12O6 | 180.16 | Fructose |
29 | 17.043 | C6H12O6 | 180.16 | Glucose |
30 | 17.224 | C6H12O6 | 180.16 | Glucose isomer |
31 | 17.27 | C9H11NO3 | 181.19 | Tyrosine |
32 | 17.442 | C6H14O6 | 180.17 | Glucitol |
33 | 18.031 | C6H12O7 | 196.16 | Gluconic acid |
34 | 18.146 | C16H32O2 | 256.4 | Palmitic acid |
35 | 18.89 | C6H12O6 | 180.16 | Myo-inositol |
36 | 23.572 | C12H22O11 | 342.3 | Sucrose |
37 | 24.953 | C15H14O6 | 290.26 | Epicatechin 1 |
38 | 25.091 | C15H14O6 | 290.26 | Catechin isomer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Gutiérrez, E. Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado. Molecules 2023, 28, 2557. https://doi.org/10.3390/molecules28062557
Martínez-Gutiérrez E. Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado. Molecules. 2023; 28(6):2557. https://doi.org/10.3390/molecules28062557
Chicago/Turabian StyleMartínez-Gutiérrez, Emir. 2023. "Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado" Molecules 28, no. 6: 2557. https://doi.org/10.3390/molecules28062557
APA StyleMartínez-Gutiérrez, E. (2023). Study of Influence of Extraction Method on the Recovery Bioactive Compounds from Peel Avocado. Molecules, 28(6), 2557. https://doi.org/10.3390/molecules28062557