Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Larvicidal Activity
2.3. Literature Survey
2.4. Molluscicidal and Antiparasitic Activities
2.5. Antimicrobial Activity
3. Materials and Methods
3.1. Plant Material and Isolation of Essential Oil
3.2. Gas Chromatographic Analysis
3.3. Screening for Larvicidal Activity
3.4. Screening for Molluscicidal Activity
3.5. Screening for Antimicrobial Activity
3.6. Data Analysis
3.7. Literature Survey
- (1)
- The articles fully reported the chemical composition and mosquito larvicidal activity of the essential oils.
- (2)
- The articles fully reported the chemical composition and the molluscicidal and antiparasitic activities of the essential oils.
- (3)
- The articles fully reported the chemical composition and antibacterial activity of the essential oils.
- (4)
- Articles that reported unreliable GC/MS analysis results, such as chemical compositions that did not match the elution order, retention time, and retention index, were not considered.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pimentel, B.S.; Negri, G.; Cordeiro, I.; Motta, L.B.; Salatino, A. Taxonomic significance of the distribution of constituents of leaf cuticular waxes of Croton species (Euphorbiaceae). Biochem. Syst. Ecol. 2020, 92, 104106. [Google Scholar] [CrossRef]
- Bezerra, F.W.; Bezerra, P.D.N.; de Oliveira, M.S.; da Costa, W.A.; Ferreira, G.C.; de Carvalho, R.N. Bioactive compounds and biological activity of Croton species (Euphorbiaceae): An overview. Curr. Bioact. Compd. 2020, 16, 383–393. [Google Scholar] [CrossRef]
- Da Costa, L.S.; de Moraes, Â.A.B.; Cruz, J.N.; Mali, S.N.; Almeida, L.Q.; do Nascimento, L.D.; Ferreira, O.O.; Varela, E.L.P.; Percário, S.; de Oliveira, M.S.; et al. First report on the chemical composition, antioxidant capacity, and preliminary toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) essential oil, and in silico study. Antioxidants 2022, 11, 2410. [Google Scholar] [CrossRef]
- De Morais, S.M.; Catunda Júnior, F.E.A.; da Silva, A.R.A.; Neto, J.S.M.; Rondina, D.; Cardoso, J.H.L. Antioxidant activity of essential oils from Northeastern Brazilian Croton species. Química Nova 2006, 29, 907–910. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.D.D.S.; Silva, A.M.D.O.E.S.; Blank, A.F.; Nogueira, P.C.D.L.; Nizio, D.A.D.C.; Almeida-Pereira, C.S.; Pereira, R.O.; Menezes-Sá, T.S.A.; Santana, M.H.D.S.; Arrigoni-Blank, M.D.F. Radical scavenging activity of the essential oils from Croton grewioides Baill accessions and the major compounds eugenol, methyl eugenol and methyl chavicol. J. Essent. Oil Res. 2021, 33, 94–103. [Google Scholar] [CrossRef]
- Simionatto, E.; Bonani, V.F.L.; Peres, M.T.L.P.; Hess, S.C.; Candido, A.C.S.; Diraimo, D.L.; Poppi, N.R.; Matos, M.D.F.C.; Santos, E.C.S.; Oguma, P.M.; et al. Bioactivity and chemical composition of the essential oils of Croton urucurana Baillon (Euphorbiaceae). J. Essent. Oil Bear. Plants 2009, 12, 250–261. [Google Scholar] [CrossRef]
- Sousa, A.; Oliveira, G.; Fonseca, L.; Rocha, M.; Rai, M.; Santos, F.; de Lima, S. Antioxidant properties of Croton zehntneri Pax et Hoffm. Essential oil and its inclusion complex with β-cyclodextrin prepared by spray drying. J. Braz. Chem. Soc. 2022, 33, 1244–1253. [Google Scholar] [CrossRef]
- Daouda, T.; Prevost, K.; Gustave, B.; Joseph, D.A.; Nathalie, G.; Raphaël, O.; Rubens, D.; Claude, C.J.; Mireille, D.; Felix, T. Terpenes, antibacterial and modulatory antibiotic activity of essential oils from Croton hirtus L’ Hér. (Euphorbiaceae) from Ivory Coast. J. Essent. Oil Bear. Plants 2014, 17, 607–616. [Google Scholar] [CrossRef]
- de Almeida, T.S.; Rocha, J.B.T.; Rodrigues, F.F.G.; Campos, A.R.; da Costa, J.G.M. Chemical composition, antibacterial and antibiotic modulatory effect of Croton campestris essential oils. Ind. Crops Prod. 2013, 44, 630–633. [Google Scholar] [CrossRef]
- De Araújo, A.C.J.; Freitas, P.R.; Rodrigues dos Santos Barbosa, C.; Muniz, D.F.; Rocha, J.E.; Neto, J.B.d.A.; da Silva, M.M.C.; Moura, T.F.; Pereira, R.L.S.; Ribeiro-Filho, J.; et al. Essential oil of Croton ceanothifolius Baill. potentiates the effect of antibiotics against multiresistant bacteria. Antibiotics 2020, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Abreu, L.S.; do Nascimento, Y.M.; do Espirito-Santo, R.F.; Meira, C.S.; Santos, I.P.; Brandão, R.B.; Souto, A.L.; Guedes, M.L.S.; Soares, M.B.P.; Villarreal, C.F.; et al. Phenylpropanoids from Croton velutinus with cytotoxic, trypanocidal and anti-inflammatory activities. Fitoterapia 2020, 145, 104632. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.O.B.P.B.; Rodrigues, L.B.; Cesário, F.R.A.S.; de Oliveira, M.R.C.; Tintino, C.D.M.; Castro, F.F.E.; Alcântara, I.S.; Fernandes, M.N.M.; de Albuquerque, T.R.; da Silva, M.S.A.; et al. Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed. Pharmacother. 2017, 96, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Brito Pereira Bezzra Martins, A.; Wanderley, A.G.; Alcântara, I.S.; Rodrigues, L.B.; Cesário, F.R.A.S.; Correia de Oliveira, M.R.; e Castro, F.F.; de Albuquerque, T.R.; da Silva, M.S.A.; Ribeiro-Filho, J.; et al. Anti-inflammatory and physicochemical characterization of the Croton rhamnifolioides essential oil inclusion complex in β-cyclodextrin. Biology 2020, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Andrade, T.C.B.; de Lima, S.G.; Freitas, R.M.; Rocha, M.S.; Islam, T.; da Silva, T.G.; Militão, G.C.G. Isolation, characterization and evaluation of antimicrobial and cytotoxic activity of estragole, obtained from the essential oil of Croton zehntneri (Euphorbiaceae). An. Acad. Bras. Cienc. 2015, 87, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, J.G.M.; Rodrigues, F.F.G.; Angélico, E.C.; Pereira, C.K.B.; De Souza, E.O.; Caldas, G.F.R.; Silva, M.R.; Santos, N.K.A.; Mota, M.L.; Santos, P.F. Chemical composition and evaluation of the antibacterial activity and toxicity of the essential oil of Croton zehntneri (variety estragol). Rev. Bras. Farmacogn. 2008, 18, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.; Alves, R.; D’Elia, G.; Anunciação, T.; Silva, V.; Santos, L.; Soares, M.; Cardozo, N.; Costa, E.; Silva, F.; et al. Antitumor effect of the essential oil from the leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules 2018, 23, 2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meireles, D.R.P.; Fernandes, H.M.B.; Rolim, T.L.; Batista, T.M.; Mangueira, V.M.; de Sousa, T.K.G.; Pita, J.C.L.R.; Xavier, A.L.; Beltrão, D.M.; Tavares, J.F.; et al. Toxicity and antitumor efficacy of Croton polyandrus oil against ehrlich ascites carcinoma cells. Rev. Bras. Farm. 2016, 26, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Vunda, S.L.L.; Sauter, I.P.; Cibulski, S.P.; Roehe, P.M.; Bordignon, S.A.L.; Rott, M.B.; Apel, M.A.; von Poser, G.L. Chemical composition and amoebicidal activity of Croton pallidulus, Croton ericoides, and Croton isabelli (Euphorbiaceae) essential oils. Parasitol. Res. 2012, 111, 961–966. [Google Scholar] [CrossRef]
- Hiruma-Lima, C.A.; Gracioso, J.S.; Nunes, D.S.; Brito, A.S. Effects of an essential oil from the bark of Croton cajucara Benth. on experimental gastric ulcer models in rats and mice. J. Pharm. Pharmacol. 2010, 51, 341–346. [Google Scholar] [CrossRef]
- Hiruma-Lima, C.A.; Gracioso, J.S.; Bighetti, E.J.B.; Grassi-Kassisse, D.M.; Nunes, D.S.; Souza Brito, A.R.M. Effect of essential oil obtained from Croton cajucara Benth. on gastric ulcer healing and protective factors of the gastric mucosa. Phytomedicine 2002, 9, 523–529. [Google Scholar] [CrossRef]
- Paula, A.C.B.; Toma, W.; Gracioso, J.S.; Hiruma-Lima, C.A.; Carneiro, E.M.; Souza Brito, A.R.M. The gastroprotective effect of the essential oil of Croton cajucara is different in normal rats than in malnourished rats. Br. J. Nutr. 2006, 96, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Ramos, J.M.; dos Santos, C.A.; Santana, D.G.; Antoniolli, A.R.; de Alexandria Santos, D.; Alves, P.B.; Thomazzi, S.M. Impact of Croton argyrophyllus essential oil on behavioural models of nociception. Flavour Fragr. J. 2017, 32, 40–45. [Google Scholar] [CrossRef]
- Santos, F.A.; Jeferson, F.A.; Santos, C.C.; Silveira, E.R.; Rao, V.S.N. Antinociceptive effect of leaf essential oil from Croton sonderianus in mice. Life Sci. 2005, 77, 2953–2963. [Google Scholar] [CrossRef] [PubMed]
- Leite, T.R.; da Silva, M.A.P.; Dos Santos, A.C.B.; Coutinho, H.D.M.; Duarte, A.E.; da Costa, J.G.M. Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm. Biol. 2017, 55, 2015–2019. [Google Scholar] [CrossRef] [Green Version]
- Pinho-da-Silva, L.; Mendes-Maia, P.V.; do Nascimento Garcia, T.M.; Cruz, J.S.; de Morais, S.M.; Coelho-de-Souza, A.N.; Lahlou, S.; Leal-Cardoso, J.H. Croton sonderianus essential oil samples distinctly affect rat airway smooth muscle. Phytomedicine 2010, 17, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.C.; de Holanda-Angelin-Alves, C.M.; Pereira-Gonçalves, Á.; Kennedy-Feitosa, E.; Evangelista-Costa, E.; Bezerra, M.A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antispasmodic effects of the essential oil of Croton zehnteneri, anethole, and estragole, on tracheal smooth muscle. Heliyon 2020, 6, e05445. [Google Scholar] [CrossRef]
- de Oliveira Júnior, R.G.; Ferraz, C.A.A.; Silva, J.C.; de Andrade Teles, R.B.; Silva, M.G.; Diniz, T.C.; dos Santos, U.S.; de Souza, A.V.V.; Nunes, C.E.P.; Salvador, M.J.; et al. Neuropharmacological effects of essential oil from the leaves of Croton conduplicatus Kunth and possible mechanisms of action involved. J. Ethnopharmacol. 2018, 221, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Camurça-Vasconcelos, A.L.F.; Bevilaqua, C.M.L.; Morais, S.M.; Maciel, M.V.; Costa, C.T.C.; Macedo, I.T.F.; Oliveira, L.M.B.; Braga, R.R.; Silva, R.A.; Vieira, L.S. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet. Parasitol. 2007, 148, 288–294. [Google Scholar] [CrossRef]
- Baccelli, C.; Martinsen, A.; Morel, N.; Quetin-Leclercq, J. Vasorelaxant activity of essential oils from Croton zambesicus and some of their constituents. Planta Med. 2010, 76, 1506–1511. [Google Scholar] [CrossRef]
- Franklinos, L.H.V.; Jones, K.E.; Redding, D.W.; Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef]
- World Health Organization. Schistosomiasis and Soil—Transmitted Helminthiases: Progress Report, 2021; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Pereira, L.P.L.A.; Ribeiro, E.C.G.; Brito, M.C.A.; Silveira, D.P.B.; Araruna, F.O.S.; Araruna, F.B.; Leite, J.A.C.; Dias, A.A.S.; da Cunha Araujo Firmo, W.; Oliveira da Rocha Borges, M.; et al. Essential oils as molluscicidal agents against Schistosomiasis transmitting snails—A review. Acta Trop. 2020, 209, 105489. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Foodborne Trematode Infections. Available online: https://www.who.int/news-room/fact-sheets/detail/foodborne-trematode-infections (accessed on 1 January 2023).
- World Health Organization. Antibiotic Resistance. Available online: http://www.who.in/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 1 January 2023).
- World Health Organization. The “World Malaria Report 2019” at A Glance. Available online: https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019 (accessed on 1 January 2023).
- Sanchez, M.C.; Cupit, P.M.; Bu, L.; Cunningham, C. Transcriptomic analysis of reduced sensitivity to praziquantel in Schistosoma mansoni. Mol. Biochem. Parasitol. 2019, 228, 6–15. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis—From immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef]
- Chevalier, F.D.; Le Clec’h, W.; McDew-White, M.; Menon, V.; Guzman, M.A.; Holloway, S.P.; Cao, X.; Taylor, A.B.; Kinung’hi, S.; Gouvras, A.N.; et al. Oxamniquine resistance alleles are widespread in old world Schistosoma mansoni and predate drug deployment. PLOS Pathog. 2019, 15, e1007881. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.A. Schistosomiasis then and now: What has changed in the last 100 years? Parasitology 2020, 147, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, F.P.; Silvestre, W.P.; Castro, J.O.; Martins, G.V.; Segabinazzi, L.G.T.M.; Pauletti, G.F.; Dell’Aqua, J.A. In vitro antimicrobial activity of selected essential oils against endometritis-causing microorganisms in mares. J. Equine Vet. Sci. 2022, 110, 103840. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Crit. Rev. Food Sci. Nutr. 2022, 62, 1740–1751. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Chansang, A.; Champakaew, D.; Junkum, A.; Jitpakdi, A.; Amornlerdpison, D.; Aldred, A.K.; Riyong, D.; Wannasan, A.; Intirach, J.; Muangmoon, R.; et al. Synergy in the adulticidal efficacy of essential oils for the improvement of permethrin toxicity against Aedes aegypti L. (Diptera: Culicidae). Parasit. Vectors 2018, 11, 417. [Google Scholar] [CrossRef] [Green Version]
- Dassanayake, M.K.; Chong, C.H.; Khoo, T.-J.; Figiel, A.; Szumny, A.; Choo, C.M. Synergistic field crop pest management properties of plant-derived essential oils in combination with synthetic pesticides and bioactive molecules: A review. Foods 2021, 10, 2016. [Google Scholar] [CrossRef]
- Gross, A.D.; Norris, E.J.; Kimber, M.J.; Bartholomay, L.C.; Coats, J.R. Essential oils enhance the toxicity of permethrin against Aedes aegypti and Anopheles gambiae. Med. Vet. Entomol. 2017, 31, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Suwannayod, S.; Sukontason, K.L.; Pitasawat, B.; Junkum, A.; Limsopatham, K.; Jones, M.K.; Somboon, P.; Leksomboon, R.; Chareonviriyaphap, T.; Tawatsin, A.; et al. Synergistic toxicity of plant essential oils combined with pyrethroid insecticides against blow flies and the house fly. Insects 2019, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Tak, J.-H.; Coquerel, Q.R.R.; Tsikolia, M.; Bernier, U.R.; Linthicum, K.; Bloomquist, J.R. Screening for enhancement of permethrin toxicity by plant essential oils against adult females of the yellow fever mosquito (Diptera: Culicidae). J. Med. Entomol. 2020, 57, 1149–1156. [Google Scholar] [CrossRef]
- Do Vale, J.P.C.; Vasconcelos, M.A.; Arruda, F.V.S.; Firmino, N.C.S.; Pereira, A.L.; Andrade, A.L.; Saker-Sampaio, S.; Sampaio, A.H.; Marinho, E.S.; Teixeira, A.M.R.; et al. Evaluation of antimicrobial and antioxidant potential of essential oil from Croton piauhiensis Müll. Arg. Curr. Microbiol. 2021, 78, 1926–1938. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, S.F.; Viljoen, A.M. In vitro evidence of phyto-synergy for plant part combinations of Croton gratissimus (Euphorbiaceae) used in african traditional healing. J. Ethnopharmacol. 2008, 119, 700–704. [Google Scholar] [CrossRef]
- De Lima, S.G.; Medeiros, L.B.P.; Cunha, C.N.L.C.; da Silva, D.; de Andrade, N.C.; Neto, J.M.M.; Lopes, J.A.D.; Steffen, R.A.; Araújo, B.Q.; Reis, F.D.A. Chemical composition of essential oils of Croton hirtus L’Her from Piauí (Brazil). J. Essent. Oil Res. 2012, 24, 371–376. [Google Scholar] [CrossRef]
- Santos, H.S.; Santiago, G.M.P.; de Oliveira, J.P.P.; Arriaga, A.M.C.; Marques, D.D.; Lemos, T.L.G. Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton zehntneri. Nat. Prod. Commun. 2007, 2, 1934578X0700201. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, H.D.M.; Matias, E.F.F.; Santos, K.K.A.; Tintino, S.R.; Souza, C.E.S.; Guedes, G.M.M.; Santos, F.A.D.; Costa, J.G.M.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P. Enhancement of the norfloxacin antibiotic activity by gaseous contact with the essential oil of Croton zehntneri. J. Young Pharm. 2010, 2, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Donati, M.; Mondin, A.; Chen, Z.; Miranda, F.M.; do Nascimento, B.B.; Schirato, G.; Pastore, P.; Froldi, G. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: Estragole, trans-anethole, β-caryophyllene and Myrcene. Nat. Prod. Res. 2015, 29, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Suárez, A.I.; Vásquez, L.J.; Taddei, A.; Arvelo, F.; Compagnone, R.S. Antibacterial and cytotoxic activity of leaf essential oil of Croton malambo. J. Essent. Oil Bear. Plants 2008, 11, 208–213. [Google Scholar] [CrossRef]
- Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Brilhante, R.S.N.; Cordeiro, R.A.; Nascimento, N.R.F.; Kerntopf, M.R.; Sidrim, J.J.C.; Rocha, M.F.G. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga Biome. J. Appl. Microbiol. 2008, 104, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.D.S.S.; Mendonça-Filho, R.R.; Bizzo, H.R.; de Almeida Rodrigues, I.; Soares, R.M.A.; Souto-Padron, T.; Alviano, C.S.; Lopes, A.H.C.S. Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob. Agents Chemother. 2003, 47, 1895–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huy Hung, N.; Ngoc Dai, D.; Satyal, P.; Thi Huong, L.; Thi Chinh, B.; Quang Hung, D.; Anh Tai, T.; Setzer, W.N. Lantana camara essential oils from Vietnam: Chemical composition, molluscicidal, and mosquito larvicidal activity. Chem. Biodivers. 2021, 18, e2100145. [Google Scholar] [CrossRef]
- Ravi Kiran, S.; Bhavani, K.; Sita Devi, P.; Rajeswara Rao, B.R.; Janardhan Reddy, K. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour. Technol. 2006, 97, 2481–2484. [Google Scholar] [CrossRef]
- Govindarajan, M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. Ex Benth (Rutaceae) against three mosquito species. Asian Pac. J. Trop. Med. 2010, 3, 874–877. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, A.C.; Simões, R.C.; Lima, C.A.P.; da Silva, F.M.A.; Nunomura, S.M.; Roque, R.A.; Tadei, W.P.; Nunomura, R.C.S. Essential oil of Piper purusanum C.DC (Piperaceae) and its main sesquiterpenes: Biodefensives against malaria and dengue vectors, without lethal effect on non-target aquatic fauna. Environ. Sci. Pollut. Res. 2022, 29, 47242–47253. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2016, 133, 395–402. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: Highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol. Res. 2016, 115, 2771–2778. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: Toxicity on non-target aquatic predators. Environ. Sci. Pollut. Res. 2018, 25, 10272–10282. [Google Scholar] [CrossRef]
- De Lima, G.P.G.; de Souza, T.M.; de Paula Freire, G.; Farias, D.F.; Cunha, A.P.; Ricardo, N.M.P.S.; de Morais, S.M.; Carvalho, A.F.U. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol. Res. 2013, 112, 1953–1958. [Google Scholar] [CrossRef]
- Périco, L.L.; Rodrigues, V.P.; Fernando, L.; De Almeida, R.; Fortuna-Perez, A.P. Medicinal and Aromatic Plants of South America; Albuquerque, U.P., Patil, U., Máthé, Á., Eds.; Medicinal and Aromatic Plants of the World; Springer: Dordrecht, The Netherlands, 2018; Volume 5, ISBN 978-94-024-1550-6. [Google Scholar]
- Cruz, R.C.D.; Silva, S.L.C.E.; Souza, I.A.; Gualberto, S.A.; Carvalho, K.S.; Santos, F.R.; Carvalho, M.G. Toxicological evaluation of essential oil from the leaves of Croton argyrophyllus (Euphorbiaceae) on Aedes aegypti (Diptera: Culicidae) and Mus musculus (Rodentia: Muridae). J. Med. Entomol. 2017, 54, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Dória, G.A.A.; Silva, W.J.; Carvalho, G.A.; Alves, P.B.; Cavalcanti, S.C.H. A study of the larvicidal activity of two Croton species from Northeastern Brazil against Aedes aegypti. Pharm. Biol. 2010, 48, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Pino, C.C.C.; de Menezes, J.E.S.A.; Siqueira, S.M.C.; Melo, D.S.; Feitosa, C.R.S.; Santos, H.S. Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton jacobinenesis Baill. Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 2016, 15, 122–127. [Google Scholar]
- Amado, J.R.R.; Prada, A.L.; Diaz, J.G.; Souto, R.N.P.; Arranz, J.C.E.; de Souza, T.P. Development, larvicide activity, and toxicity in nontarget species of the Croton linearis Jacq essential oil nanoemulsion. Environ. Sci. Pollut. Res. 2020, 27, 9410–9423. [Google Scholar] [CrossRef]
- Torres, M.C.M.; Assunção, J.C.; Santiago, G.M.P.; Andrade-Neto, M.; Silveira, E.R.; Costa-Lotufo, L.V.; Bezerra, D.P.; Filho, J.D.B.M.; Viana, F.A.; Pessoa, O.D.L. Larvicidal and nematicidal activities of the leaf essential oil of Croton regelianus. Chem. Biodivers. 2008, 5, 2724–2728. [Google Scholar] [CrossRef]
- Santos, G.; Dutra, K.; Lira, C.; Lima, B.; Napoleão, T.; Paiva, P.; Maranhão, C.; Brandão, S.; Navarro, D. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules 2014, 19, 16573–16587. [Google Scholar] [CrossRef] [Green Version]
- Morais, S.M.; Cavalcanti, E.S.B.; Bertini, L.M.; Oliveira, C.L.L.; Rodrigues, J.R.B.; Cardoso, J.H.L. Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J. Am. Mosq. Control Assoc. 2006, 22, 161–164. [Google Scholar] [CrossRef]
- Da Silva Carvalho, K.; da Cunha e Silva, S.L.; de Souza, I.A.; Gualberto, S.A.; da Cruz, R.C.D.; dos Santos, F.R.; de Carvalho, M.G. Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus. Parasitol. Res. 2016, 115, 3441–3448. [Google Scholar] [CrossRef]
- Da Cruz, R.C.D.; da Silva Carvalho, K.; Costa, R.J.O.; da Silva, P.A.; da Cunha e Silva, S.L.; Gualberto, S.A.; de Gusmão, N.B.; de Souza, I.A. Phytochemical and toxicological evaluation of a blend of essential oils of Croton species on Aedes aegypti and Mus musculus. S. Afr. J. Bot. 2020, 132, 188–195. [Google Scholar] [CrossRef]
- Silva, M.V.; Silva, S.A.; Teixera, T.L.; De Oliveira, A.; Al Morais, S.; Da Silva, C.V.; Espindola, L.S.; Sousa, R.M. Essential Oil from leaves of Eugenia calycina Cambes: Natural larvicidal against Aedes aegypti. J. Sci. Food Agric. 2021, 101, 1202–1208. [Google Scholar] [CrossRef]
- Dhinakaran, S.R.; Mathew, N.; Munusamy, S. Synergistic terpene combinations as larvicides against the dengue vector Aedes aegypti Linn. Drug Dev. Res. 2019, 80, 791–799. [Google Scholar] [CrossRef]
- Pereira Filho, A.A.; Pessoa, G.C.D.; Yamaguchi, L.F.; Stanton, M.A.; Serravite, A.M.; Pereira, R.H.M.; Neves, W.S.; Kato, M.J. Larvicidal activity of essential oils from Piper species against strains of Aedes aegypti (Diptera: Culicidae) resistant to pyrethroids. Front. Plant Sci. 2021, 12, 685864. [Google Scholar] [CrossRef] [PubMed]
- Waliwitiya, R.; Kennedy, C.J.; Lowenberger, C.A. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. 2009, 65, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-S.; Liu, J.-Y.; Tsai, K.-H.; Chen, W.-J.; Chang, S.-T. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum Provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar] [CrossRef]
- Seo, S.-M.; Jung, C.-S.; Kang, J.; Lee, H.-R.; Kim, S.-W.; Hyun, J.; Park, I.-K. Larvicidal and acetylcholinesterase inhibitory activities of Apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef]
- Knio, K.M.; Usta, J.; Dagher, S.; Zournajian, H.; Kreydiyyeh, S. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius. Bioresour. Technol. 2008, 99, 763–768. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
- Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef]
- Kimbaris, A.C.; Koliopoulos, G.; Michaelakis, A.; Konstantopoulou, M.A. Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol. Res. 2012, 111, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
- De Castro, D.S.B.; da Silva, D.B.; Tibúrcio, J.D.; Sobral, M.E.G.; Ferraz, V.; Taranto, A.G.; Serrão, J.E.; de Siqueira, J.M.; Alves, S.N. Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp. Parasitol. 2016, 171, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Perumalsamy, H.; Chang, K.S.; Park, C.; Ahn, Y.J. Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and-resistant Culex pipiens Pallens and Aedes aegypti and Ochlerotatus togoi. J. Agric. Food Chem. 2010, 58, 10001–10006. [Google Scholar] [CrossRef]
- Ahn, Y.; Kim, N.; Byun, S.; Cho, J.; Chung, K. Larvicidal activity of Kaempferia galanga rhizome phenylpropanoids towards three mosquito species. Pest Manag. Sci. 2008, 64, 857–862. [Google Scholar] [CrossRef]
- Zhu, L.; Tian, Y. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol. Res. 2013, 112, 1137–1142. [Google Scholar] [CrossRef]
- Lucia, A.; Audino, P.G.; Seccacini, E.; Licastro, S.; Zerba, E.; Masuh, H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 2007, 23, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.J.; Dória, G.A.A.; Maia, R.T.; Nunes, R.S.; Carvalho, G.A.; Blank, A.F.; Alves, P.B.; Marçal, R.M.; Cavalcanti, S.C.H. Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresour. Technol. 2008, 99, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Zerba, E.; Masuh, H. Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships. Parasitol. Res. 2013, 112, 4267–4272. [Google Scholar] [CrossRef]
- Park, H.-M.; Kim, J.; Chang, K.-S.; Kim, B.-S.; Yang, Y.-J.; Kim, G.-H.; Shin, S.-C.; Park, I.-K. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J. Med. Entomol. 2011, 48, 405–410. [Google Scholar] [CrossRef]
- Traboulsi, A.F.; Taoubi, K.; El-Haj, S.; Bessiere, J.; Rammal, S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens Molestus (Diptera: Culicidae). Pest Manag. Sci. 2002, 58, 491–495. [Google Scholar] [CrossRef]
- Koliopoulos, G.; Pitarokili, D.; Kioulos, E.; Michaelakis, A.; Tzakou, O. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol. Res. 2010, 107, 327–335. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Huang, C.-G.; Chen, Y.-J.; Yu, J.-J.; Chen, W.-J.; Chang, S.-T. Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour. Technol. 2009, 100, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Giatropoulos, A.; Kimbaris, A.; Michaelakis, A.; Papachristos, D.P.; Polissiou, M.G.; Emmanouel, N. Chemical composition and assessment of larvicidal and repellent capacity of 14 lamiaceae essential oils against Aedes albopictus. Parasitol. Res. 2018, 117, 1953–1964. [Google Scholar] [CrossRef]
- Huang, H.-T.; Lin, C.-C.; Kuo, T.-C.; Chen, S.-J.; Huang, R.-N. Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta 2019, 250, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Nogueira Sobrinho, A.C.; de Morais, S.M.; Marinho, M.M.; de Souza, N.V.; Lima, D.M. Antiviral activity on the Zika virus and larvicidal activity on the Aedes spp. of Lippia alba essential oil and β-caryophyllene. Ind. Crops Prod. 2021, 162, 113281. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Chang, H.-T.; Lin, C.-Y.; Chen, P.-S.; Huang, C.-G.; Chen, W.-J.; Chang, S.-T. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag. Sci. 2009, 65, 339–343. [Google Scholar] [CrossRef]
- Wang, Z.; Perumalsamy, H.; Wang, M.; Shu, S.; Ahn, Y.-J. Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag. Sci. 2016, 72, 897–906. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Maggi, F. Insecticidal efficacy of the essential oil of Jambú (Acmella oleracea (L.) R.K. Jansen) cultivated in Central Italy against filariasis mosquito vectors, houseflies and moth pests. J. Ethnopharmacol. 2019, 229, 272–279. [Google Scholar] [CrossRef]
- Hoi, T.M.; Huong, L.T.; Van Chinh, H.; Hau, D.V.; Satyal, P.; Tai, T.A.; Dai, D.N.; Hung, N.H.; Hien, V.T.; Setzer, W.N. Essential oil compositions of three invasive Conyza species collected in Vietnam and their larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Molecules 2020, 25, 4576. [Google Scholar] [CrossRef]
- Luo, D.-Y.; Yan, Z.-T.; Che, L.-R.; Zhu, J.J.; Chen, B. Repellency and insecticidal activity of seven Mugwort (Artemisia argyi) essential oils against the malaria vector Anopheles sinensis. Sci. Rep. 2022, 12, 5337. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, B.; Ali, A.; Ali, Z.; Blythe, E.K.; Khan, I.A. Essential oils of green and red Perilla frutescens as potential sources of compounds for mosquito management. Ind. Crops Prod. 2015, 65, 36–44. [Google Scholar] [CrossRef]
- Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Liu, Y.H.; Huang, C.G.; Chang, S.T. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind. Crops Prod. 2013, 47, 310. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Chua, M.-T.; Chang, E.-H.; Huang, C.-G.; Chen, W.-J.; Chang, S.-T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour. Technol. 2009, 100, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Semerdjieva, I.B.; Zheljazkov, V.; Cantrell, C.L.; Astatkie, T.; Ali, A. Essential oil yield and composition of the Balkan endemic Satureja pilosa Velen. (Lamiaceae). Molecules 2020, 25, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabanca, N.; Avonto, C.; Wang, M.; Parcher, J.F.; Ali, A.; Demirci, B.; Raman, V.; Khan, I.A. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti. J. Agric. Food Chem. 2013, 61, 12283–12291. [Google Scholar] [CrossRef]
- He, Q.; Wang, W.; Zhu, L. Larvicidal activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis. Malar. J. 2018, 17, 194. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.M.; Lee, J.W.; Shin, J.; Tak, J.H.; Hyun, J.; Park, I.K. Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Sci. Rep. 2021, 11, 12038. [Google Scholar] [CrossRef] [PubMed]
- Giatropoulos, A.; Papachristos, D.P.; Kimbaris, A.; Koliopoulos, G.; Polissiou, M.G.; Emmanouel, N.; Michaelakis, A. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol. Res. 2012, 111, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Michaelakis, A.; Papachristos, D.; Kimbaris, A.; Koliopoulos, G.; Giatropoulos, A.; Polissiou, M.G. Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol. Res. 2009, 105, 769–773. [Google Scholar] [CrossRef]
- Hung, N.H.; Dai, D.N.; Cong, T.N.; Dung, N.A.; Linh, L.D.; Van Hoa, V.; Hien, T.T.; Chuong, N.T.H.; Hien, V.T.; Van Nguyen, B.; et al. Pesticidal activities of Callicarpa and Premna essential oils from Vietnam. Nat. Prod. Commun. 2022, 17, 1934578X2211106. [Google Scholar] [CrossRef]
- Ribeiro, I.A.T.A.; Sá, J.L.F.; Lima, M.V.; Veras, S.T.S.; Aguiar, J.C.R.O.F.; Aires, A.L.; Albuquerque, M.C.P.A.; da Silva, M.V.; Melo, A.M.M.A.; Navarro, D.M.A.F.; et al. Toxic effect of Croton rudolphianus leaf essential oil against Biomphalaria glabrata, Schistosoma mansoni Cercariae and Artemia salina. Acta Trop. 2021, 223, 106102. [Google Scholar] [CrossRef]
- Lahlou, M. Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharm. Biol. 2003, 41, 207–210. [Google Scholar] [CrossRef]
- Corpas-López, V.; Merino-Espinosa, G.; López-Viota, M.; Gijón-Robles, P.; Morillas-Mancilla, M.J.; López-Viota, J.; Díaz-Sáez, V.; Morillas-Márquez, F.; Navarro Moll, M.C.; Martín-Sánchez, J. Topical treatment of Leishmania tropica infection using (−)-α-bisabolol ointment in a hamster model: Effectiveness and safety assessment. J. Nat. Prod. 2016, 79, 2403–2407. [Google Scholar] [CrossRef] [PubMed]
- Arruda, D.C.; D’Alexandri, F.L.; Katzin, A.M.; Uliana, S.R.B. Antileishmanial activity of the terpene nerolidol. Antimicrob. Agents Chemother. 2005, 49, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Morais, S.; Cossolosso, D.; Silva, A.; de Moraes, M.; Teixeira, M.; Campello, C.; Bonilla, O.; de Paula, V.; Vila-Nova, N. Essential oils from Croton species: Chemical composition, in vitro and in silico antileishmanial evaluation, antioxidant and cytotoxicity activities. J. Braz. Chem. Soc. 2019, 5, 49–52. [Google Scholar] [CrossRef]
- Braga de Oliveira, M.I.; Rodrigues Brandão, F.; Rocha da Silva, M.J.; Carvalho Rosa, M.; Santana Farias, C.F.; Silva dos Santos, D.; Majolo, C.; de Oliveira, M.R.; Chaves, F.C.M.; Bizzo, H.R.; et al. In vitro anthelmintic efficacy of essential oils in the control of Neoechinorhynchus buttnerae, an endoparasite of Colossoma macropomum. J. Essent. Oil Res. 2021, 33, 509–522. [Google Scholar] [CrossRef]
- Díaz, J.G.; Arranz, J.C.E.; Da Gama Jaen Batista, D.; Fidalgo, L.M.; De La Vega Acosta, J.; de Macedo, M.B.; Cos, P. Antileishmanial potentialities of Croton linearis leaf essential oil. Nat. Prod. Commun. 2018, 13, 1934578X1801300. [Google Scholar] [CrossRef] [Green Version]
- García-Díaz, J.; Escalona-Arranz, J.C.; Ochoa-Pacheco, A.; Dos Santos, S.G.; González-Fernández, R.; Rojas-Vargas, J.A.; Monzote, L.; Setzer, W.N. Chemical composition and in vitro and in silico antileishmanial evaluation of the essential oil from Croton linearis Jacq. stems. Antibiotics 2022, 11, 1712. [Google Scholar] [CrossRef] [PubMed]
- Tariku, Y.; Hymete, A.; Hailu, A.; Rohloff, J. Constituents, antileishmanial activity and toxicity profile of volatile oil from berries of Croton macrostachyus. Nat. Prod. Commun. 2010, 5, 975–980. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, M.G.; Rondon, F.C.M.; Carneiro-Torres, D.S.; Fampa, P.; Bevilaqua, C.M.L.; Nogueira Bandeira, P.; Amorim Gomes, G. Croton pulegiodorus Baill and Croton piauhiensis Mull. Arg. (Euphorbiaceae) essential oils: Chemical composition and anti-Leishmania activity. Rev. Virtual Química 2022, 14, 938–946. [Google Scholar] [CrossRef]
- Rodrigues, I.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Bizzo, H.R.; Corte-Real, S.; Alviano, D.S.; Alviano, C.S.; Rosa, M.S.S.; Vermelho, A.B. In vitro cytocidal effects of the essential oil from Croton cajucara (Red Sacaca) and its major constituent 7- hydroxycalamenene against Leishmania chagasi. BMC Complement. Altern. Med. 2013, 13, 249. [Google Scholar] [CrossRef] [Green Version]
- Monzote, L.; García, M.; Pastor, J.; Gil, L.; Scull, R.; Maes, L.; Cos, P.; Gille, L. Essential oil from Chenopodium ambrosioides and main components: Activity against Leishmania, their mitochondria and other microorganisms. Exp. Parasitol. 2014, 136, 20–26. [Google Scholar] [CrossRef]
- Pastor, J.; García, M.; Steinbauer, S.; Setzer, W.N.; Scull, R.; Gille, L.; Monzote, L. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop. 2015, 145, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Nibret, E.; Wink, M. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine 2010, 17, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Cavadas, C.; Cavaleiro, C.; Salgueiro, L.; do Céu Sousa, M. In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components. Exp. Parasitol. 2018, 190, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.; González-Coloma, A.; Fe Andrés, M.; Navarro-Rocha, J.; Martínez-Díaz, R.A. Biological evaluation of essential oils from selected medicinal plants and their main components against Phytomonas davidi (Kinetoplastea: Trypanosomatidae). Chem. Biodivers. 2020, 17, e2000521. [Google Scholar] [CrossRef]
- Essid, R.; Rahali, F.Z.; Msaada, K.; Sghair, I.; Hammami, M.; Bouratbine, A.; Aoun, K.; Limam, F. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind. Crops Prod. 2015, 77, 795–802. [Google Scholar] [CrossRef]
- Tasdemir, D.; Kaiser, M.; Demirci, B.; Demirci, F.; Baser, K.H.C. Antiprotozoal activity of Turkish Origanum onites essential oil and its components. Molecules 2019, 24, 4421. [Google Scholar] [CrossRef] [Green Version]
- Do Carmo, D.F.M.; Amaral, A.C.F.; MacHado, G.M.C.; Leon, L.L.; De Andrade Silva, J.R. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules 2012, 17, 1819–1829. [Google Scholar] [CrossRef]
- Leal, S.M.; Pino, N.; Stashenko, E.E.; Martínez, J.R.; Escobar, P. Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. J. Essent. Oil Res. 2013, 25, 512–519. [Google Scholar] [CrossRef]
- Almohammed, H.I.; Alkhaibari, A.M.; Alanazi, A.D. Antiparasitic effects of Elettaria cardamomum L. essential oil and its main compounds, 1,8-cineole alone and in combination with albendazole against Echinococcus granulosus Protoscoleces. Saudi J. Biol. Sci. 2022, 29, 2811–2818. [Google Scholar] [CrossRef]
- Silva, A.; Scher, R.; Santos, F.; Ferreira, S.; Cavalcanti, S.; Correa, C.; Bueno, L.; Alves, R.; Souza, D.; Fujiwara, R.; et al. Leishmanicidal activity and structure-activity relationships of essential oil constituents. Molecules 2017, 22, 815. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.; Dinis, A.M.; Santos-Rosa, M.; Alves, V.; Salgueiro, L.; Cavaleiro, C.; Sousa, M.C. Activity of Thymus capitellatus volatile extract, 1,8-cineole and borneol against Leishmania species. Vet. Parasitol. 2014, 200, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Kpadonou Kpoviessi, B.G.H.; Kpoviessi, S.D.S.; Yayi Ladekan, E.; Gbaguidi, F.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J.; Accrombessi, G.C.; Bero, J. In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. J. Ethnopharmacol. 2014, 155, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, R.R.P.P.B.; Sampaio, T.L.; Lima, D.B.; Sousa, P.L.; de Azevedo, I.E.P.; Magalhães, E.P.; Tessarolo, L.D.; Marinho, M.M.; dos Santos, R.P.; Martins, A.M.C. Antiparasitic effect of (−)-α-bisabolol against Trypanosoma cruzi Y strain forms. Diagn. Microbiol. Infect. Dis. 2019, 95, 114860. [Google Scholar] [CrossRef] [PubMed]
- Hajaji, S.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Jiménez, I.A.; Bazzocchi, I.L.; Valladares, B.; Akkari, H.; Lorenzo-Morales, J.; Piñero, J.E. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol. Res. 2018, 117, 2855–2867. [Google Scholar] [CrossRef] [PubMed]
- Clemente, C.M.; Pineda, T.; Yepes, L.M.; Upegui, Y.; Allemandi, D.A.; Robledo, S.M.; Ravetti, S. Eugenol carbonate activity against Plasmodium falciparum, Leishmania braziliensis, and Trypanosoma cruzi. Arch. Pharm. 2022, 355, 2100432. [Google Scholar] [CrossRef]
- Ueda-Nakamura, T.; Mendonça-Filho, R.R.; Morgado-Díaz, J.A.; Korehisa Maza, P.; Prado Dias Filho, B.; Aparício Garcia Cortez, D.; Alviano, D.S.; Rosa, M.D.S.S.; Lopes, A.H.C.S.; Alviano, C.S.; et al. Antileishmanial activity of eugenol-rich essential oil from Ocimum gratissimum. Parasitol. Int. 2006, 55, 99–105. [Google Scholar] [CrossRef]
- Wanas, A.S.; Radwan, M.M.; Mehmedic, Z.; Jacob, M.; Khan, I.A.; Elsohly, M.A. Antifungal activity of the volatiles of high potency Cannabis sativa L. against Cryptococcus neoformans. Rec. Nat. Prod. 2015, 10, 214–220. [Google Scholar]
- Menezes, L.R.A.; Santos, N.N.; Meira, C.S.; dos Santos, J.A.F.; Guimarães, E.T.; Soares, M.B.P.; Nepel, A.; Barison, A.; Costa, E.V. A new source of (R)-limonene and rotundifolone from leaves of Lippia pedunculosa (Verbenaceae) and their trypanocidal properties. Nat. Prod. Commun. 2014, 9, 1934578X1400900. [Google Scholar] [CrossRef]
- Matos-Rocha, T.; dos Santos Cavalcanti, M.; Barbosa-Filho, J.; Lúcio, A.; Veras, D.; Feitosa, A.; de Siqueira Júnior, J.; de Almeida, R.; Marques, M.; Alves, L.; et al. In vitro evaluation of schistosomicidal activity of essential oil of Mentha x villosa and some of its chemical constituents in adult worms of Schistosoma mansoni. Planta Med. 2013, 79, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Ceole, L.F.; Cardoso, M.D.G.; Soares, M.J. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity. Parasitology 2017, 144, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
- Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; da Silva Calabrese, K.; Abreu-Silva, A.L.; Marinho, S.C.; Mouchrek, A.N.; Filho, V.E.M.; Almeida-Souza, F. Aniba rosaeodora (var. amazonica Ducke) essential oil: Chemical composition, antibacterial, antioxidant and antitrypanosomal activity. Antibiotics 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Villamizar, L.H.; das Graças Cardoso, M.; de Andrade, J.; Teixeira, M.L.; Soares, M.J. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4 °C. Mem. Inst. Oswaldo Cruz 2017, 112, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikus, J.; Harkenthal, M.; Steverding, D.; Reichling, J. In vitro effect of essential oils and isolated mono- and sesquiterpenes on Leishmania major and Trypanosoma brucei. Planta Med. 2000, 66, 366–368. [Google Scholar] [CrossRef]
- Pereira Filho, A.A.; Cunha, M.M.; Alves Stanton, M.; Fumiko Yamaguchi, L.; Jorge Kato, M.; Martins-Duarte, É.S. In vitro activity of essential oils from Piper species (Piperaceae) against tachyzoites of Toxoplasma gondii. Metabolites 2023, 13, 95. [Google Scholar] [CrossRef]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ismail, Z.; Rahman, A.; Kang, S.C. Chemical composition and anti-fungal properties of the essential oils and crude extracts of Orthosiphon stamineus Benth. Ind. Crops Prod. 2008, 27, 328–334. [Google Scholar] [CrossRef]
- Lazarević, J.S.; Ðorđević, A.S.; Kitić, D.V.; Zlatković, B.K.; Stojanović, G.S. Chemical composition and antimicrobial activity of the essential oil of Stachys officinalis (L.) Trevis. (Lamiaceae). Chem. Biodivers. 2013, 10, 1335–1349. [Google Scholar] [CrossRef]
- Ximenes, R.M.; de Morais Nogueira, L.; Cassundé, N.M.R.; Jorge, R.J.B.; dos Santos, S.M.; Magalhães, L.P.M.; Silva, M.R.; de Barros Viana, G.S.; Araújo, R.M.; de Sena, K.X. da F.R.; et al. Antinociceptive and wound healing activities of Croton adamantinus Müll. Arg. essential oil. J. Nat. Med. 2013, 67, 758–764. [Google Scholar] [CrossRef]
- Cucho-Medrano, J.L.L.; Mendoza-Beingolea, S.W.; Fuertes-Ruitón, C.M.; Salazar-Salvatierra, M.E.; Herrera-Calderon, O. Chemical profile of the volatile constituents and antimicrobial activity of the essential oils from Croton adipatus, Croton thurifer, and Croton collinus. Antibiotics 2021, 10, 1387. [Google Scholar] [CrossRef]
- Da Silva Brito, S.S.; Silva, F.; Malheiro, R.; Baptista, P.; Pereira, J.A. Croton argyrophyllus Kunth and Croton heliotropiifolius Kunth: Phytochemical characterization and bioactive properties. Ind. Crops Prod. 2018, 113, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Araújo, L.G.; Veras, G.; Oliveira Alves, J.V.; Oliveira de Veras, B.; Silva, M.V.; Bacalhau Rodrigues, J.F.; Lia Fook, M.V.; Sagoe Amoah, S.K.; Conceição de Menezes Torres, M. Chemodiversity and antibacterial activity of the essential oil of leaves of Croton argyrophyllus. Chem. Biodivers. 2020, 17, e2000575. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, B.M.; Pereira, A.M.G.; Coelho, P.A.T.; Cavalcante, R.M.B.; Carneiro-Torres, D.S.; Bandeira, P.N.; da Silva, F.F.; Rodrigues, T.H.S.; Gomes, G.A.; Carneiro, V.A. Enhancement of chlorhexidine activity against planktonic and biofilm forms of oral streptococci by two Croton spp. essential oils from the caatinga biome. Biofouling 2022, 38, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Barreto Alves, J.A.; da Silva Nunes, M.; Fakhouri, R.; Saquete Martins-Filho, P.R.; do Carmo de Oliveira Ribeiro, M.; Correa de Vasconcellos, A.; Oliveira Santos, P.; Marchioro, M.; de Cassia Trindade, R.; Santos Frazão, G.G.; et al. Inhibition of drug-sensitive and drug-resistant mycobacterium tuberculosis strains by essential oil from Croton argyrophylloides Mull. Arg. Int. Arch. Med. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Malveira, E.A.; Souza, P.F.N.; Neto, N.A.S.; Aguiar, T.K.B.; Rodrigues, N.S.; Henrique, C.W.B.; Silva, A.F.B.; Lima, L.B.; Albuquerque, C.C.; Freitas, C.D.T. Essential oil from Croton blanchetianus leaves: Anticandidal potential and mechanisms of action. J. Fungi 2022, 8, 1147. [Google Scholar] [CrossRef]
- De Vasconcelos, E.C.; Longhi, D.A.; Paganini, C.C.; Severo, D.d.S.; Canuto, K.M.; de Queiroz Souza, A.S.; de Figueiredo, E.A.T.; de Aragão, G.M.F. Modeling the effect of Croton blanchetianus Baill essential oil on pathogenic and spoilage bacteria. Arch. Microbiol. 2022, 204, 618. [Google Scholar] [CrossRef]
- Alviano, W.S.; Mendonca-Filho, R.R.; Alviano, D.S.; Bizzo, H.R.; Souto-Padron, T.; Rodrigues, M.L.; Bolognese, A.M.; Alviano, C.S.; Souza, M.M.G. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Immunol. 2005, 20, 101–105. [Google Scholar] [CrossRef]
- Azevedo, M.M.B.; Almeida, C.A.; Chaves, F.C.M.; Ricci-Júnior, E.; Garcia, A.R.; Rodrigues, I.A.; Alviano, C.S.; Alviano, D.S. Croton cajucara essential oil nanoemulsion and its antifungal activities. Processes 2021, 9, 1872. [Google Scholar] [CrossRef]
- Azevedo, M.M.B.; Pereira, A.Q.; Chaves, F.C.M.; Bizzo, H.R.; Alviano, C.S.; Alviano, D.S. Antimicrobial activity of the essential oils from the leaves of two morphotypes of Croton cajucara Benth. J. Essent. Oil Res. 2012, 24, 351–357. [Google Scholar] [CrossRef]
- Azevedo, M.; Chaves, F.; Almeida, C.; Bizzo, H.; Duarte, R.; Campos-Takaki, G.; Alviano, C.; Alviano, D. Antioxidant and antimicrobial activities of 7-hydroxy-calamenene-rich essential oils from Croton cajucara Benth. Molecules 2013, 18, 1128–1137. [Google Scholar] [CrossRef] [Green Version]
- El Babili, F.; Fouraste, I.; Moulis, C.; Bessiere, J.M.; Roques, C.; Haddioui, L. Essential oil of leaves of Croton campestris St. Hilaire, its secretory elements, and its biological activity. J. Essent. Oil Res. 2009, 21, 272–275. [Google Scholar] [CrossRef]
- Sánchez-Hernández, G.R.; Villa-Ruano, N.; Rubio-Rosas, E.; Zarate-Reyes, J.A.; Cruz-Durán, R.; Lozoya-Gloria, E. Chemical constituents and anti-fungal activity of the essential oils from Lantana hirta and Croton ciliatoglandulifer. Rev. Latinoam. Quim. 2018, 46, 17–24. [Google Scholar]
- De Oliveira, G.D.; da Rocha, W.R.V.; Rodrigues, J.F.B.; da Silva Alves, H. Synergistic and antibiofilm effects of the essential oil from Croton conduplicatus (Euphorbiaceae) against methicillin-resistant Staphylococcus aureus. Pharmaceuticals 2022, 16, 55. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, Y.E.; Danelon, M.; Salvador, M.J.; Koga-Ito, C.Y.; Botazzo Delbem, A.C.; Ramirez-Rueda, R.Y.; Lacerda Gontijo, A.V.; Brighenti, F.L. Mouthwash containing Croton doctoris essential oil: In vitro study using a validated model of caries induction. Future Microbiol. 2018, 13, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Valarezo, E.; Gaona-Granda, G.; Morocho, V.; Cartuche, L.; Calva, J.; Meneses, M.A. Chemical constituents of the essential oil from Ecuadorian endemic species Croton ferrugineus and its antimicrobial, antioxidant and α-glucosidase inhibitory activity. Molecules 2021, 26, 4608. [Google Scholar] [CrossRef]
- Lawal, O.A.; Ogunwande, I.A.; Osunsanmi, F.O.; Opoku, A.R.; Oyedeji, A.O. Croton gratissimus leaf essential oil composition, antibacterial, antiplatelet aggregation, and cytotoxic activities. J. Herbs. Spices Med. Plants 2017, 23, 77–87. [Google Scholar] [CrossRef]
- De Medeiros, V.M.; do Nascimento, Y.M.; Souto, A.L.; Madeiro, S.A.L.; Costa, V.C.d.O.; Silva, S.M.P.M.; Falcão Silva, V.d.S.; Agra, M.d.F.; de Siqueira-Júnior, J.P.; Tavares, J.F. Chemical composition and modulation of bacterial drug resistance of the essential oil from leaves of Croton grewioides. Microb. Pathog. 2017, 111, 468–471. [Google Scholar] [CrossRef]
- De Alencar Filho, J.M.T.; Araújo, L.D.C.; Oliveira, A.P.; Guimarães, A.L.; Pacheco, A.G.M.; Silva, F.S.; Cavalcanti, L.S.; Lucchese, A.M.; Almeida, J.R.G.D.S.; Araújo, E.C.D.C. Chemical composition and antibacterial activity of essential oil from leaves of Croton heliotropiifolius in different seasons of the year. Rev. Bras. Farmacogn. 2017, 27, 440–444. [Google Scholar] [CrossRef]
- Araújo, F.M.; Dantas, M.C.S.M.; e Silva, L.S.; Aona, L.Y.S.; Tavares, I.F.; de Souza-Neta, L.C. Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind. Crops Prod. 2017, 105, 203–206. [Google Scholar] [CrossRef]
- Moreno, P.R.H.; Lima, M.E.L.; Caruzo, M.B.R.; Torres, D.S.C.; Cordeiro, I.; Young, M.C.M. Chemical composition and antimicrobial activity of the essential oil from Croton heterocalyx Baill. (Euphorbiaceae s.s.) leaves. J. Essent. Oil Res. 2009, 21, 190–192. [Google Scholar] [CrossRef]
- De Heluani, C.S.; de Lampasona, M.P.; Vega, M.I.; Catalan, C.A.N. Antimicrobial activity and chemical composition of the leaf and root oils from Croton hieronymi Griseb. J. Essent. Oil Res. 2005, 17, 351–353. [Google Scholar] [CrossRef]
- Rossi, D.; Guerrini, A.; Maietti, S.; Bruni, R.; Paganetto, G.; Poli, F.; Scalvenzi, L.; Radice, M.; Saro, K.; Sacchetti, G. Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: A new functional food ingredient? Food Chem. 2011, 126, 837–848. [Google Scholar] [CrossRef]
- Werka, J.S.; Boehme, A.K.; Setzer, W.N. Biological activities of essential oils from Monteverde, Costa Rica. Nat. Prod. Commun. 2007, 2, 1215–1219. [Google Scholar] [CrossRef]
- Setzer, W.N. Chemical compositions of the bark essential oils of Croton monteverdensis and Croton niveus from Monteverde, Costa Rica. Nat. Prod. Comun. 2006, 1, 567–572. [Google Scholar] [CrossRef]
- Athikomkulchai, S.; Tadtong, S.; Ruangrungsi, N.; Hongratanaworakit, T. Chemical composition of the essential oil from Croton oblongifolius and its antibacterial activity against Propionibacterium acnes. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.S.; Oliveira-Tintino, C.D.M.; Tintino, S.R.; Galvão, H.B.F.; da Costa, J.G.M.; Coutinho, H.D.M.; de Menezes, I.R.A. Chemical composition, antibacterial and modulatory action of the essential oil of Croton rhamnifolioides Pax and Hoffman leaves. Biosci. J. 2016, 32, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.P.; Salgueiro, L.R.; Gonçalves, M.J.; Vila, R.; Tomi, F.; Adzet, T.; Proença da Cunha, A.; Cañigueral, S.; Casanova, J. Antimicrobial activity and chemical composition of the bark oil of Croton stellulifer, an endemic species from S. Tomé e Príncipe. Planta Med. 2000, 66, 647–650. [Google Scholar] [CrossRef]
- Almeida-Pereira, C.S.; de Lima Nogueira, P.C.; Barbosa, A.A.T.; Aparecida de Castro Nizio, D.; de Fatima Arrigoni-Blank, M.; Sampaio, T.S.; Alves, R.P.; de Araujo-Couto, H.G.S.; Feitosa-Alcantara, R.B.; de Melo, J.O.; et al. Chemical composition and antimicrobial activity of essential oils of a Croton tetradenius Baill. Germplasm. J. Essent. Oil Res. 2019, 31, 379–389. [Google Scholar] [CrossRef]
- Siqueira, I.B.; Teixeira Barbosa, A.A.; Jain, S.; Miranda Fernandes, R.P.; Tavares Silva, A.R.S.; Ferreira Barbosa, F.H.; Schimieguel, D.M.; Blank, A.F.; Sacramento, A.G.; de Castro Nizio, D.A.; et al. In vitro antibacterial activity of essential oils of Croton tetradenius Baill. from the Brazilian Caatinga Biome and its synergistic effect with ciprofloxacin and meropenem. J. Essent. Oil Bear. Plants 2021, 24, 12–21. [Google Scholar] [CrossRef]
- Rocha, R.R.; Matos, M.N.C.; Guerrero, J.A.P.; Cavalcante, R.M.B.; Melo, R.S.; Azevedo, Á.M.A.; Pereira, A.M.G.; Lopes, P.H.R.; Rodrigues, T.H.S.; Bandeira, P.N.; et al. Comparative study of the chemical composition, antibacterial activity and synergic effects of the essential oils of Croton tetradenius Baill. and C. Pulegiodorus Baill. against Staphylococcus aureus isolates. Microb. Pathog. 2021, 156, 104934. [Google Scholar] [CrossRef]
- Miranda, F.M.; Braga do Nascimento Junior, B.; Aguiar, R.M.; Pereira, R.S.; De Oliveira Teixeira, A.; Menzes De Oliveira, D.; de Oliveira Lima, E.; Oigman, S.S.; Moraes de Rezende, C.; Froldi, G. Promising antifungal activity of Croton tricolor stem essential oil against Candida yeasts. J. Essent. Oil Res. 2019, 31, 223–227. [Google Scholar] [CrossRef]
- Simionatto, E.; Bonani, V.F.L.; Morel, A.F.; Poppi, N.R.; Raposo Júnior, J.L.; Stuker, C.Z.; Peruzzo, G.M.; Peres, M.T.L.P.; Hess, S.C. Chemical composition and evaluation of antibacterial and antioxidant activities of the essential oil of Croton urucurana Baillon (Euphorbiaceae) stem bark. J. Braz. Chem. Soc. 2007, 18, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Yagi, S.; Babiker, R.; Tzanova, T.; Schohn, H. Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pac. J. Trop. Med. 2016, 9, 763–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017; ISBN 9780998155722. [Google Scholar]
- Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
- NIST17. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
- Huong, L.T.; Hung, N.H.; Dai, D.N.; Tai, T.A.; Hien, V.T.; Satyal, P.; Setzer, W.N. Chemical compositions and mosquito larvicidal activities of essential oils from Piper species growing wild in Central Vietnam. Molecules 2019, 24, 3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadacek, F.; Greger, H. Testing of antifungal natural products: Methodologies, comparability of results and assay choice. Phytochem. Anal. 2000, 11, 137–147. [Google Scholar] [CrossRef]
- Finney, D. Probit Analysis, Reissue, ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0521135900. [Google Scholar]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective effects of (E)-β-caryophyllene (bcp) in chronic inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef]
Test Organism | 24-h LC50 (95% Limits) | 24-h LC90 (95% Limits) | 48-h LC50 (95% Limits) | 48-h LC90 (95% Limits) |
---|---|---|---|---|
Aedes aegypti (third–fourth instar) | 29.71 (28.04–31.85) | 39.55 (36.11–45.53) | 25.67 (24.08–27.82) | 34.59 (31.57–39.82) |
Aedes albopictus (third–fourth instar) | 15.38 (14.51–16.53) | 20.10 (18.38–22.99) | 14.29 (13.31–15.55) | 19.36 (17.61–22.31) |
Aedes albopictus (fourth instar, wild) | 78.27 (71.15–86.89) | 128.37 (115.56–146.48) | 60.0 (53.17–67.73) | 155.80 (129.95–197.41) |
Culex quinquefasciatus (third instar) | 50.84 (45.90–56.15) | 100.87 (88.39–119.70) | 30.42 (28.37–33.78) | 38.98 (34.82–48.06) |
Culex fuscocephala (third–fourth instar) | 65.84 (62.24–69.56) | 95.15 (89.61–102.41) | 38.21 (33.34–43.62) | 156.96 (123.03–220.31) |
Compounds | LC50 (95% Limits) | LC90 (95% Limits) | χ2 | p |
---|---|---|---|---|
24 h | ||||
Caryophyllene oxide | 39.65 (35.83–42.53) | 49.41 (46.31–53.36) | 0.011 | 1.00 |
α-Humulene | 48.19 (44.33–52.29) | 87.64 (78.81–100.02) | 1.890 | 0.596 |
β-Caryophyllene | 111.66 (105.55–118.0) | 160.10 (151.39–170.85) | 3.782 | 0.436 |
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:1 | 9.54 (8.06–11.00) | 23.08 (20.48–26.83) | 11.905 | 0.018 |
48 h | ||||
Caryophyllene oxide | 37.92 (34.73–40.82) | 47.94 (44.58–52.34) | 0.015 | 1.00 |
α-Humulene | 36.22 (33.15–39.51) | 70.58 (62.82–81.67) | 5.124 | 0.163 |
β-Caryophyllene | 94.43 (88.37–100.84) | 145.91 (136.85–157.04) | 1.821 | 0.769 |
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:1 | 8.97 (7.48–10.40) | 22.30 (19.78–25.93) | 9.252 | 0.055 |
Componds | LC50 (95% Limits) | LC90 (95% Limits) | χ2 | p |
---|---|---|---|---|
24 h | ||||
Caryophyllene oxide | 38.68 (35.84–41.44) | 53.28 (49.31–58.93) | 0.212 | 0.976 |
α-Humulene | 31.49 (28.62–34.67) | 65.14 (56.73–78.08) | 8.186 | 0.042 |
β-Caryophyllene | 30.11 (27.65–32.81) | 53.88 (47.80–63.20) | 1.865 | 0.601 |
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:1 | >50 | >50 | Nd | Nd |
48 h | ||||
Caryophyllene oxide | 33.95 (31.55–36.61) | 49.37 (44.93–56.02) | 2.136 | 0.545 |
α-Humulene | 26.44 (24.0–29.13) | 55.80 (48.53–66.95) | 5.662 | 0.129 |
β-Caryophyllene | 25.70 (23.46–28.17) | 50.26 (44.15–59.60) | 3.258 | 0.354 |
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:1 | >50 | >50 | Nd | Nd |
Species | Yield (%) | Main Components a | 24-h LC50 (μg/mL) | 24-h LC90 (μg/mL) | Ref. |
---|---|---|---|---|---|
Croton argyrophylloides Muell | Aerial parts: Nd | trans-β-Guaiene, α-pinene, β-elemene, 1,8-cineole. | 94.6 | Nd | [65] |
Croton argyrophyllus Kunth | Dried leaves: 0.48 | Spathulenol, β-caryophyllene, α-pinene, bicyclogermacrene. | 310 | 700 | [67] |
Croton heliotropiifolius Kunth | Dried leaves: 0.2 | β-Caryophyllene, bicyclogermacrene, germacrene D. | 544 | Nd | [68] |
Croton jacobinenesis Baill. | Leaves: 0.80 | 1,8-Cineole, β-caryophyllene, viridiflorene, α-pinene, β-pinene. | 79.3 | Nd | [69] |
Stalks: 0.70 | δ-Cadinene, β-caryophyllene, γ-muurolene, γ-cadinene, 6,9-guaiadiene, viridiflorene, | 117.2 | Nd | [69] | |
Inflorescences: 0.05 | 1,8-Cineole, β-caryophyllene, viridiflorene, α-pinene. | 65.8 | Nd | [69] | |
Croton linearis Jacq | Fresh leaves: 1.50 | 1,8-Cineole, sabinene, 10-epi-γ-eudesmol, hinesol | 64.24 | 143.85 | [70] |
Croton nepetaefolius Bail | Aerial parts: Nd | Methyleugenol, α-copaene, croweacin, caryophyllene oxide. | 66.4 | 154 | [65] |
Croton pulegiodorus Baill. | Dried leaves: 5.0 | β-Caryophyllene, bicyclogermacrene, germacrene D. | 159 | Nd | [68] |
Croton regelianus Müll. Arg. | Fresh leaves: 1.3 | p-Cymene, ascaridole, camphor, α- phellandrene. | 66.74 | Nd | [71] |
Fresh leaves: 0.5 | Ascaridole, p-cymene, α-terpinene, γ-terpinene. | 24.22 | Nd | [71] | |
Croton rhamnifolioides Pax and K. Hoffm. | Fresh leaves: Nd | Sesquicineole, α-phellandrene, β-caryophyllene, 1,8-cineole, | 122.3 | Nd | [72] |
Dried leaves: 0.80% | 1,8-Cineole, o-cymene, α-pinene, α-phellandrene, sabinene. | 89.0 | Nd | [72] | |
Croton sonderianus Muell | Aerial parts: Nd | Spathulenol, β-caryophyllene, caryophyllene oxide, 1,8-cineole | 54.5 | Nd | [65] |
Leaves: Nd | β-Phellandrene, trans-β-guaiene, α-pinene, β-caryophyllene, γ-muurolene. | 104 | 119 | [73] | |
Croton tetradenius Baill. | 2.73 | Camphor, γ-terpineol, α-terpinene, p-cymene, γ-terpinene. | 152 | 297 | [74] |
Blend (1:1, w/w) of Croton argyrophyllus Kunth. and Croton tetradenius Baill. | Nd | Camphor, isopinocampheol, β-caryophyllene, spathulenol. | 160 | 400 | [75] |
Croton zehntneri Pax et Hoffm | Aerial parts: Nd | (E)-Anethole | 26.2 | Nd | [65] |
Aerial parts: Nd | (E)-Anethole | 28 | 32 | [73] | |
Croton zehntneri Pax et Hoffm | Leaves: 1.04 | (E)-Anethole | 56.2 | Nd | [52] |
Stalks: 0.46 | (E)-Anethole, p-anisaldehyde, anisyl acetate, estragole. | 51.3 | Nd | [52] | |
Inflorescences: 0.30 | (E)-Anethole | 57.5 | Nd | [52] | |
Leaves: Nd | α-Pinene, trans-β-guaiene, β-pinene, β-gurjunene, β-elemene. | 102 | 129 | [73] | |
Leaves: Nd | Methyleugenol, α-copaene, β-caryophyllene | 84 | Nd | [73] |
Compound | LC50, μg/mL | LC90 μg/mL | Mosquito | Ref. |
---|---|---|---|---|
(E)-Anethole | 69.2 | Nd | Aedes aegypti | [52] |
50.19 | 65.21 | Aedes aegypti | [77] | |
34.41–38.98 | 71.03–82.72 | Aedes aegypti | [78] | |
67.1–85.5 | Nd | Aedes aegypti | [79] | |
42 | >50 | Aedes aegypti | [80] | |
50 < LC50 < 100 | Nd | Aedes albopictus | [81] | |
73.99 | 109.86 | Ochlerotatus caspius | [82] | |
24.8 μL/L | 32.1 μL/L | Culex quinquefasciatus | [83] | |
21 | 34 | Culex quinquefasciatus | [84] | |
16.56 | 25.29 | Culex pipiens | [85] | |
Ascaridole (89.5%) | 41.85 | 74.45 | Culex quinquefasciatus | [86] |
9.60 | Nd | Aedes aegypti | [71] | |
α-Asarone | 22.38–23.82 | Nd | Culex pipiens pallens | [87] |
Bicyclogermacrene | 11.1 | 22.14 | Aedes albopictus | [62] |
12.5 | 24.2 | Culex tritaeniorhynchus | [62] | |
10.3 | 20.9 | Anopheles subpictus | [62] | |
Borneol | >500 | >500 | Aedes aegypti | [79] |
(+)-Borneol | >100 | Nd | Culex pipiens pallens | [88] |
(−)-Borneol | >100 | Nd | Culex pipiens pallens | [88] |
δ-Cadinene | 8.23 | Nd | Anopheles stephensi | [60] |
9.03 | Nd | Aedes aegypti | [60] | |
9.86 | Nd | Culex quinquefasciatus | [60] | |
Camphor | >250 | >250 | Culex quinquefasciatus | [84] |
129.17 | 192.42 | Anopheles anthropophagus | [89] | |
>500 | Nd | Aedes aegypti | [79] | |
>50 | >50 | Aedes aegypti | [80] | |
1,8-Cineole | >100 | Nd | Aedes aegypti | [72] |
57.2 | Nd | Aedes aegypti | [90] | |
1381 | Nd | Aedes aegypti | [91] | |
53.63 | Nd | Aedes aegypti | [92] | |
>100 | Nd | Aedes aegypti | [93] | |
>100 | >100 | Culex pipiens pallens | [88] | |
191 | 207 | Culex pipiens molestus | [94] | |
>200 | Nd | Culex pipiens | [95] | |
>50.0 | >50.0 | Aedes aegypti | [96] | |
>50.0 | >50.0 | Aedes albopictus | [96] | |
>100 | Nd | Aedes albopictus | [81] | |
>200 | >200 | Aedes albopictus | [97] | |
>250 | >250 | Culex quinquefasciatus | [84] | |
β-Caryophyllene | 1038 | Nd | Aedes aegypti | [68] |
136.85 | 280.86 | Aedes aegypti | [98] | |
298.4 | 1227.3 | Aedes aegypti | [99] | |
1202 | Nd | Aedes aegypti | [91] | |
>50 | >50 | Aedes aegypti | [80] | |
>50 | >50 | Aedes aegypti | [100] | |
29.97 | 48.34 | Aedes aegypti | [61] | |
>100 | Nd | Aedes aegypti | [93] | |
54.95 | Nd | Aedes aegypti | [101] | |
73.4 | 434.22 | Aedes albopictus | [99] | |
44.8 | Nd | Aedes albopictus | [102] | |
53.14 | Nd | Aedes albopictus | [101] | |
>200 | >200 | Aedes albopictus | [97] | |
>100 | Nd | Aedes albopictus | [81] | |
31.09 | 54.92 | Aedes albopictus | [61] | |
>50 | >50 | Aedes albopictus | [100] | |
69.60 | 164.59 | Culex quinquefasciatus | [98] | |
165.4 | 220.6 | Culex quinquefasciatus | [103] | |
44.99 | Nd | Culex pipiens pallens | [101] | |
48.2 | Nd | Culex tritaeniorhynchus | [102] | |
>200 | Nd | Anopheles anthropophagus | [89] | |
134.77 | Nd | Anopheles sinensis | [104] | |
41.7 | Nd | Anopheles subpictus | [102] | |
28.86 | 51.82 | Anopheles nuneztovari | [61] | |
26.52 | 46.51 | Anopheles triannulatus | [61] | |
25.14 | 54.73 | Anopheles darlingi | [61] | |
26.36 | 53.92 | Anopheles albitarsis | [61] | |
60.17 | Nd | Anopheles sinensis | [101] | |
Caryophyllene oxide | 49.46 | 115.38 | Anopheles anthropophagus | [89] |
39.09 | Nd | Anopheles sinensis | [104] | |
125 | Nd | Aedes aegypti | [91] | |
>50 | >50 | Aedes aegypti | [80] | |
>50 | >50 | Aedes aegypti | [100] | |
29.8 (1 day old) | 74.1 (1 day old) | Aedes aegypti | [105] | |
20.61 | 27.56 | Aedes albopictus | [58] | |
>50 | >50 | Aedes albopictus | [100] | |
98.52 | 144.5 | Culex quinquefasciatus | [58] | |
p-Cymene | 19.2 | 41.3 | Aedes aegypti | [96] |
21.86–49.25 | 55.02–115.51 | Aedes aegypti | [78] | |
17.05 | 27.30 | Aedes aegypti | [98] | |
43.3 | >50.0 | Aedes aegypti | [100] | |
69.4 | 95.2 | Aedes aegypti | [106] | |
37.1 | >100.0 | Aedes aegypti | [107] | |
12.49 | Nd | Aedes aegypti | [92] | |
36.9 (1 day old larvae) | 54.4 (1 day old larvae) | Aedes aegypti | [108] | |
23.3 (1 day old larvae) | 46.7 (1 day old larvae) | Aedes aegypti | [109] | |
>500 | Nd | Aedes aegypti | [79] | |
25 < LC50 < 50 | <50 | Aedes aegypti | [93] | |
33.93 | Nd | Aedes aegypti | [101] | |
46.7 | >50.0 | Aedes albopictus | [96] | |
34.9 | >50.0 | Aedes albopictus | [100] | |
25.9 | 66.3 | Aedes albopictus | [107] | |
35.10 | Nd | Aedes albopictus | [101] | |
68.3 | 95.0 | Aedes albopictus | [106] | |
19.4 | 28.8 | Aedes albopictus | [97] | |
50 < LC50 < 100 | Nd | Aedes albopictus | [81] | |
21 | 30 | Culex quinquefasciatus | [84] | |
15.13 | 25.41 | Culex quinquefasciatus | [98] | |
29.34 | Nd | Culex pipiens pallens | [101] | |
38.07 | Nd | Anopheles sinensis | [101] | |
β-Elemene | 10.26 | 20.02 | Anopheles subpictus | [63] |
11.15 | 21.32 | Aedes albopictus | [63] | |
12.05 | 22.40 | Culex tritaeniorhynchus | [63] | |
Elemicin | >100 | Nd | Aedes albopictus | [81] |
Estragole | 14.01 | 24.41 | Culex quinquefasciatus | [60] |
12.70 | 22.32 | Aedes aegypti | [60] | |
11.01 | 19.79 | Anopheles stephensi | [60] | |
38.56 | 95.90 | Anopheles anthropophagus | [110] | |
41.67 | 107.89 | Anopheles sinensis | [110] | |
Eugenol | 7.53 | 12.35 | Ochlerotatus caspius | [82] |
117 | 180 | Culex quinquefasciatus | [84] | |
82.2–142.9 | Nd | Aedes aegypti | [79] | |
12.5 < LC50 < 25 | 50 < LC90 < 100 | Aedes albopictus | [81] | |
Eugenol (74.0%) | 18.28 | 43.11 | Culex pipiens | [85] |
Germacrene D | 49.81 | 106.19 | Anopheles anthropophagus | [89] |
59.5 | 96.4 | Anopheles stephensi | [59] | |
63.6 | 100.7 | Aedes aegypti | [59] | |
21.28 | 37.04 | Culex quinquefasciatus | [60] | |
18.76 | 33.37 | Aedes aegypti | [60] | |
35.96 | 61.46 | Aedes aegypti | [61] | |
33.51 | 66.43 | Aedes albopictus | [61] | |
16.95 | 30.95 | Anopheles stephensi | [60] | |
32.36 | 58.68 | Anopheles nuneztovari | [61] | |
30.31 | 58.53 | Anopheles triannulatus | [61] | |
24.49 | 45.11 | Anopheles darlingi | [61] | |
31.22 | 55.46 | Anopheles albitarsis | [61] | |
α-Humulene | 37.89 | 83.95 | Aedes aegypti | [58] |
53.05 | 82.78 | Aedes aegypti | [103] | |
28.11 | 51.1 | Aedes aegypti | [61] | |
>100 | Nd | Aedes aegypti | [93] | |
108.06 | Nd | Aedes aegypti | [101] | |
38.72 | 63.40 | Aedes albopictus | [58] | |
106.25 | Nd | Aedes albopictus | [101] | |
6.86 | 12.98 | Aedes albopictus | [63] | |
28.89 | 48.28 | Aedes albopictus | [61] | |
87.81 | 140.0 | Culex quinquefasciatus | [58] | |
108.3 | 158.2 | Culex quinquefasciatus | [103] | |
96.35 | Nd | Culex pipiens pallens | [101] | |
7.39 | 13.68 | Culex tritaeniorhynchus | [63] | |
107.35 | Nd | Anopheles sinensis | [101] | |
6.19 | 12.03 | Anopheles subpictus | [63] | |
26.63 | 49.56 | Anopheles nuneztovari | [61] | |
33.08 | 61.41 | Anopheles triannulatus | [61] | |
30.36 | 68.88 | Anopheles darlingi | [61] | |
37.42 | 82.58 | Anopheles albitarsis | [61] | |
R-(+)-limonene | 11.88 | 17.78 | Aedes aegypti | [77] |
37 | Nd | Aedes aegypti | [91] | |
25 < LC50 < 50 | LC90 < 100 | Aedes albopictus | [81] | |
71.9 | 96.9 | Aedes aegypti | [106] | |
25 < LC50 < 50 | 50 < LC90 < 100 | Aedes aegypti | [93] | |
41.2 | 88.2 | Aedes albopictus | [106] | |
(±)-Limonene | 17.04 | Nd | Aedes aegypti | [101] |
14.05 | Nd | Culex pipiens pallens | [101] | |
S-(−)-Limonene | 25 < LC50 < 50 | LC90 < 100 | Aedes albopictus | [81] |
25 < LC50 < 50 | 25 < LC90 < 50 | Aedes aegypti | [93] | |
29.1 (1 day old larvae) | 81.3 (1 day old larvae) | Aedes aegypti | [105] | |
Limonene | 18.1 | 41.0 | Aedes aegypti | [96] |
19.4 | >50.0 | Aedes aegypti | [100] | |
32.7 | 50.0 | Aedes albopictus | [96] | |
31.63 | 41.51 | Culex quinquefasciatus | [103] | |
15.0 | 34.0 | Aedes albopictus | [100] | |
Linalool | 155.73 | 237.29 | Ochlerotatus caspius | [82] |
>50.0 | >50.0 | Aedes aegypti | [100] | |
>50.0 | >50.0 | Aedes albopictus | [100] | |
>500 | Nd | Aedes aegypti | [79] | |
>100 | Nd | Aedes aegypti | [93] | |
38.64 | 69.08 | Aedes aegypti | [60] | |
35.17 | 63.45 | Anopheles stephensi | [60] | |
42.28 | 73.13 | Culex quinquefasciatus | [60] | |
(−)-Linalool | 169.6 | 220.5 | Aedes albopictus | [97] |
Methyleugenol | 36.5 (1 day old larvae) | 99.2 (1 day old larvae) | Aedes aegypti | [109] |
12.5 < LC50 < 25 | Nd | Aedes albopictus | [111] | |
53.30–67.02 | Nd | Culex pipiens pallens | [87] | |
β-Myrcene | >100 | Nd | Aedes albopictus | [81] |
167 | 218 | Culex quinquefasciatus | [84] | |
27.9 | Nd | Aedes aegypti | [102] | |
>500 | Nd | Aedes aegypti | [79] | |
23.5 | Nd | Aedes albopictus | [102] | |
β-Myrcene | 35.8 | >100.0 | Aedes aegypti | [107] |
27.0 | 75.4 | Aedes albopictus | [107] | |
35.8 | >100.0 | Aedes aegypti | [106] | |
>100.0 | Nd | Aedes aegypti | [93] | |
27.0 | 75.5 | Aedes albopictus | [106] | |
α-Phellandrene | 39.3 | Nd | Aedes aegypti | [72] |
16.6 | 36.9 | Aedes aegypti | [96] | |
39.9 | >50.0 | Aedes albopictus | [96] | |
25 < LC50 < 50 | <100 | Aedes albopictus | [81] | |
>100 | Nd | Aedes aegypti | [93] | |
39.3 | Nd | Aedes aegypti | [72] | |
α-Pinene | >50.0 | >50.0 | Aedes aegypti | [96] |
79.1 | >100.0 | Aedes aegypti | [107] | |
45.17–45.70 | 92.52–96.49 | Aedes aegypti | [78] | |
15.4 | Nd | Aedes aegypti | [90] | |
>100.0 | >100.0 | Aedes aegypti | [106] | |
15.87 | Nd | Aedes aegypti | [92] | |
>500 | Nd | Aedes aegypti | [79] | |
>100 | Nd | Aedes aegypti | [93] | |
>50.0 | >50.0 | Aedes albopictus | [96] | |
74.0 | >100.0 | Aedes albopictus | [107] | |
80.6 | >100.0 | Aedes albopictus | [106] | |
74.0 | >100.0 | Aedes albopictus | [106] | |
>100.0 | Nd | Aedes albopictus | [81] | |
68.68–72.30 | 113.88–114.43 | Aedes albopictus | [112] | |
95 | 581 | Culex quinquefasciatus | [84] | |
58.44–61.46 | 124.2–144.56 | Culex pipiens | [113] | |
(1R)-(+)-α-Pinene | 47 | 62 | Culex pipiens molestus | [94] |
>100 | Nd | Aedes albopictus | [111] | |
(1S)-(−)-α-Pinene | 49 | 85 | Culex pipiens molestus | [94] |
>100 | Nd | Aedes albopictus | [111] | |
β-Pinene | 65 | 359 | Culex quinquefasciatus | [84] |
32.97–35.13 | 93.11–105.59 | Aedes aegypti | [78] | |
12.1 | Nd | Aedes aegypti | [90] | |
23.63 | 32.12 | Aedes aegypti | [103] | |
>500 | Nd | Aedes aegypti | [79] | |
27.69 | 49.91 | Aedes aegypti | [60] | |
50 < LC50 < 100 | Nd | Aedes aegypti | [93] | |
>100 | Nd | Aedes albopictus | [81] | |
42.39–47.33 | 63.10–73.11 | Aedes albopictus | [112] | |
30.46 | 41.58 | Culex quinquefasciatus | [103] | |
32.23 | 56.58 | Culex quinquefasciatus | [60] | |
36.53–66.52 | 76.27–109.53 | Culex pipiens | [113] | |
32.2 | Nd | Anopheles stephensi | [102] | |
23.17 | 43.39 | Anopheles stephensi | [60] | |
Sabinene | 74.1 | >100.0 | Aedes aegypti | [106] |
21.20 | 39.22 | Aedes aegypti | [60] | |
39.5 | 71.4 | Aedes albopictus | [106] | |
6.25 < LC50 < 12.5 | 25 < LC90 < 50 | Aedes albopictus | [81] | |
25.01 | 45.15 | Culex quinquefasciatus | [60] | |
19.67 | 36.45 | Anopheles stephensi | [60] | |
Spathulenol | >100 | Nd | Aedes aegypti | [76] |
γ-Terpinene | 30.7 | >50.0 | Aedes aegypti | [96] |
26.8 | 68.7 | Aedes aegypti | [107] | |
9.76 | 16.99 | Aedes aegypti | [77] | |
11.25 | 21.55 | Aedes aegypti | [98] | |
24.58–44.80 | 72.55–100.71 | Aedes aegypti | [78] | |
95 | Nd | Aedes aegypti | [91] | |
26.8 | >50.0 | Aedes aegypti | [100] | |
27.2 (1 day old larvae) | 52.4 (1 day old larvae) | Aedes aegypti | [108] | |
25 < LC50 < 50 | 50 < LC90 < 100 | Aedes aegypti | [93] | |
27.53 | Nd | Aedes aegypti | [101] | |
26 | 48 | Culex quinquefasciatus | [84] | |
13.44 | 23.52 | Culex quinquefasciatus | [98] | |
24.70 | Nd | Culex pipiens pallens | [101] | |
29.8 | 47.5 | Aedes albopictus | [96] | |
22.8 | 57.4 | Aedes albopictus | [107] | |
22.8 | >50.0 | Aedes albopictus | [100] | |
30.03 | Nd | Aedes albopictus | [101] | |
25 < LC50 < 50 | 50 < LC90 < 100 | Aedes albopictus | [81] | |
20.21 | 32.31 | Aedes albopictus | [112] | |
36.42 | Nd | Anopheles sinensis | [101] | |
20.2 | 32.3 | Aedes albopictus | [97] | |
α-Terpinene | 14.7 | 39.3 | Aedes aegypti | [96] |
28.1 | 76.4 | Aedes aegypti | [107] | |
0.4 | Nd | Aedes aegypti | [92] | |
12.5 < LC50 < 25 | 12.5 < LC90 < 25 | Aedes aegypti | [93] | |
21.30 | Nd | Aedes aegypti | [101] | |
25.2 | >50.0 | Aedes albopictus | [96] | |
22.4 | 58.8 | Aedes albopictus | [107] | |
25 < LC50 < 50 | <100 | Aedes albopictus | [81] | |
>250 | >250 | Culex quinquefasciatus | [84] | |
α-Terpineol | >50.0 | >50.0 | Aedes aegypti | [96] |
76.68 | Nd | Aedes aegypti | [92] | |
>100 | Nd | Aedes aegypti | [93] | |
23.49 | Nd | Aedes aegypti | [101] | |
>50.0 | >50.0 | Aedes albopictus | [96] | |
21.26 | Nd | Aedes albopictus | [101] | |
>250 | >250 | Culex quinquefasciatus | [84] | |
>100 | >100 | Culex pipiens pallens | [88] | |
21.30 | Nd | Culex pipiens pallens | [101] | |
194 | 216 | Culex pipiens molestus | [94] | |
27.16 | Nd | Anopheles sinensis | [101] | |
>500 | Nd | Aedes aegypti | [79] |
Material | LC50 (95% Limits) | LC90 (95% Limits) | χ2 | p |
---|---|---|---|---|
Essential oil | 10.09 (8.37–12.21) | 17.12 (13.80–25.81) | 0.68 | 0.877 |
Caryophyllene oxide | 5.78 (4.86–6.92) | 8.96 (7.38–13.42) | 0.50 | 0.921 |
α-Humulene | 7.24 (6.00–8.67) | 11.88 (9.71–17.50) | 0.62 | 0.887 |
β-Caryophyllene | 9.58 (7.79–11.72) | 18.08 (14.32–27.14) | 0.88 | 0.829 |
Species | Yield (%) | Main Components a | M/S/P | IC50 (μg/mL) | SI b | Organisms | Ref. |
---|---|---|---|---|---|---|---|
Croton argyrophylloides Müll. Arg. | 0.2 to 3 | Spathulenol, caryophyllene oxide, β-elemene | M: 0 S: 95.17 | 15.50 16.71 16.41 | >6.45 >6.0 >6.1 | Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi | [119] |
Croton cajucara Benth. | Nd | Linalool | Nd | 0.0083 | Nd | Promastigotes of Leishmania amazonensis | [57] |
Nd | Linalool | Nd | 0.022 | Nd | Amastigotes of Leishmania amazonensis | [57] | |
Linalool | Essential oil at 15.0 ng/mL was able to kill 100% of the parasites in 60 min. | Nd | Adults of Leishmania amazonensis. | [57] | |||
Croton cajucara Benth. (white morphotype) | Nd | Linalool, β-caryophyllene, Germacrene D | Nd | 1490 | Nd | Adults of Neoechinorhynchus buttnerae | [120] |
Croton cajucara Benth. (red morphotype) | Nd | Germacrene D, germacrene A, β-elemene | Nd | 1030 | Nd | Adults of Neoechinorhynchus buttnerae | [120] |
Croton jacobinensis Müll. Arg. | 0.2 to 3 | Caryophyllene oxide, spathulenol, germacrene B | M: 0 S: 91.64 | 23.79 22.06 17.69 | >4.2 >4.53 >5.65 | Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi | [119] |
Croton linearis Jacq. | 1.6 | Guaiol | M: 4.89 S: 90.06 | 20.0 | 4 | Promastigotes of Leishmania amazonensis | [121] |
13.8 | 6.46 | Amastigotes of Leishmania amazonensis | [121] | ||||
197.26 | 1.55 | Promastigotes of Trypanosoma cruzi | [121] | ||||
% Inhibition infection (10 µg/mL): 13.32 | Nd | Amastigotes of Trypanosoma cruzi | [121] | ||||
Croton linearis Jacq. | 0.9% (v/w) | 1,8-Cineole, α-pinene, sabinene | M: 75.89 S: 24.11 | 21.4 | 2 | Promastigotes of Leishmania amazonensis | [122] |
18.9 | 3 | Amastigotes of Leishmania amazonensis | [122] | ||||
Croton macrostachyus Hochst. ex Delile | 0.038 | Benzyl benzoate, linalool, γ-muurolene | Ar: 52.5 M: 11.6 S: 34.9 | MIC = 0.08 µL/mL | Nd | Promastigotes of Leishmania donovani | [123] |
20.00 nL/mL | 0.5 | Amastigotes of Leishmania donovani | [123] | ||||
MIC = 0.16 µL/mL | Nd | Promastigotes of Leishmania aethiopica | [123] | ||||
6.66 nL/mL | 1.5 | Amastigotes of Leishmania aethiopica | [123] | ||||
Croton nepetifolius Baill. | 0.2 to 3 | Methyl eugenol, β-caryophyllene, 1,8-cineole, germacrene B, 3,5-dimethoxytoluene | M: 14.02 S: 29.18 P: 39.63 | 9.87 9.08 14.80 | >10.13>11.01>6.76 | Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi | [119] |
Croton piauhiensis Mull. Arg. | 0.04 | β-Caryophyllene, caryophyllene oxide, limonene, τ-muurolol, p-cymene, bicyclogermacrene | M:39.57 S: 58.85 | 1.70 | Nd | Promastigotes of Leishmania infantum | [124] |
13.79 | Nd | Axenic amastigotes of Leishmania infantum | [124] | ||||
Croton pulegiodorus Baill. | 0.27 | Ascaridole, p-cymene, camphor, isoascaridole | M: 92.9 S: 0 | 0.05 | Nd | Promastigotes of Leishmania infantum | [124] |
2.33 | Nd | Axenic amastigotes of Leishmania infantum | [124] | ||||
Croton rudolphianus Müll. Arg. | 0.96 | β-Caryophyllene, bicyclogermacrene, δ-cadinene, germacrene D | M: 8.98 S: 50.94 | 14.81 | Nd | Schistosoma mansoni cercariae | [115] |
7-hydroxycalamenene | S | IC50: 66.7. MIC: 250 | >7.5 | Promastigote forms Leishmania chagasi | [125] | ||
Croton sincorensis Mart. ex Müll. Arg. | 0.2 to 3 | Caryophyllene oxide, β-eudesmol, spathulenol, hedycaryol, globulol, humulene epoxide II, viridiflorol, 1,8-cineole | M: 8.24 S: 77.92 | 27.03 14.16 13.05 | >3.7 >7.06 >7.66 | Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi | [119] |
Croton zehntneri Pax and K. Hoffm. | Nd | (E)-Anethole, anisaldehyde, estragole, anisyl acetate | Nd | 550 (Ovicidal) | Nd | Haemonchus contortus | [28] |
Nd | (E)-Anethole, anisaldehyde, estragole, anisyl acetate | Nd | 1170 (Larvicidal) | Nd | Haemonchus contortus | [28] | |
Croton zehntneri Pax and K. Hoffm. | Nd | (E)-Anethole, estragole, germacrene B | 740 (Ovicidal) | Nd | Haemonchus contortus | [28] | |
Nd | 1370 (Larvicidal) | Nd | Haemonchus contortus | [28] |
Compound | IC50/EC50/LC50 (μg/mL) | Parasites | SI a | Ref. |
---|---|---|---|---|
(E)-Anethole | 690 | Eggs of Haemonchus contortus | Nd | [28] |
2110 | Larvae of Haemonchus contortus | Nd | [28] | |
Ascaridole | 0.1 ± 0.01 | Promastigotes of Leishmania amazonensis | 4 | [126] |
0.3 ± 0.05 | Amastigotes of Leishmania amazonensis | 11 | [126] | |
0.1 ± 0.01 | Promastigotes of Leishmania amazonensis | 4 | [127] | |
Combination 20:80 mg/kg of ascaridole—carvacrol showed lower (p < 0.05) lesion size and parasite burden compared with control groups in in vivo testing on BALB/c mice. | Leishmania amazonensis | Nd | [127] | |
α-Asarone | 20.19 | Bloodstream forms of Trypanosoma brucei brucei | 5.21 | [128] |
Camphor | >100 | Bloodstream forms of Trypanosoma brucei brucei | Nd | [129] |
IC50 > 100 | Promastigotes of Phytomonas davidi | Nd | [130] | |
37.39 | Bloodstream forms of Trypanosoma brucei brucei | >6.69 | [128] | |
5.55 | Promastigotes of Leishmania infantum | 4.56 | [131] | |
7.90 | Promastigotes of Leishmania major | 3.20 | [131] | |
β-Caryophyllene | 12.8 | Erythrocytic stages Plasmodium falciparum | 4.86 | [132] |
28.9 | Bloodstream forms of Trypanosoma brucei rhodesiense | 2.15 | [132] | |
50.1 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | 1.24 | [132] | |
52.4 | Amastigotes (the clinically relevant form) of Leishmania donovani | 1.19 | [132] | |
96 µM | Promastigotes of Leishmania amazonensis | Nd | [133] | |
13.78 | Bloodstream forms of Trypanosoma brucei brucei | 1.40 | [128] | |
1.06 | Promastigotes of Leishmania infantum | 20.82 | [131] | |
1.33 | Promastigotes of Leishmania major | 16.59 | [131] | |
2.89 | Epimastigotes of Trypanosoma cruzi | 12.93 | [134] | |
24.54 | Intracellular amastigotes infecting Vero cells of Trypanosoma cruzi | Nd | [134] | |
24.02 | Promastigotes of Leishmania (Leishmania) infantum | 143.85 | [134] | |
53.39 | Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantum | Nd | [134] | |
Caryophyllene oxide | 4.9 | Promastigotes of Leishmania amazonensis | 0.92 | [126] |
4.4 | Amastigotes of Leishmania amazonensis | 1.0 | [126] | |
IC50 > 100 | Promastigotes of Phytomonas davidi | Nd | [130] | |
17.70 | Bloodstream forms of Trypanosoma brucei brucei | 2.14 | [128] | |
4.9 | Promastigotes of Leishmania amazonensis | Nd | [127] | |
1,8-Cineole | At 200 μg/mL it killed 100% of protoscoleces after 30 min. | Protoscoleces of Echinococcus granulosus | Nd | [135] |
568.1 | Promastigotes of Leishmania amazonensis | >0.18 | [136] | |
>100 | Bloodstream forms of Trypanosoma brucei brucei | Nd | [129] | |
IC50 > 100 | Promastigotes of Phytomonas davidi | Nd | [130] | |
83.15 | Bloodstream forms of Trypanosoma brucei brucei | >3.00 | [128] | |
Inactive | Promastigotes of Leishmania infantum | Nd | [137] | |
Inactive | Promastigotes of Leishmania tropica | Nd | [137] | |
Inactive | Promastigotes of Leishmania major | Nd | [137] | |
53.40 | Promastigotes of Leishmania infantum | 5.74 | [131] | |
74.80 | Promastigotes of Leishmania major | 4.10 | [131] | |
0.63 | Epimastigotes of Trypanosoma cruzi | 63.49 | [134] | |
>100 | Intracellular amastigotes infecting Vero cells of Trypanosoma cruzi | Nd | [134] | |
>100 | Promastigotes of Leishmania (Leishmania) infantum | Nd | [134] | |
>100 | Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantum | Nd | [134] | |
p-Cymene | >20 | Erythrocytic stages Plasmodium falciparum | 4.5 | [132] |
45.0 | Bloodstream forms of Trypanosoma brucei rhodesiense | 2.0 | [132] | |
>90 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | Nd | [132] | |
>90 | Amastigotes (the clinically relevant form) of Leishmania donovani | Nd | [132] | |
>1000 | Promastigotes of Leishmania amazonensis | Nd | [136] | |
76.32 | Bloodstream of Trypanosoma brucei brucei | >0.66 | [138] | |
IC50 > 100 | Promastigotes of Phytomonas davidi | Nd | [130] | |
156.17 | Promastigotes of Leishmania infantum | Nd | [131] | |
219.17 | Promastigotes of Leishmania major | Nd | [131] | |
(−)-α-Bisabolol | 20μM | Promastigotes of Trypanosoma cruzi | 26.5 | [139] |
285μM | Epimastigote of Trypanosoma cruzi | 2.05 | [139] | |
Topical treatment at 2.5% reduced lesion thickness to 56% and had a higher efficacy than the reference control, meglumine antimoniate. | Leishmania tropica | Nd | [117] | |
5.9 | Amastigotes of Leishmania amazonensis | 5.41 | [140] | |
4.8 | Amastigotes of Leishmania infantum | 6.65 | [140] | |
Borneol | >20 | Erythrocytic stages Plasmodium falciparum | 4.5 | [132] |
24.3 | Bloodstream forms of Trypanosoma brucei rhodesiense | 3.70 | [132] | |
>90 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | Nd | [132] | |
52.1 | Amastigotes (the clinically relevant form) of Leishmania donovani | 1.73 | [132] | |
>100 | Bloodstream forms of Trypanosoma brucei brucei | Nd | [129] | |
Inactive | Promastigotes of Leishmania infantum | Nd | [137] | |
Inactive | Promastigotes of Leishmania tropica | Nd | [137] | |
Inactive | Promastigotes of Leishmania major | Nd | [137] | |
Eugenol | 82.9 | Promastigotes of Leishmania amazonensis | Nd | [136] |
>100 | Bloodstream forms of Trypanosoma brucei brucei | Nd | [129] | |
60.4 | Amastigotes of Leishmania braziliensis | 1.3 | [141] | |
43.8 | Amastigotes of Trypanosoma cruzi | 1.8 | [141] | |
665.6 | Amastigotes of Plasmodium falciparum | 0.12 | [141] | |
37.20 | Bloodstream forms of Trypanosoma brucei brucei | 2.50 | [128] | |
80 | Promastigote forms of Leishmania amazonensis | Nd | [142] | |
Estragole | 32.08 | Bloodstream forms of Trypanosoma brucei brucei | >7.80 | [128] |
α-Humulene | 9.76 | Leishmania donovani | Nd | [143] |
R-(+)-Limonene | 4.24 | Bloodstream of Trypanosoma brucei brucei | >11.79 | [138] |
35.55 | Bloodstream forms of Trypanosoma brucei brucei | 4.50 | [128] | |
14.1 | Trypomastigote forms of Trypanosoma cruzi | Nd | [144] | |
33.7 | Epimastigotes of Trypanosoma cruzi | Nd | [144] | |
Limonene | At a concentration of 43.75 µg/mL it produced decreased motility. | Adult worms of Schistosoma mansoni | Nd | [145] |
278 µM | Promastigotes of Leishmania amazonensis | Nd | [133] | |
252.0 μM. | Promastigotes of Leishmania amazonensis | |||
147.0 μM | Amastigote of Leishmania amazonensis | |||
354.0 μM | Promastigotes of Leishmania major | |||
185.0 μM | Promastigotes of Leishmania braziliensis | |||
201.0 μM | Promastigotes of chagasi | |||
38.71 | Epimastigotes of Trypanosoma cruzi | >100 | [134] | |
145.94 | Intracellular amastigotes infecting Vero cells of Trypanosoma cruzi | Nd | [134] | |
>100 | Promastigotes of Leishmania (Leishmania) infantum | Nd | [134] | |
>100 | Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantum | Nd | [134] | |
(−)-Linalool | >20 | Erythrocytic stages Plasmodium falciparum | 4.5 | [132] |
3.6 | Bloodstream forms of Trypanosoma brucei rhodesiense | 25 | [132] | |
>90 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | Nd | [132] | |
86.3 | Amastigotes (the clinically relevant form) of Leishmania donovani | 1.04 | [132] | |
276.2 | Promastigotes of Leishmania amazonensis | Nd | [136] | |
(±)-Linalool | 39.32 | Bloodstream forms of Trypanosoma brucei brucei | 5.20 | [128] |
Linalool | 430 | Promastigotes of Leishmania braziliensis | 16.93 | [146] |
Nd | Amastigote of Leishmania braziliensis | Nd | [146] | |
>100 | Bloodstream forms of Trypanosoma brucei brucei | Nd | [129] | |
198.6 | Epimastigote of Trypanosoma cruzi | >5 | [147] | |
249.6 | Intracellular amastigote of Trypanosoma cruzi | >4 | [147] | |
IC50 > 100 | Promastigotes of Phytomonas davidi | Nd | [130] | |
30.16 | Epimastigotes of Trypanosoma cruzi | 26.33 | [134] | |
>100 | Intracellular amastigotes infecting Vero cells of Trypanosoma cruzi | Nd | [134] | |
>100 | Promastigotes of Leishmania (Leishmania) infantum | Nd | [134] | |
>100 | Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantum | Nd | [134] | |
0.31 | Trypomastigote forms of Trypanosoma cruzi | 2.7 | [148] | |
0.0043 | Promastigotes of Leishmania amazonensis | Nd | [57] | |
0.0155 | Amastigote of Leishmania amazonensis | Nd | [57] | |
Myrcene | >20 | Erythrocytic stages Plasmodium falciparum | 4.5 | [132] |
22 | Bloodstream forms of Trypanosoma brucei rhodesiense | 4.10 | [132] | |
>90 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | Nd | [132] | |
48.2 | Amastigotes (the clinically relevant form) of Leishmania donovani | 1.87 | [132] | |
2.24 | Bloodstream of Trypanosoma brucei brucei | >22.32 | [138] | |
Nerolidol | 74.3 | Promastigotes of Leishmania braziliensis | 20.19 | [146] |
47.5 | Amastigote of Leishmania braziliensis | 2.20 | [146] | |
85 | Promastigotes of Leishmania amazonensis | Nd | [118] | |
67 | Amastigote of Leishmania amazonensis | Nd | [118] | |
74 | Promastigotes of Leishmania braziliensis | Nd | [118] | |
75 | Promastigotes of Leishmania chagasi | Nd | [118] | |
Leishmania-amazonensis-infected BALB/c mice were treated with intraperitoneal doses of 100 mg/kg/day for 12 days or topically with 5 or 10% ointments for 4 weeks, and both resulted in significant reductions in lesion sizes. | Leishmania amazonensis | Nd | [118] | |
(Z)-Nerolidol | 15.78 | Bloodstream forms of Trypanosoma brucei brucei | 1.87 | [128] |
α-Phellandrene | 9.2 | Bloodstream of Trypanosoma brucei | 2.9 | [149] |
32.8 | Promastigotes of Leishmania major | 0.8 | [149] | |
α-Pinene | 10.7 | Erythrocytic stages Plasmodium falciparum | 8.21 | [132] |
0.42 | Bloodstream forms of Trypanosoma brucei rhodesiense | 209.05 | [132] | |
>90 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | Nd | [132] | |
81.9 | Amastigotes (the clinically relevant form) of Leishmania donovani | 1.07 | [132] | |
4.1 | Bloodstream form of Trypanosoma brucei | 0.6 | [149] | |
55.3 | Promastigotes of Leishmania major | <0.1 | [149] | |
2.9 | Bloodstream forms of Trypanosoma brucei brucei | >34.5 | [129] | |
1.145 | Tachyzoites of Toxoplasma gondii RH strain | 126 | [150] | |
17.60 | Promastigotes of Leishmania infantum | 13.08 | [131] | |
19.80 | Promastigotes of Leishmania major | 11.63 | [131] | |
2.74 | Epimastigotes of Trypanosoma cruzi | 11.57 | [134] | |
1.92 | Intracellular amastigotes infecting Vero cells of Trypanosoma cruzi | Nd | [134] | |
45.94 | Promastigotes of Leishmania (Leishmania) infantum | 57.25 | [134] | |
>100 | Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantum | Nd | [134] | |
β-Pinene | 47.37 | Bloodstream form of Trypanosoma brucei brucei | >1.06 | [138] |
54.8 | Bloodstream form of Trypanosoma brucei | 0.5 | [149] | |
200.1 | Promastigotes of Leishmania major | 0.1 | [149] | |
0.326 | Tachyzoites of Toxoplasma gondii RH strain | 61 | [150] | |
50 < IC50 < 100 | Promastigotes of Phytomonas davidi | Nd | [130] | |
Sabinene | 17.7 | Bloodstream of Trypanosoma brucei | 1.3 | [149] |
126.6 | Promastigotes of Leishmania major | 0.2 | [149] | |
α-Terpinene | 3.7 | Erythrocytic stages Plasmodium falciparum | 22.89 | [132] |
3.1 | Bloodstream forms of Trypanosoma brucei rhodesiense | 27.32 | [132] | |
49.1 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | 1.73 | [132] | |
10.5 | Amastigotes (the clinically relevant form) of Leishmania donovani | 8.07 | [132] | |
γ-Terpinene | IC50 > 100 | Promastigotes of Phytomonas davidi | Nd | [130] |
>20 | Erythrocytic stages Plasmodium falciparum | 4.5 | [132] | |
32.9 | Bloodstream forms of Trypanosoma brucei rhodesiense | 2.74 | [132] | |
>90 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | Nd | [132] | |
>90 | Amastigotes (the clinically relevant form) of Leishmania donovani | Nd | [132] | |
Terpinen-4-ol | >20 | Erythrocytic stages Plasmodium falciparum | 2.17 | [132] |
0.66 | Bloodstream forms of Trypanosoma brucei rhodesiense | 65.61 | [132] | |
46.8 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | 0.93 | [132] | |
68.7 | Amastigotes (the clinically relevant form) of Leishmania donovani | 0.66 | [132] | |
0.02 | Bloodstream form of Trypanosoma brucei | 1025.0 | [149] | |
335.9 | Promastigotes of Leishmania major | 0.1 | [149] | |
(−)-Terpinen-4-ol | 39.51 | Bloodstream forms of Trypanosoma brucei brucei | 2.64 | [128] |
α-Terpineol | >20 | Erythrocytic stages Plasmodium falciparum | 1.62 | [132] |
0.56 | Bloodstream forms of Trypanosoma brucei rhodesiense | 57.68 | [132] | |
61.0 | Trypomastigote forms (mammalian stage) of Trypanosoma cruzi | 0.53 | [132] | |
75.9 | Amastigotes (the clinically relevant form) of Leishmania donovani | 0.43 | [132] |
Material | Gram-Positive | Gram-Negative | Yeast | ||||
---|---|---|---|---|---|---|---|
E. faecalis ATCC29212 | S. aureus ATCC25923 | B. cereus ATCC13245 | E. coli ATCC25922 | P. aeruginosa ATCC27853 | S. enterica ATCC13076 | C. albicans ATCC10231 | |
MIC (µg/mL) | |||||||
Essential oil | 8 | 16 | 16 | 16 | Na | 16 | Na |
β-Caryophyllene | 32 | 64 | 64 | 64 | Na | 64 | Na |
α-Humulene | 8 | 16 | 32 | 32 | Na | 16 | Na |
Caryophyllene oxide | 8 | 32 | 32 | 32 | Na | 32 | Na |
Streptomycin | 256 | 256 | 128 | 32 | 256 | 128 | Nt |
Kanamycin | 128 | 4 | 8 | 128 | 64 | 16 | Nt |
Tetracycline | 4 | 16 | 64 | 8 | 256 | 64 | Nt |
Nystatin | Nt | Nt | Nt | Nt | Nt | Nt | 4 |
Cyclohexamide | Nt | Nt | Nt | Nt | Nt | Nt | 32 |
IC50 (µg/mL) | |||||||
Essential oil | 3.12 ± 1.36 | 5.34 ± 0.98 | 5.23 ± 0.21 | 5.67 ± 1.45 | Na | 5.98 ± 0.09 | Na |
β-Caryophyllene | 9.35 ± 2.34 | 21.23 ± 1.35 | 18.56 ± 1.32 | 21.46 ± 1.34 | Na | 20.15 ± 1.48 | Na |
α-Humulene | 3.24 ± 2.12 | 5.34 ± 1.34 | 9.35 ± 0.36 | 10.45 ± 1.56 | Na | 5.23 ± 0.08 | Na |
Caryophyllene oxide | 2.67 ± 2.00 | 9.56 ± 1.43 | 9.32 ± 0.21 | 12.56 ± 2.56 | Na | 9.34 ± 0.91 | Na |
Streptomycin | 50.34 ± 2.32 | 45.24 ± 1.36 | 20.45 ± 0.39 | 9.45 ± 0,35 | 68.67 ± 1.89 | 45.67 ± 2.30 | Nt |
Cyclohexamide | Nt | Nt | Nt | Nt | Nt | Nt | 10.46 ± 0.32 |
Species | Yield (%) | Main Components a | M/S/P/B or Other (%) | MIC or IC50 (μg/mL) | Organisms | Ref. |
---|---|---|---|---|---|---|
Croton adamantinus Müll. Arg. | 0.6 | Methyl eugenol, 1,8-cineole, bicyclogermacrene, β-caryophyllene. | M: 27.66 S: 32.42 P: 14.81 | Synergistic effect with gentamicin. | Enterobacter aerogenes, Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus. | [154] |
Synergistic effect with amoxicillin + clavulanate. | Methicillin-resistant Staphylococcus aureus. | [154] | ||||
Synergistic effect with cefepime. | Enterobacter aerogenes, Methicillin-resistant Staphylococcus aureus. | [154] | ||||
Croton adipatus Kunth | 0.47 ± 0.01 | β-Myrcene; α-thujene; limonene; α-phellandrene, β-elemene. | M: 72.73 S: 18.82 | >1000 | Staphylococcus aureus | [155] |
286.4 | Bacillus subtilis | |||||
>1000 | Escherichia coli | |||||
>1000 | Pseudomonas aeruginosa | |||||
572.8 | Candida albicans | |||||
Croton argyrophyllus Kunth | Nd | Bicyclogermacrene, β-pinene, spathulenol, β-caryophyllene, β-phellandrene. | M: 27.94 S: 62.14 | 10 | Bacillus cereus | [156] |
25 | Bacillus subtilis | |||||
25 | Staphylococcus aureus | |||||
25 | Escherichia coli | |||||
25 | Pseudomonas aeruginosa | |||||
Nd | Candida albicans | |||||
Nd | Candida glabrata | |||||
Nd | Candida parapsilosis | |||||
Croton argyrophyllus Kunth | 0.1 to 0.7 | Bicyclogermacrene, epi-longipinanol, spathulenol. | M: 0 S: 99.17–100 | 312 | Staphylococcus aureus | [157] |
NI | Escherichia coli | |||||
0.1 to 0.7 | Bicyclogermacrene, (Z)-caryophyllene, epi-longipinanol, germacrene B, guaiol, 10-epi-γ-eudesmol, α-muurolol. | M: 0 S: 99.1–99.61 | 78 | Staphylococcus aureus | [157] | |
≥1024 | Escherichia coli | |||||
0.1 to 0.7 | Bicyclogermacrene, (Z)-caryophyllene, germacrene B, epi-longipinanol. | M: 0 S: 100 | 156 | Staphylococcus aureus | [157] | |
NI | Escherichia coli | |||||
Croton argyrophyllus Kunth | 0.38 | α-Pinene, bicyclogermacrene | M: 68.5 S: 29.87 | Synergistic effect with chlorhexidine. | Streptococcus mutans Streptococcus salivarius Streptococcus sanguinis | [158] |
Croton argyrophylloides Müll. Arg. (syn Croton tricolor Baill.) | Nd | Spathulenol, bicyclogermacrene, 1,8-cineole, β-elemene, β-caryophyllene, α-pinene. | NI | Candida albicans | [56] | |
NI | Candida tropicalis | |||||
9–19 | Microsporum canis | |||||
Croton argyrophylloides Müll. Arg | 0.5 | Bicyclogermacrene, spathulenol, β-caryophyllene, myrcene, α-pinene, β-phellandrene, 1,8-cineole. | M: 48.22 S: 47.7 | 97–195 | Forty-nine clinical strains of Mycobacteria tuberculosis | [159] |
97 | Standard strain H37RV of Mycobacteria tuberculosis | [159] | ||||
Croton blanchetianus Baill. | Nd | Caryophyllene oxide, δ-amorphene, τ-muurolol, 1,8-cineole. | M: 10.05 S: 38.84 | Inhibition of planktonic cells growth at 50 µg/mL: 78%. | Candida albicans | [160] |
Inhibition of planktonic cells growth at 50 µg/mL: 75%. | Candida parapsilosis | |||||
Croton blanchetianus Baill. | 7.5 | α-Pinene, eucalyptol, sativene, β-caryophyllene, bicyclogermacrene, spathulenol. | M: 35.55–38.07 S: 55.45–55.95 | Inactivated at a concentration of 900 µg/mL | Listeria monocytogenesStaphylococcus aureus Leuconostoc mesenteroides Weissella viridescens | [161] |
Croton cajucara Benth. | 0.4 | Linalool | Nd | 22.3 | Lactobacillus casei | [162] |
13.8 | Streptococcus sobrinus | |||||
40.1 | Streptococcus mutans | |||||
31.2 | Porphyromonas gingivalis | |||||
33.4 | Staphylococcus aureus | |||||
13.4 | Candida albicans | |||||
Croton cajucara Benth. | Nd | 7-Hydroxycalamenene, δ-cadinene, γ-cadinene, germacrene B, τ-cadinol, caryophyllene oxide. | M: 0 S: 97.59 | 12.21 | Absidia cylindospora | [163] |
Croton cajucara Benth. | 0.8 | Linalool, 7-hydroxycalamenene, β-caryophyllene, germacrene D. | Dominated by Sesquiterpenes | Inhibition growth zones (in cm): 0.9–1.3. | Candida albicans | [164] |
Dominated by Sesquiterpenes | Inhibition growth zones (in cm): 0.5–1.6. | Staphylococcus aureus | [164] | |||
1.0 | Linalool, nerolidol, β-caryophyllene, bicyclogermacrene germacrene D. | Dominated by Sesquiterpenes | Inhibition growth zones (in cm): 0.9–1.3 | Candida albicans | [164] | |
Linalool, nerolidol, β-caryophyllene, bicyclogermacrene germacrene D. | Dominated by Sesquiterpenes | Inhibition growth zones (in cm): 0.2–1.0 | Staphylococcus aureus | [164] | ||
Croton cajucara Benth. | 0.65 | 7-Hydroxycalamenene, α-pinene, linalool. | Nd | 39.06 | Mycobacterium smegmatis | [165] |
4.88 | Mycobacterium tuberculosis | |||||
0.019 | Methicillin-resistant Staphylococcus aureus | |||||
1.22 | Candida albicans | |||||
Nd | Mucor circinelloides | |||||
Nd | Rhizopus oryzae | |||||
α-Pinene, linalool, β-caryophyllene. | Nd | 5000 | Mycobacterium smegmatis | [165] | ||
4.88 | Mycobacterium tuberculosis | |||||
Na | Methicillin-resistant Staphylococcus aureus | |||||
1250 | Candida albicans | |||||
Nd | Mucor circinelloides | |||||
Nd | Rhizopus oryzae | |||||
7-Hydroxycalamenene (28.4%), linalool (11.0%). | Nd | 78.12 | Mycobacterium smegmatis | [165] | ||
4.88 | Mycobacterium tuberculosis | |||||
0.019 | Methicillin-resistant Staphylococcus aureus | |||||
156.25 | Candida albicans | |||||
Nd | Mucor circinelloides | |||||
Nd | Rhizopus oryzae | |||||
7-Hydroxycalamenene (30.9%), linalool (9.9%). | Nd | 156.25 | Mycobacterium smegmatis | [165] | ||
4.88 | Mycobacterium tuberculosis | |||||
0.004 | Methicillin-resistant Staphylococcus aureus | |||||
0.001 | Candida albicans | |||||
Nd | Mucor circinelloides | |||||
Nd | Rhizopus oryzae | |||||
7-Hydroxycalamenene (32.9%), linalool (13.2%). | Nd | 156.25 | Mycobacterium smegmatis | [165] | ||
4.88 | Mycobacterium tuberculosis | |||||
0.001 | Methicillin-resistant Staphylococcus aureus | |||||
0.38 | Candida albicans | |||||
3.63 × 10−8 | Mucor circinelloides | |||||
0.152 | Rhizopus oryzae | |||||
7-Hydroxycalamenene. | S | 39.06 | Mycobacterium smegmatis | [165] | ||
312.5 | Mycobacterium tuberculosis | |||||
39.06 | Methicillin-resistant Staphylococcus aureus | |||||
78.125 | Candida albicans | |||||
19.53 | Mucor circinelloides | |||||
39.06 | Rhizopus oryzae | |||||
Croton campestris A. St.Hil. | 0.04 (leaves) | β-Caryophyllene, bicyclogermacrene, limonene, τ-cadinol. | M: 28.1 S: 67.6 | ≥512 | Escherichia coli | [9] |
≥512 | Staphylococcus aureus | |||||
≥1024 | Shigella flexneri | |||||
≥1024 | Pseudomonas aeruginosa | |||||
≥1024 | Bacillus cereus | |||||
0.02 (branches) | Spathulenol, bicyclogermacrene, β-caryophyllene, terpinen-4-ol, murola-4,10(14)-dien-1-ol. | M: 25.1 S: 67.8 | ≥512 | Escherichia coli | [9] | |
≥128 | Staphylococcus aureus | |||||
≥512 | Shigella flexneri | |||||
≥512 | Pseudomonas aeruginosa | |||||
≥256 | Bacillus cereus | |||||
Synergistic effect with gentamicin | Staphylococcus aureus, Shigella flexneri. | |||||
Synergistic effect with neomycin. | Pseudomonas aeruginosa, Bacillus cereus | |||||
Synergistic effect with kanamycin. | Staphylococcus aureus, Bacillus cereus | |||||
Croton campestris St. Hilaire. | 0.40 | Caryophyllene oxide, humulene oxide II. | M: 16.9 S: 75.2 | 1.56 | Staphylococcus aureus | [166] |
6.25 | Enterrococcus hirae | |||||
6.25 | Candida albicans | |||||
Croton ceanothifolius Baill. | 0.23 | Bicyclogermacrene, germacrene D, β-caryophyllene, 1,10-di-epi-cubebol. | M: 8.7 S: 91.3 | Synergistic effect with norfloxacin, gentamicin, penicillin. | Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli. | [10] |
Croton ciliatoglandulifer Ortega. | Nd | Caryophyllene oxide, cubenol, β-caryophyllene. | M: 3.5 S: 91.3 | 500 | Candida albicans | [167] |
Croton conduplicatus Kunth. | 1,8-Cineole, p-cymene, β-caryophyllene, spathulenol. | M: 51.31 S: 44.42 | 256 512 | Methicillin-sensitive Staphylococcus aureus Methicillin-resistant Staphylococcus aureus | ||
Synergistic effect with ampicillin. | Methicillin-sensitive Staphylococcus aureus Methicillin-resistant Staphylococcus aureus | [168] | ||||
Croton doctoris S. Moore. | 0.4 | β-Caryophyllene; caryophyllene oxide; α-humulene; α-selinene. | M: 0 S: 83.32 | 0.625 (v/v) | Streptococci group | [169] |
Croton ferrugineus Kunth. | 0.06 ± 0.02 | β-Caryophyllene, limonene + β-phellandrene, myrcene, germacrene D, linalool, α-humulene. | M: 47.03 S: 47.63 | >2000 | Escherichia coli | [170] |
>2000 | Enterococcus faecalis | |||||
2000 | Micrococcus luteus | |||||
>2500 | Staphylococcus aureus | |||||
1000 | Cándida albicans | |||||
Croton ferrugineus Kunth. | 0.06 ± 0.001 | β-Caryophyllene, limonene, β-thujene, β-myrcene, β-elemene. | M: 28.03 S: 70.26 | >1000 | Staphylococcus aureus | [155] |
72 | Bacillus subtilis | |||||
>1000 | Escherichia coli | |||||
>1000 | Pseudomonas aeruginosa | |||||
576.2 | Candida albicans | |||||
Croton gratissimus Burch. | Sabinene, α-phellandrene, β-phellandrene, α-pinene, germacrene D. | M: 64.8 S: 27.3 | 1300 | Bacillus cereus | [171] | |
600 | Staphylococcus aureus | |||||
200 | Staphylococcus faecalis | |||||
1300 | Escherichia coli | |||||
2500 | Proteus vulgaris | |||||
5000 | Pseudomonas aeruginosa | |||||
5000 | Kiebsiella pneumoniae | |||||
>10,000 | Proteus vulgaris | |||||
>10,000 | Enterobacter cloacae | |||||
Croton grewioides Baill. | 0.1 | α-Pinene, sabinene, limonene, bicyclogermacrene, β-caryophyllene. | M: 55.56 S: 44.44 | Synergistic effect with norfloxacin, tetracycline. | Staphylococcus aureus | [172] |
Croton heliotropiifolius Kunth. | Nd | Limonene, α-pinene, β-caryophyllene, bicyclogermacrene, γ-terpinene. | M: 62.23 S: 35.27 | NI | Bacillus cereus | [156] |
NI | Bacillus subtilis | |||||
NI | Staphylococcus aureus | |||||
NI | Escherichia coli | |||||
NI | Pseudomonas aeruginosa | |||||
NI | Candida albicans | |||||
NI | Candida glabrata | |||||
NI | Candida parapsilosis | |||||
Croton heliotropiifolius Kunth (Summer, February). | 0.36 | β-Caryophyllene, bicyclogermacrene, 1,8-cineole, limonene. | M: 31.72 S: 64.86 | 500 | Bacillus cereus | [173] |
6.25 | Enterococcus faecalis | |||||
500 | Escherichia coli | |||||
Nd | Klebsiella pneumoniae | |||||
500 | Salmonella enterica | |||||
500 | Serratia marcescens | |||||
500 | Shigella flexneri | |||||
Nd | Staphylococcus aureus | |||||
Croton heliotropiifolius Kunth (Autumn, May). | 0.16 | β-Caryophyllene, 1,8-cineole, limonene, bicyclogermacrene. | M: 41.12 S: 50.96 | Nd | Bacillus cereus | [173] |
125 | Enterococcus faecalis | |||||
Nd | Escherichia coli | |||||
Nd | Klebsiella pneumoniae | |||||
Nd | Salmonella enterica | |||||
500 | Serratia marcescens | |||||
500 | Shigella flexneri | |||||
Nd | Staphylococcus aureus | |||||
Croton heliotropiifolius Kunth (Winter, August). | 0.60 | β-Caryophyllene, bicyclogermacrene, germacrene D. | M: 16.05 S: 82.39 | Nd | Bacillus cereus | [173] |
500 | Enterococcus faecalis | |||||
500 | Escherichia coli | |||||
Nd | Klebsiella pneumoniae | |||||
Nd | Salmonella enterica | |||||
500 | Serratia marcescens | |||||
Nd | Shigella flexneri | |||||
Nd | Staphylococcus aureus | |||||
Croton heliotropiifolius Kunth (Spring, November). | 0.24 | β-Caryophyllene, bicyclogermacrene, germacrene D. | M: 6.04 S: 84.74 | Nd | Bacillus cereus | [173] |
500 | Enterococcus faecalis | |||||
500 | Escherichia coli | |||||
Nd | Klebsiella pneumoniae | |||||
500 | Salmonella enterica | |||||
500 | Serratia marcescens | |||||
Nd | Shigella flexneri | |||||
Nd | Staphylococcus aureus | |||||
Croton heliotropiifolius Kunth. | β-Caryophyllene, γ-muurolene, viridiflorene. | M: 2.01 S: 77.14 | ˃500 | Micrococcus luteus | [174] | |
500 | Sthaphylococcus aureus | [174] | ||||
62.5 | Bacillus subtilis | [174] | ||||
˃500 | Escherichia coli | [174] | ||||
˃500 | Pseudomonas aeruginosa | [174] | ||||
˃500 | Salmonella choleraesuis | [174] | ||||
Croton heterocalyx Baill. | 0.45 | Germacrene D, bicyclogermacrene, δ-elemene, β-elemene, spathulenol, linalool. | M: 13.9 S: 84.8 | 2800 μg/mL | Aspergillus niger Candida albicans Pseudomonas aeruginosa Escherichia coli Staphylococcus aureus | [175] |
Croton hieronymi Griseb. | 0.07 | γ-Asarone, (E)-asarone, borneol, camphor. | M: 35.4 S: 9.9 P: 37.1 | Percentage of living microorganism: 0% at 100 μg/mL. | Escherichia coli Candida albicans | [176] |
Percentage of living microorganism: 50% at 1000 μg/mL. | Salmonella typhimurium | |||||
Percentage of living microorganism: 50% at 100 μg/mL. | Klebsiella pneumoniae | |||||
Croton hirtus L’ Hér. | 0.60 | β-caryophyllene, germacrene D, α-humulene, β-elemene. | M: 15.55 S: 77.94 | >512 | Escherichia coli | [8] |
512 | Staphylococcus aureus | |||||
Synergistic effect with gentamicin, ceftazidime. | Staphylococcus aureus | |||||
Croton limae A.P. Gomes. | 0.36 | Cedrol, 1,8-cineole, α-pinene. | M: 42.4 S: 41 | 512 | Staphylococcus aureus | [24] |
≥1024 | Escherichia coli | |||||
≥1024 | Pseudomonas aeruginosa | |||||
≥1024 | Klebsiella pneumoniae | |||||
≥1024 | Candida tropicalis | |||||
≥1024 | C. krusei | |||||
≥1024 | C. albicans | |||||
Croton lechleri Müll. Arg. | 0.061 | Sesquicineole, α-calacorene. | M: 18.84 S: 76.82 | 10,100 | Pseudomonas aeruginosa | [177] |
1010 | Klebsiella oxytoca | |||||
100 | Escherichia coli | |||||
10,100 | Staphylococcus aureus subsp. aureus | |||||
10,100 | Enterococcus foecalis | |||||
10,100 | Micrococcus luteus | |||||
Croton malambo H. Karst. | Nd | Methyl eugenol. | M: 0.8 S: 3.3 P: 95.1 | Inhibition zones in mm from 7.0–8.0 at 10 mg/mL. | Staphylococcus aureus Candida tropicalis | [55] |
Croton monteverdensis Huft. | 0.03 | α-Pinene, β-pinene, linalool. | M: 47.9 S: 51.0 | 625 156 | Bacillus cereus Staphylococcus aureus | [178,179] |
Croton niveus Jacq. | 0.10 | α-Pinene, 1,8-cineole, borneol. | M: 78.3 S: 19.1 | 625 78 | Bacillus cereus Staphylococcus aureus | [178,179] |
Croton nepetifolius Baill. | Methyl eugenol, bicyclogermacrene, β-caryophyllene, trans-α-bergamotene, 1,8-cineole, α-humulene, ortho-vanillin. | NI | Candida albicans | [56] | ||
NI | Candida tropicalis | |||||
>5000 | Microsporum canis | |||||
Croton oblongifolius Roxb. | 0.9 | Terpinen-4-ol; α-guaiene; α-bulnesene; β-caryophyllene; myrcene; cyclosativene. | M: 40.3 S: 47.2 | 0.125%, v/v | Propionibacterium acnes | [180] |
Croton piauhiensis Müll. Arg. | 0.02 | β-caryophyllene, limonene, γ-terpinene, germacrene D. | Nd | 0.15 (v/v) 1.25 (v/v) | Staphylococcus aureus Staphylococcus aureus (methicillin-resistant) | [49] |
5.0 (v/v) | Staphylococcus epidermidis | |||||
>5.0 (v/v) | Pseudomonas aeruginosa | |||||
5.0 (v/v) | Escherichia coli | |||||
Croton pluriglandulosus. | 0.46 | 1,8-Cineole, methyleugenol, elemicin, β-caryophyllene, bicyclogermacrene, 1,3,5-trimethoxybenzene, 3,5-dimethoxytoluene. | M: 6.57 S: 24.83 B: 48.98 | Synergistic effect with chlorhexidine. | Streptococcus mutans Streptococcus salivarius Streptococcus sanguinis | [158] |
Croton rhamnifolioides. | Nd | Spathulenol, 1,8-cineole, o-cymene, α-terpineol, trans-caryophyllene. | M: 45.65 S: 51.06 | 1024 Synergistic with antibiotics aminoglycoside and β-lactam, and the antifungal polyene. | Escherichia coli Staphylococcus aureus Pseudomonas aeruginosa Candida albicans Candida krusei Candida tropicalis | [181] |
Croton stellulifer B.L. Burtt. | 0.25–0.44 | α-Phellandrene, p-cymene, linalool, α-pinene. | M: 73.5–77.4 S: 5.1–5.4 | Inhibition zones in mm from 9.3–17.3. | Escherichia coli Staphylococcus aureus Staphylococcus faecalis Staphylococcus epidermidis Proteus vulgaris Cryptococcus neoforomans Cladosporium cladosporioidesAspergillus fumigatus | [182] |
Croton tetradenius Baill. | 2.4–4.9 | p-Cymene, camphor, 1,8-cineole, γ-terpinene, trans-ascaridole, cis-ascaridole. | M: 94.05 S: 2.52 | 125 | Staphylococcus aureus | [183] |
31.5 | Bacillus cereus | |||||
250 | Escherichia coli | |||||
62.5 | Listeria monocytogenes | |||||
125 | Salmonella typhimurium | |||||
Croton tetradenius Baill. | 2.4–4.9 | Camphor, p-cymene, trans-ascaridole, trans-pinocarveol, 1,8-cineole, α-pinene, pinocarvone. | M: 93.22 S: 1.34 | 125 | Staphylococcus aureus | [183] |
31.25 | Bacillus cereus | |||||
250 | Escherichia coli | |||||
62.5 | Listeria monocytogenes | |||||
125 | Salmonella typhimurium | |||||
Croton tetradenius Baill. (CTE101) | 4.0 | Camphor, p-cymene, trans-ascaridole. | M: 93.22 S: 1.34 | 5600 | Escherichia coli | [184] |
11,300 | Staphylococcus aureus | |||||
11,300 | Klebsiella pneumoniae | |||||
Croton tetradenius Baill. (CTE407) | 4.0 | p-Cymene, trans-ascaridole, 1,8-cineole, camphor, α-terpinene, γ-terpinene, cis-ascaridole. | M: 95.94 S: 1.39 | 2800 | Escherichia coli | [184] |
2800 | Staphylococcus aureus | |||||
5600 | Klebsiella pneumoniae | |||||
Croton tetradenius Baill. | 0.47 | p-Cymene, camphor, α-phellandrene, γ-terpinene, α-terpinene, trans-chrysanthenyl acetate. | M: 99.34 S: 0.66 | 4000 | Staphylococcus aureus | [185] |
Croton tetradenius Baill. | 0.27 | trans-Chrysanthenyl acetate, α-terpinene, p-cymene, γ-terpinene. | M: 87.49 S: 1.28 | 8000 | Staphylococcus aureus | [185] |
Croton thurifer Kunth. | 0.07 ± 0.005 | β-Elemene, germacrene D. | M: 35.39 S: 62.26 | 296.1 | Staphylococcus aureus | [155] |
148 | Bacillus subtilis | |||||
>1000 | Escherichia coli | |||||
>1000 | Pseudomonas aeruginosa | |||||
>1000 | Candida albicans | |||||
Croton tricolor Baill. | Nd | Epiglobulol, α-bisabolol, trans-α-bergamotol, β-caryophyllene, α-acorenol. | M: 3.4 S: 88.6 | 1.0 to 1024 | Candida strains | [186] |
Croton urucurana Baillon.(Leaves) | 0.35 | Bicyclogermacrene, germacrene D, germacrene D-4-ol, α-cadinol. | S: 85.9 Other: 2.8 | 10 | Staphylococcus aureus | [6] |
10 | Staphylococcus epidermidis | |||||
10 | Pseudomonas aeruginosa | |||||
10 | Bacillus subtilis | |||||
10 | Klebsiella pneumoniae | |||||
10 | Escherichia coli | |||||
10 | Salmonella setubal | |||||
5 | Saccharomyces cerevisiae | |||||
>20 | Candida albicans | |||||
Croton urucurana Baillon. (Stem bark) | 0.05 | Borneol, cadina-4,10(14)-dien-1α-ol, sesquicineole, bornyl acetate, γ-gurjunene epoxide. | M: 34 S: 57.3 | 2500 | Staphylococcus aureus | [6], [187] |
1250 | Staphylococcus epidermidis | |||||
2500 | Pseudomonas aeruginosa | |||||
10,000 | Bacillus subtilis | |||||
5000 | Klebsiella pneumoniae | |||||
1250 | Escherichia coli | |||||
2500 | Salmonella setubal | |||||
5000 | Saccharomyces cerevisiae | |||||
5000 | Cryptococcus neoformans | |||||
10,000 | Candida albicans | |||||
Croton zambesicus Mull-Arg. | 0.28 | 1,8-Cineole, cymene, α-terpineol, L-linalool. | M: 69.84 S: 15.62 | 16.0 250.0 16.0 16.0 | Escherichia coli Pseudomonas aeruginosa Bacillus subtilis Staphylococcus aureus | [188] |
Croton zehntneri Pax and K. Hoffm. | Estragole, (E)-anethole, bicyclogermacrene. | >5000 | Candida albicans | [56] | ||
2500 | Candida tropicalis | |||||
620–1250 | Microsporum canis | |||||
Croton zehntneri Pax and Hoffm. | Nd | Estragole, 1,8-cineole, eugenol. | M: 13.61 S: 1.7 P: 82.1 | Synergistic effect with norfloxacin. | Staphylococcus aureus | [53] |
Bark | Estragole, (E)-anethole. | M: 1.92 S: 0.47 P: 95.96 | Inhibition zone diameter (mm): 8.0 at 10 mL. | Staphylococcus aureus | [54] | |
Inhibition zone diameter (mm): 19.3 at 10 mL. | Candida parapsilosis | |||||
Leaves | Estragole. | M: 0 S: 4.5 P: 93.94 | Inhibition zone diameter (mm): 8.3 at 10 mL. | Staphylococcus aureus | [54] | |
Inhibition zone diameter (mm): 19.0 at 10 mL. | Candida parapsilosis | |||||
Croton zehntneri Pax and Hoffm. | Estragole, 1,8-cineol, eugenol. | M: 13.61 S: 1.7 P: 82.1 | 25 | Shigella fl exneri | [15] | |
Nd | Salmonella typhimurium | |||||
500 | Escherichia coli | |||||
500 | Sthaphylococcus aureus | |||||
500 | Streptococus β-haemolyticus | |||||
Croton zehntneri Pax and K. Hoffm. (Fresh leaves) | 1.8 | Estragole, spathulenol. | M: 85.0 S: 12.0 | 58.75 | Bacillus subtilis | [14] |
63.15 | Bacillus megaterium | |||||
145.0 | Staphylococcus aureus | |||||
63.43 | Shigella sonnei | |||||
38.52 | Salmonella paratyphi | |||||
131.2 | Blastomyces dermatitidis | |||||
58.75 | Candida albicans | |||||
61.54 | Pityrosporum ovale | |||||
88.51 | Cryptococcus neoformans |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luu-dam, N.A.; Le, C.V.C.; Satyal, P.; Le, T.M.H.; Bui, V.H.; Vo, V.H.; Ngo, G.H.; Bui, T.C.; Nguyen, H.H.; Setzer, W.N. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules 2023, 28, 2361. https://doi.org/10.3390/molecules28052361
Luu-dam NA, Le CVC, Satyal P, Le TMH, Bui VH, Vo VH, Ngo GH, Bui TC, Nguyen HH, Setzer WN. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules. 2023; 28(5):2361. https://doi.org/10.3390/molecules28052361
Chicago/Turabian StyleLuu-dam, Ngoc Anh, Canh Viet Cuong Le, Prabodh Satyal, Thi Mai Hoa Le, Van Huong Bui, Van Hoa Vo, Gia Huy Ngo, Thi Chinh Bui, Huy Hung Nguyen, and William N. Setzer. 2023. "Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam" Molecules 28, no. 5: 2361. https://doi.org/10.3390/molecules28052361
APA StyleLuu-dam, N. A., Le, C. V. C., Satyal, P., Le, T. M. H., Bui, V. H., Vo, V. H., Ngo, G. H., Bui, T. C., Nguyen, H. H., & Setzer, W. N. (2023). Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules, 28(5), 2361. https://doi.org/10.3390/molecules28052361