Next Article in Journal
Exploring the Relationship between Reactivity and Electronic Structure in Isorhodanine Derivatives Using Computer Simulations
Next Article in Special Issue
In Vitro Antiviral Potential, Antioxidant, and Chemical Composition of Clove (Syzygium aromaticum) Essential Oil
Previous Article in Journal
Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil
Previous Article in Special Issue
Commercially Available Viola odorata Oil, Chemical Variability and Antimicrobial Activity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam

1
Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
2
Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
3
Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 321 Huynh Thuc Khang, Hue 530000, Thua Thien Hue, Vietnam
4
Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
5
Faculty of Pharmacy, Vinh Medical University, 161 Nguyen Phong Sac, Vinh 461150, Vietnam
6
Department of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
7
Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 5000, Vietnam
8
Faculty of Biology, University of Education, Hue University, 34 Le Loi St., Hue 530000, Vietnam
9
Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
*
Author to whom correspondence should be addressed.
Molecules 2023, 28(5), 2361; https://doi.org/10.3390/molecules28052361
Submission received: 27 January 2023 / Revised: 28 February 2023 / Accepted: 28 February 2023 / Published: 3 March 2023
(This article belongs to the Special Issue Essential Oils: Characterization, Biological Activity and Application)

Abstract

:
Using essential oils to control vectors, intermediate hosts, and disease-causing microorganisms is a promising approach. The genus Croton in the family Euphorbiaceae is a large genus, with many species containing large amounts of essential oils, however, essential oil studies are limited in terms of the number of Croton species investigated. In this work, the aerial parts of C. hirtus growing wild in Vietnam were collected and analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 141 compounds were identified in C. hirtus essential oil, in which sesquiterpenoids dominated, comprising 95.4%, including the main components β-caryophyllene (32.8%), germacrene D (11.6%), β-elemene (9.1%), α-humulene (8.5%), and caryophyllene oxide (5.0%). The essential oil of C. hirtus showed very strong biological activities against the larvae of four mosquito species with 24 h LC50 values in the range of 15.38–78.27 μg/mL, against Physella acuta adults with a 48 h LC50 value of 10.09 μg/mL, and against ATCC microorganisms with MIC values in the range of 8–16 μg/mL. In order to provide a comparison with previous works, a literature survey on the chemical composition, mosquito larvicidal, molluscicidal, antiparasitic, and antimicrobial activities of essential oils of Croton species was conducted. Seventy-two references (seventy articles and one book) out of a total of two hundred and forty-four references related to the chemical composition and bioactivity of essential oils of Croton species were used for this paper. The essential oils of some Croton species were characterized by their phenylpropanoid compounds. The experimental results of this research and the survey of the literature showed that Croton essential oils have the potential to be used to control mosquito-borne and mollusk-borne diseases, as well as microbial infections. Research on unstudied Croton species is needed to search for species with high essential oil contents and excellent biological activities.

Graphical Abstract

1. Introduction

In the family Euphorbiaceae, the genus Croton has the largest number of species with about 13,000 species, which are distributed mainly in tropical and subtropical areas [1]. Secondary metabolites in this genus include terpenoids, alkaloids, phenolic compounds, and phenylpropanoids [2]. The volatile compounds (essential oils) in Croton species are important products with many biological activities such as antioxidant [3,4,5,6,7], antibacterial, antifungal [8,9,10], anti-inflammatory [2,11,12,13], cytotoxic [6,11,14,15,16,17], antitumor [16,17], insecticidal, amebicidal [18], anti-parasitic, anti-ulcerogenic [19,20,21], antinociceptive [22,23], modulation of antibiotic and antifungal activities [24], myorelaxant [25], antispasmodic [26], anxiolytic, [2,27], anthelmintic [28], vasorelaxant [29], and pharmacological effects.
Mosquito-borne diseases are a global health problem, particularly diseases with a high number of annual infections such as human malaria (148–304 million), dengue (67–136 million), yellow fever (84,000–170,000 in Africa), chikungunya (693,000 in the Americas), Zika (500,000 in the Americas), lymphatic filariasis (31.3–46.7 million), Japanese encephalitis (35,000–50,000), and West Nile fever (2588) [30].
Parasitic diseases transmitted by snails are a serious health problem in addition to mosquito-borne diseases. In 2021, 136 million school-aged children and 115.4 million adults in 51 countries required preventive chemotherapy for schistosomiasis, which represents a slight increase over that in 2020 (239.6 million) [31]. It is estimated that the acute and chronic symptoms of this disease result in a loss of 4.5 million disability-adjusted life years (DALY) [32]. Food-borne trematodiases are most prevalent in east Asia and South America and can result in severe liver and lung disease. Estimates from the WHO show that food-borne trematodes are important causes of disability with an estimated annual total of 200,000 illnesses and more than 7000 deaths per year, resulting in more than 2 million disability-adjusted life years globally [33].
Antibiotic-resistant bacteria are the biggest global health threat today, affecting anyone of any age in any country. The overuse of antibiotics in humans and animals is accelerating this process. Antibiotic resistance leads to an increasing number of infections, less effective treatment with traditional antibiotics, longer hospital stays, higher medical costs, and increased mortality [34]. Overuse and frequent repeated use of traditional insecticides have created resistant mosquito populations [35]. Although resistance to schistosomiasis has not been formally reported, it is a persistent and probable concern [36,37,38,39]. Disease control measures based on a small number of traditional medicines are unsustainable and present risks.
Essential oils, characterized by a complex chemical composition of volatile compounds, are emerging as potential candidates for the control of vectors, intermediate hosts, parasites, and bacteria. The synergistic and antagonistic effects of the complex chemical constituents of essential oils determine the expression of the bioactivity of the essential oil. Many authors believe that it is the complex nature of their chemical composition and the interactions between the components that make it difficult for the target organisms to develop resistance to essential oils [32,40,41]. The trend of synergistic combinations of essential oils with antibiotics [42,43] and pesticides [44,45,46,47,48] to reduce drug use, increase control efficiency, and limit resistance may be an effective solution.
The aim of this study was to obtain and characterize the essential oil from Croton hirtus L’Hér from Vietnam and to screen the essential oil for its larvicidal activity against four species of mosquitoes, molluscicidal activity against Physella acuta, and antimicrobial activity against a panel of pathogenic microorganisms. In addition, a literature survey of essential oils from Croton spp. for the potential control of mosquitoes, snails, parasitic species, and microorganisms was carried out.

2. Results and Discussion

2.1. Chemical Composition

The extraction yield of the essential oil was 0.62% (w/w), which was consistent with the range of 0.3–0.6% mentioned in previous reports. Yields of essential oils from Croton spp. species range from 0.02 to 6.41% [49,50].
The chemical composition of C. hirtus was dominated by sesquiterpenoids (95.4%). The main chemical components included β-caryophyllene (32.8%), germacrene D (11.6%), β-elemene (9.1%), α-humulene (8.5%), and caryophyllene oxide (5.0%). The full analytical results are available in the Supplementary Materials, Table S1.
Previous studies have shown that the main chemical composition of this plant’s essential oil varies by season and geographical location. The essential oil samples collected in the study by Simões included spathulenol (26.7%), β-caryophyllene (10.0%), bicyclogermacrene (9.5%), α-cadinol (7.7%), and cubenol (7.0%) [51]. The essential oil samples collected in Teresina showed seasonal variations in the content of major components, namely β-caryophyllene (27.9–37.3%), germacrene D (6.3–33.7%), α-cadinene (7.0–16.1%), δ-cadinene (1.8–13.5%), and α-humulene (3.6–4.6%) [51]. Essential oil samples collected in the Ivory Coast showed main components that included β-caryophyllene (31.75%), germacrene-D (22.57%), and α-humulene (7.42%) [8].
Essential oils from Croton species, in addition to being characterized by monoterpenoids and sesquiterpenoids, are particularly characterized by phenylpropanoids [15,28,52,53,54,55,56]. Essential oils of several species are dominated by a major component such as (E)-anethole [52], linalool [57], guaiol, estragole [54], andmethyl eugenol [55].

2.2. Larvicidal Activity

The C. hirtus essential oil showed good larvicidal activity against mosquitoes with LC50 values in the range of 15.38–78.27 μg/mL (Table 1). The compounds β-caryophyllene, α-humulene, and caryophyllene oxide were active against the larvae of Aedes albopictus with LC50 values at 24 h of exposure of 56.87, 43.86, and 20.61 μg/mL, respectively [58]. The compounds germacrene D and β-elemene showed very strong toxicity against the larvae of Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus [59,60,61,62,63,64].
β-Caryophyllene and its mixtures with caryophyllene oxide and α-humulene (ratio tested relative to the percentage in the essential oil) (Table 2 and Table 3) exhibited distinctly different toxicities against Ae. aegypti and Ae. albopictus. This mixture played a major role in the larvicidal activity against Ae. aegypti, but conversely it did not play a role in the larvicidal activity against Ae. albopictus.

2.3. Literature Survey

In order to put this current investigation into context, a survey of the literature on Croton essential oils and their biological activities was carried out. A total of two hundred and forty-four references were collected, which included one hundred and seven species of Croton. The distribution of the study samples collected was as follows: Brazil (one hundred and seventy-six), Venezuela (six), South Africa (six), Cuba (five), Colombia (five), Ecuador (five), Madagascar (four), Nigeria (three), Costa Rica (three), Vietnam (two, not included in this study), Kenya (two), India (two), Cameroon (two), Kenya (two), Peru (two), Ethiopia (two), Mexico (two), Korea (one), Laos (one), Central African Republic (one), Gabon (one), Curacao (one), Benin (one), Argentina (one), Ivory Coast (one), Congo-Brazzaville (one), Sudan (one), Guadeloupe (one), China (one), Thailand (one), Island (one) and Malaysia (one). After reviewing the articles based on the set criteria, seventy-one articles and one book satisfied the criteria and were included herein. Most of the studies collected plant material and were conducted in Brazil.
The previously reported larvicidal activities of Croton species against mosquitoes are summarized in Table 4. Most of the essential oils of Croton spp. showed good activity (LC50 < 100 μg/mL). It is worth noting that C. zehntneri essential oil has been characterized by its main component (E)-anethole, which has shown very good larvicidal activity against Ae. aegypti [52,65]. Furthermore, studies have reported that the yield of essential oil from the leaves of this species is greater than 1%, and it is non-toxic to mice (LD50: 3464 mg/kg) [65], so this essential oil may be considered for potential use as a biological pesticide. However, since this essential oil has shown geographical variation in terms of its chemical composition [66], an evaluation of the larvicidal activity of all of its chemotypes has not been performed.
The main constituents of the essential oils of Croton spp. were evaluated for their larvicidal activity against mosquito species (Table 5). There were differences between different authors when reporting the activities of the compounds β-caryophyllene, α-pinene, β-pinene, α-terpineol, α-humulene, and α-phellandrene. This difference may have been due to the different health or developmental stages of the larvae between the groups. The larvicidal activity of (E)-anethole was weaker than that of C. zehntneri essential oil [52,65], which demonstrated the important role of components in small concentrations, such as anysyl-acetate and dihydroaromadendrene. Bicyclogermacrene did not have synergistic effects with the compounds spathulenol, β-caryophyllene, camphor, or germacrene D in the larvicidal activity of the essential oils of C. argyrophyllus, C. heliotropiifolius, and C. pulegiodorus. This trend was also observed in the larvicidal activity of Eugenia calycina essential oil [76].

2.4. Molluscicidal and Antiparasitic Activities

The essential oil of C. hirtus demonstrated molluscicidal activity against adult P. acuta with a 48 h LC50 value of 10.09 μg/mL (Table 6). Based on the classification by the World Health Organization (WHO) [114], this essential oil is considered as an active plant molluscicide (LC50 < 20 μg/mL). Croton rudolphianus essential oil, which is characterized by the main components β-caryophyllene, bicyclogermacrene, δ-cadinene, and germacrene D, was active against Biomphalaria glabrata with a 48 h LC50 of 47.89 μg/mL [115].
Although only a few studies have been carried out evaluating the toxicity of Croton essential oils against snails as disease vectors, a number of essential oil components have been evaluated for their molluscicidal activity [32]. β-Caryophyllene exhibited strong toxicity against Bulinus truncatus with an LC50 value of 1.66 μg/mL [116].
In contrast to the molluscicidal activity, the antiparasitic activities of essential oils and single components have been extensively studied and have also been studied at the in-vivo level [117,118] (Table 7 and Table 8). Table 7 and Table 8 show that essential oils with high concentrations of β-caryophyllene and/or caryophyllene oxide showed a trend of stronger activity than other essential oils.

2.5. Antimicrobial Activity

The essential oil C. hirtus exhibited strong antimicrobial activity with MIC values for E. faecalis of 8.0 and 16.0 μg/mL for S. aureus, B. cereus, E. coli, and S. enterica (Table 9). The compound β-caryophyllene showed strong antimicrobial activity [151], whereas β-elemene in contrast showed weak antimicrobial activity (MIC > 1000 µg/mL) [151]. The essential oils from the leaves and stems of Orthosiphon stamineus, which are characterized by the main components β-caryophyllene (24.0–35.1%), α-humulene (14.2–18.4%), and β-elemene (11.1–8.5%), showed strong antimicrobial activity [152]. Stachys officinalis essential oil, which is characterized by the main components germacrene D (19.9%), β-caryophyllene (14.1%), and α-humulene (7.5%), exhibited very strong antimicrobial activity [153]. The main components showed weaker antimicrobial activity than essential oils themselves, which suggests synergistic effects between them.
The antimicrobial activities of the essential oils of Croton species are summarized in Table 10. It is noteworthy that there are reports on the synergism of essential oils and antibiotics, although essential oils alone or antibiotics alone have shown weakness.

3. Materials and Methods

3.1. Plant Material and Isolation of Essential Oil

The specimens of Croton hirtus L’Hér. were collected at Phong Dien Nature Reserve, Thua Thien Hue Province (16°24′15,84″ N 107°12′00,01″ E, 415 m elevation) in July 2022. The specimen (label: NCXS-H 110) of this species was identified by Van Huong Bui and was deposited in the Vietnam National Museum of Nature (VNMN) herbarium. The fresh aerial parts were chopped and hydrodistilled with a Clevenger apparatus (Witeg Labortechnik, Wertheim, Germany) for 6 h. The EO was dried over anhydrous Na2SO4 and stored at 4 °C until use.

3.2. Gas Chromatographic Analysis

Gas chromatography–mass spectral analyses (GC–MS) of C. hirtus essential oil were carried out using previously published instrumentation and protocols [58,114]. A Shimadzu GCMS-QP2010 Ultra (Shimadzu Scientific Instruments, Columbia, MD, USA) with a ZB-5 ms fused silica capillary column (60 m length, 0.25 mm diameter, and 0.25 μm film thickness) (Phenomenex, Torrance, CA, USA), He carrier gas, 2.0 mL/min flow rate, injection and ion source temperatures of 260 °C, and a GC oven program of 50 to 260 °C at 2.0 °C/min was used. A 0.1 μL amount of a 5% (w/v) sample of essential oil in CH2Cl2 was injected in split mode with a 24.5:1 split ratio. Identification of the essential oil components was carried out with a comparison of MS fragmentation and retention indices (RI) with those available in the databases [189,190,191,192]. Quantification was performed using external standards of representative compounds from each compound class.

3.3. Screening for Larvicidal Activity

Two species of Aedes mosquitoes were maintained continuously at Duy Tan University [193]. Egg rafts of Cx. fuscocephala were collected from rice fields in Hoa Vang district, Da Nang (GPS: 16°00′49″ N, 108°06′12″ E). Egg rafts of Cx. quinquefasciatus were collected from car tires containing decomposing organic matter in Da Nang City. Each Culex egg raft was hatched separately in plastic trays with tap water overnight to facilitate the precise examination of the species. The larvae were fed a mixture of dog food and yeast (ratio 3:1, w/w).
Essential oil and purified compounds were dissolved with ethanol (Sigma–Aldrich, Ho Chi Minh, Vietnam) to obtain a 1% stock solution. Twenty-five larvae of each mosquito species were transferred into 250 mL beakers containing 150 mL of distilled water. Different volumes of each the stock solution were transferred into the beakers containing larvae to obtain exposure concentrations of 100, 75, 50, 25, 12.5, and 6.25 μg/mL. Each concentration was cloned 4 times, and permethrin (Sigma–Aldrich) was used as a positive control. After 24 h and 48 h of exposure, the larvae were determined for mortality.

3.4. Screening for Molluscicidal Activity

Adult snails about 1.0 cm in size were collected in the wild (GPS: 16°01′08″ N, 108°07′44″ E), and they were acclimated to laboratory conditions 24 h prior to testing. The five snail adults were transferred into 200 mL plastic beakers, which were then filled with 195 mL of distilled water. The adults were exposed to concentrations of 50, 25, 12.5, 6.25, and 3.125 μg/mL. After 24 h of exposure, the snails were recovered by transferring them to plastic beakers containing only distilled water. After 24 h of recovery, the number of dead snails at the exposure concentrations was recorded. Copper sulfate (Xilong Chemicals, Shantou, China) was used as a positive control.

3.5. Screening for Antimicrobial Activity

The ATCC international standard for control of microorganisms include three Gram-negative bacteria strains (E. coli ATCC25922, P. aeruginosa ATCC27853, and S. enterica ATCC13076), three Gram-positive strains (E. faecalis ATCC299212, S. aureus ATCC25923, and B. cereus ATCC 14579), and a strain of C. albicans ATCC10231, which were provided by the National Institute for Food Control, Vietnam.
The antimicrobial activity was analyzed based on the multi-concentration dilution method. Samples of essential oils or pure compounds were diluted in DMSO at a decreasing concentration range of 256, 128, 64, 32, 16, 4, and 2 µg/mL, with three replicates for each concentration. Microbial solutions were prepared at a concentration of 2 × 105 CFU/mL, and antimicrobial assays were carried out in 96-well microtiter plates. A 5.12 μL sample solution with a 10 mg/ml concentration was aspirated into the first row containing 100 μL of LB medium and then diluted successively by concentration into rows containing 50 μL until reaching a concentration of 2 μg/mL. Then, 50 μL of microbial solution was added at a concentration of 2 × 105 CFU/ml and incubated at 37 °C. After incubation for 24 hours at 37 °C, the absorbance at 650 nm was measured using a microplate reader (Epoch, BioTek Instruments Inc., Winooski, VT, USA) [194]. Streptomycin, kanamycin, tetracycline, nystatin, and cycloheximide (all compounds were purchased from Sigma–Aldrich) were used as positive controls.

3.6. Data Analysis

Mortality data were analyzed by log-probit analysis [195] to acquire LC50 and LC90 values as well as 95% confidence limits using Minitab® version 19.2020.1 (Minitab, LLC, State College, PA, USA).

3.7. Literature Survey

The materials used in this literature survey were searched on the databases https://scholar.google.com, https://pubmed.ncbi.nlm.nih.gov, and https://www.researchgate.net (accessed on 1 January 2023) with a keyword structure including “essential oil” and Croton; bioactive keywords that were searched for included antimicrobial, antifungal, antibacterial, antiparasitic, and “mosquito larvicidal”. There were no language restrictions for the selection of articles. The following criteria were included when considering articles:
(1)
The articles fully reported the chemical composition and mosquito larvicidal activity of the essential oils.
(2)
The articles fully reported the chemical composition and the molluscicidal and antiparasitic activities of the essential oils.
(3)
The articles fully reported the chemical composition and antibacterial activity of the essential oils.
(4)
Articles that reported unreliable GC/MS analysis results, such as chemical compositions that did not match the elution order, retention time, and retention index, were not considered.

4. Conclusions

This work presented a literature survey of the volatile phytochemistry and biological activities of Croton species and illustrated the potential utility of these essential oils. Furthermore, the essential oil composition, mosquito larvicidal, molluscicidal, and antimicrobial activities of Croton hirtus from Vietnam was included, which adds to our knowledge of the genus Croton. β-Caryophyllene occurred abundantly in the essential oils [196], and it was present in most of the essential oils of the Croton species. Mixtures of β-caryophyllene, α-humulene, and caryophyllene oxide showed synergistic or antagonistic effects against various organisms. Investigations into the bioactivity of combinations of β-caryophyllene with other major compounds in their respective percentages in the essential oils will help in the development of β-caryophyllene-based products. Based on the results of the antiparasitic activity of β-caryophyllene, caryophyllene oxide, and the Croton essential oils containing these two compounds, we suggest that an investigation into the antiparasitic activity of C. hirtus essential oil may provide interesting results.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules28052361/s1. Table S1: Chemical composition of Croton hirtus essential oil.

Author Contributions

Conceptualization, N.A.L.-d. and W.N.S.; methodology, N.A.L.-d., C.V.C.L., V.H.B. and P.S.; software, P.S.; validation, W.N.S. and N.A.L.-d.; formal analysis, W.N.S., H.H.N., and N.A.L.-d.; investigation, N.A.L.-d., V.H.B., P.S., T.M.H.L., G.H.N., V.H.V., T.C.B. and H.H.N.; resources, V.H.B. and P.S.; data curation, V.H.B., H.H.N., P.S. and W.N.S.; writing—original draft preparation, N.A.L.-d., H.H.N. and W.N.S.; writing—review and editing, W.N.S.; visualization, V.H.B.; supervision, N.A.L.-d.; project administration, N.A.L.-d.; funding acquisition, N.A.L.-d., C.V.C.L. and V.H.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Vietnam Academy of Science and Technology (VAST), grant number NCXS02.04/22-23.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data are available upon reasonable request from the corresponding authors (N.H.H. and W.N.S.).

Acknowledgments

P.S. and W.N.S. participated in this work as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/, accessed on 1 March 2023).

Conflicts of Interest

The authors declare no conflict of interest.

Sample Availability

Samples of C. hirtus essential oil are available from the corresponding author H.H.N.

References

  1. Pimentel, B.S.; Negri, G.; Cordeiro, I.; Motta, L.B.; Salatino, A. Taxonomic significance of the distribution of constituents of leaf cuticular waxes of Croton species (Euphorbiaceae). Biochem. Syst. Ecol. 2020, 92, 104106. [Google Scholar] [CrossRef]
  2. Bezerra, F.W.; Bezerra, P.D.N.; de Oliveira, M.S.; da Costa, W.A.; Ferreira, G.C.; de Carvalho, R.N. Bioactive compounds and biological activity of Croton species (Euphorbiaceae): An overview. Curr. Bioact. Compd. 2020, 16, 383–393. [Google Scholar] [CrossRef]
  3. Da Costa, L.S.; de Moraes, Â.A.B.; Cruz, J.N.; Mali, S.N.; Almeida, L.Q.; do Nascimento, L.D.; Ferreira, O.O.; Varela, E.L.P.; Percário, S.; de Oliveira, M.S.; et al. First report on the chemical composition, antioxidant capacity, and preliminary toxicity to Artemia salina L. of Croton campinarensis Secco, A. Rosário & PE Berry (Euphorbiaceae) essential oil, and in silico study. Antioxidants 2022, 11, 2410. [Google Scholar] [CrossRef]
  4. De Morais, S.M.; Catunda Júnior, F.E.A.; da Silva, A.R.A.; Neto, J.S.M.; Rondina, D.; Cardoso, J.H.L. Antioxidant activity of essential oils from Northeastern Brazilian Croton species. Química Nova 2006, 29, 907–910. [Google Scholar] [CrossRef] [Green Version]
  5. Oliveira, S.D.D.S.; Silva, A.M.D.O.E.S.; Blank, A.F.; Nogueira, P.C.D.L.; Nizio, D.A.D.C.; Almeida-Pereira, C.S.; Pereira, R.O.; Menezes-Sá, T.S.A.; Santana, M.H.D.S.; Arrigoni-Blank, M.D.F. Radical scavenging activity of the essential oils from Croton grewioides Baill accessions and the major compounds eugenol, methyl eugenol and methyl chavicol. J. Essent. Oil Res. 2021, 33, 94–103. [Google Scholar] [CrossRef]
  6. Simionatto, E.; Bonani, V.F.L.; Peres, M.T.L.P.; Hess, S.C.; Candido, A.C.S.; Diraimo, D.L.; Poppi, N.R.; Matos, M.D.F.C.; Santos, E.C.S.; Oguma, P.M.; et al. Bioactivity and chemical composition of the essential oils of Croton urucurana Baillon (Euphorbiaceae). J. Essent. Oil Bear. Plants 2009, 12, 250–261. [Google Scholar] [CrossRef]
  7. Sousa, A.; Oliveira, G.; Fonseca, L.; Rocha, M.; Rai, M.; Santos, F.; de Lima, S. Antioxidant properties of Croton zehntneri Pax et Hoffm. Essential oil and its inclusion complex with β-cyclodextrin prepared by spray drying. J. Braz. Chem. Soc. 2022, 33, 1244–1253. [Google Scholar] [CrossRef]
  8. Daouda, T.; Prevost, K.; Gustave, B.; Joseph, D.A.; Nathalie, G.; Raphaël, O.; Rubens, D.; Claude, C.J.; Mireille, D.; Felix, T. Terpenes, antibacterial and modulatory antibiotic activity of essential oils from Croton hirtus L’ Hér. (Euphorbiaceae) from Ivory Coast. J. Essent. Oil Bear. Plants 2014, 17, 607–616. [Google Scholar] [CrossRef]
  9. de Almeida, T.S.; Rocha, J.B.T.; Rodrigues, F.F.G.; Campos, A.R.; da Costa, J.G.M. Chemical composition, antibacterial and antibiotic modulatory effect of Croton campestris essential oils. Ind. Crops Prod. 2013, 44, 630–633. [Google Scholar] [CrossRef]
  10. De Araújo, A.C.J.; Freitas, P.R.; Rodrigues dos Santos Barbosa, C.; Muniz, D.F.; Rocha, J.E.; Neto, J.B.d.A.; da Silva, M.M.C.; Moura, T.F.; Pereira, R.L.S.; Ribeiro-Filho, J.; et al. Essential oil of Croton ceanothifolius Baill. potentiates the effect of antibiotics against multiresistant bacteria. Antibiotics 2020, 9, 27. [Google Scholar] [CrossRef] [Green Version]
  11. Abreu, L.S.; do Nascimento, Y.M.; do Espirito-Santo, R.F.; Meira, C.S.; Santos, I.P.; Brandão, R.B.; Souto, A.L.; Guedes, M.L.S.; Soares, M.B.P.; Villarreal, C.F.; et al. Phenylpropanoids from Croton velutinus with cytotoxic, trypanocidal and anti-inflammatory activities. Fitoterapia 2020, 145, 104632. [Google Scholar] [CrossRef] [PubMed]
  12. Martins, A.O.B.P.B.; Rodrigues, L.B.; Cesário, F.R.A.S.; de Oliveira, M.R.C.; Tintino, C.D.M.; Castro, F.F.E.; Alcântara, I.S.; Fernandes, M.N.M.; de Albuquerque, T.R.; da Silva, M.S.A.; et al. Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed. Pharmacother. 2017, 96, 384–395. [Google Scholar] [CrossRef] [PubMed]
  13. Oliveira Brito Pereira Bezzra Martins, A.; Wanderley, A.G.; Alcântara, I.S.; Rodrigues, L.B.; Cesário, F.R.A.S.; Correia de Oliveira, M.R.; e Castro, F.F.; de Albuquerque, T.R.; da Silva, M.S.A.; Ribeiro-Filho, J.; et al. Anti-inflammatory and physicochemical characterization of the Croton rhamnifolioides essential oil inclusion complex in β-cyclodextrin. Biology 2020, 9, 114. [Google Scholar] [CrossRef] [PubMed]
  14. Andrade, T.C.B.; de Lima, S.G.; Freitas, R.M.; Rocha, M.S.; Islam, T.; da Silva, T.G.; Militão, G.C.G. Isolation, characterization and evaluation of antimicrobial and cytotoxic activity of estragole, obtained from the essential oil of Croton zehntneri (Euphorbiaceae). An. Acad. Bras. Cienc. 2015, 87, 173–182. [Google Scholar] [CrossRef] [PubMed]
  15. Da Costa, J.G.M.; Rodrigues, F.F.G.; Angélico, E.C.; Pereira, C.K.B.; De Souza, E.O.; Caldas, G.F.R.; Silva, M.R.; Santos, N.K.A.; Mota, M.L.; Santos, P.F. Chemical composition and evaluation of the antibacterial activity and toxicity of the essential oil of Croton zehntneri (variety estragol). Rev. Bras. Farmacogn. 2008, 18, 583–586. [Google Scholar] [CrossRef] [Green Version]
  16. Lima, E.; Alves, R.; D’Elia, G.; Anunciação, T.; Silva, V.; Santos, L.; Soares, M.; Cardozo, N.; Costa, E.; Silva, F.; et al. Antitumor effect of the essential oil from the leaves of Croton matourensis Aubl. (Euphorbiaceae). Molecules 2018, 23, 2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Meireles, D.R.P.; Fernandes, H.M.B.; Rolim, T.L.; Batista, T.M.; Mangueira, V.M.; de Sousa, T.K.G.; Pita, J.C.L.R.; Xavier, A.L.; Beltrão, D.M.; Tavares, J.F.; et al. Toxicity and antitumor efficacy of Croton polyandrus oil against ehrlich ascites carcinoma cells. Rev. Bras. Farm. 2016, 26, 751–758. [Google Scholar] [CrossRef] [Green Version]
  18. Vunda, S.L.L.; Sauter, I.P.; Cibulski, S.P.; Roehe, P.M.; Bordignon, S.A.L.; Rott, M.B.; Apel, M.A.; von Poser, G.L. Chemical composition and amoebicidal activity of Croton pallidulus, Croton ericoides, and Croton isabelli (Euphorbiaceae) essential oils. Parasitol. Res. 2012, 111, 961–966. [Google Scholar] [CrossRef]
  19. Hiruma-Lima, C.A.; Gracioso, J.S.; Nunes, D.S.; Brito, A.S. Effects of an essential oil from the bark of Croton cajucara Benth. on experimental gastric ulcer models in rats and mice. J. Pharm. Pharmacol. 2010, 51, 341–346. [Google Scholar] [CrossRef]
  20. Hiruma-Lima, C.A.; Gracioso, J.S.; Bighetti, E.J.B.; Grassi-Kassisse, D.M.; Nunes, D.S.; Souza Brito, A.R.M. Effect of essential oil obtained from Croton cajucara Benth. on gastric ulcer healing and protective factors of the gastric mucosa. Phytomedicine 2002, 9, 523–529. [Google Scholar] [CrossRef]
  21. Paula, A.C.B.; Toma, W.; Gracioso, J.S.; Hiruma-Lima, C.A.; Carneiro, E.M.; Souza Brito, A.R.M. The gastroprotective effect of the essential oil of Croton cajucara is different in normal rats than in malnourished rats. Br. J. Nutr. 2006, 96, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. De Oliveira Ramos, J.M.; dos Santos, C.A.; Santana, D.G.; Antoniolli, A.R.; de Alexandria Santos, D.; Alves, P.B.; Thomazzi, S.M. Impact of Croton argyrophyllus essential oil on behavioural models of nociception. Flavour Fragr. J. 2017, 32, 40–45. [Google Scholar] [CrossRef]
  23. Santos, F.A.; Jeferson, F.A.; Santos, C.C.; Silveira, E.R.; Rao, V.S.N. Antinociceptive effect of leaf essential oil from Croton sonderianus in mice. Life Sci. 2005, 77, 2953–2963. [Google Scholar] [CrossRef] [PubMed]
  24. Leite, T.R.; da Silva, M.A.P.; Dos Santos, A.C.B.; Coutinho, H.D.M.; Duarte, A.E.; da Costa, J.G.M. Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm. Biol. 2017, 55, 2015–2019. [Google Scholar] [CrossRef] [Green Version]
  25. Pinho-da-Silva, L.; Mendes-Maia, P.V.; do Nascimento Garcia, T.M.; Cruz, J.S.; de Morais, S.M.; Coelho-de-Souza, A.N.; Lahlou, S.; Leal-Cardoso, J.H. Croton sonderianus essential oil samples distinctly affect rat airway smooth muscle. Phytomedicine 2010, 17, 721–725. [Google Scholar] [CrossRef] [PubMed]
  26. Lima, C.C.; de Holanda-Angelin-Alves, C.M.; Pereira-Gonçalves, Á.; Kennedy-Feitosa, E.; Evangelista-Costa, E.; Bezerra, M.A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H. Antispasmodic effects of the essential oil of Croton zehnteneri, anethole, and estragole, on tracheal smooth muscle. Heliyon 2020, 6, e05445. [Google Scholar] [CrossRef]
  27. de Oliveira Júnior, R.G.; Ferraz, C.A.A.; Silva, J.C.; de Andrade Teles, R.B.; Silva, M.G.; Diniz, T.C.; dos Santos, U.S.; de Souza, A.V.V.; Nunes, C.E.P.; Salvador, M.J.; et al. Neuropharmacological effects of essential oil from the leaves of Croton conduplicatus Kunth and possible mechanisms of action involved. J. Ethnopharmacol. 2018, 221, 65–76. [Google Scholar] [CrossRef] [Green Version]
  28. Camurça-Vasconcelos, A.L.F.; Bevilaqua, C.M.L.; Morais, S.M.; Maciel, M.V.; Costa, C.T.C.; Macedo, I.T.F.; Oliveira, L.M.B.; Braga, R.R.; Silva, R.A.; Vieira, L.S. Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Vet. Parasitol. 2007, 148, 288–294. [Google Scholar] [CrossRef]
  29. Baccelli, C.; Martinsen, A.; Morel, N.; Quetin-Leclercq, J. Vasorelaxant activity of essential oils from Croton zambesicus and some of their constituents. Planta Med. 2010, 76, 1506–1511. [Google Scholar] [CrossRef]
  30. Franklinos, L.H.V.; Jones, K.E.; Redding, D.W.; Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef]
  31. World Health Organization. Schistosomiasis and Soil—Transmitted Helminthiases: Progress Report, 2021; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
  32. Pereira, L.P.L.A.; Ribeiro, E.C.G.; Brito, M.C.A.; Silveira, D.P.B.; Araruna, F.O.S.; Araruna, F.B.; Leite, J.A.C.; Dias, A.A.S.; da Cunha Araujo Firmo, W.; Oliveira da Rocha Borges, M.; et al. Essential oils as molluscicidal agents against Schistosomiasis transmitting snails—A review. Acta Trop. 2020, 209, 105489. [Google Scholar] [CrossRef] [PubMed]
  33. World Health Organization. Foodborne Trematode Infections. Available online: https://www.who.int/news-room/fact-sheets/detail/foodborne-trematode-infections (accessed on 1 January 2023).
  34. World Health Organization. Antibiotic Resistance. Available online: http://www.who.in/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 1 January 2023).
  35. World Health Organization. The “World Malaria Report 2019” at A Glance. Available online: https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019 (accessed on 1 January 2023).
  36. Sanchez, M.C.; Cupit, P.M.; Bu, L.; Cunningham, C. Transcriptomic analysis of reduced sensitivity to praziquantel in Schistosoma mansoni. Mol. Biochem. Parasitol. 2019, 228, 6–15. [Google Scholar] [CrossRef] [PubMed]
  37. McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis—From immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef]
  38. Chevalier, F.D.; Le Clec’h, W.; McDew-White, M.; Menon, V.; Guzman, M.A.; Holloway, S.P.; Cao, X.; Taylor, A.B.; Kinung’hi, S.; Gouvras, A.N.; et al. Oxamniquine resistance alleles are widespread in old world Schistosoma mansoni and predate drug deployment. PLOS Pathog. 2019, 15, e1007881. [Google Scholar] [CrossRef] [Green Version]
  39. Wilson, R.A. Schistosomiasis then and now: What has changed in the last 100 years? Parasitology 2020, 147, 507–515. [Google Scholar] [CrossRef] [PubMed]
  40. Lisboa, F.P.; Silvestre, W.P.; Castro, J.O.; Martins, G.V.; Segabinazzi, L.G.T.M.; Pauletti, G.F.; Dell’Aqua, J.A. In vitro antimicrobial activity of selected essential oils against endometritis-causing microorganisms in mares. J. Equine Vet. Sci. 2022, 110, 103840. [Google Scholar] [CrossRef]
  41. Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
  42. Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Crit. Rev. Food Sci. Nutr. 2022, 62, 1740–1751. [Google Scholar] [CrossRef]
  43. Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
  44. Chansang, A.; Champakaew, D.; Junkum, A.; Jitpakdi, A.; Amornlerdpison, D.; Aldred, A.K.; Riyong, D.; Wannasan, A.; Intirach, J.; Muangmoon, R.; et al. Synergy in the adulticidal efficacy of essential oils for the improvement of permethrin toxicity against Aedes aegypti L. (Diptera: Culicidae). Parasit. Vectors 2018, 11, 417. [Google Scholar] [CrossRef] [Green Version]
  45. Dassanayake, M.K.; Chong, C.H.; Khoo, T.-J.; Figiel, A.; Szumny, A.; Choo, C.M. Synergistic field crop pest management properties of plant-derived essential oils in combination with synthetic pesticides and bioactive molecules: A review. Foods 2021, 10, 2016. [Google Scholar] [CrossRef]
  46. Gross, A.D.; Norris, E.J.; Kimber, M.J.; Bartholomay, L.C.; Coats, J.R. Essential oils enhance the toxicity of permethrin against Aedes aegypti and Anopheles gambiae. Med. Vet. Entomol. 2017, 31, 55–62. [Google Scholar] [CrossRef] [PubMed]
  47. Suwannayod, S.; Sukontason, K.L.; Pitasawat, B.; Junkum, A.; Limsopatham, K.; Jones, M.K.; Somboon, P.; Leksomboon, R.; Chareonviriyaphap, T.; Tawatsin, A.; et al. Synergistic toxicity of plant essential oils combined with pyrethroid insecticides against blow flies and the house fly. Insects 2019, 10, 178. [Google Scholar] [CrossRef] [Green Version]
  48. Tak, J.-H.; Coquerel, Q.R.R.; Tsikolia, M.; Bernier, U.R.; Linthicum, K.; Bloomquist, J.R. Screening for enhancement of permethrin toxicity by plant essential oils against adult females of the yellow fever mosquito (Diptera: Culicidae). J. Med. Entomol. 2020, 57, 1149–1156. [Google Scholar] [CrossRef]
  49. Do Vale, J.P.C.; Vasconcelos, M.A.; Arruda, F.V.S.; Firmino, N.C.S.; Pereira, A.L.; Andrade, A.L.; Saker-Sampaio, S.; Sampaio, A.H.; Marinho, E.S.; Teixeira, A.M.R.; et al. Evaluation of antimicrobial and antioxidant potential of essential oil from Croton piauhiensis Müll. Arg. Curr. Microbiol. 2021, 78, 1926–1938. [Google Scholar] [CrossRef] [PubMed]
  50. Van Vuuren, S.F.; Viljoen, A.M. In vitro evidence of phyto-synergy for plant part combinations of Croton gratissimus (Euphorbiaceae) used in african traditional healing. J. Ethnopharmacol. 2008, 119, 700–704. [Google Scholar] [CrossRef]
  51. De Lima, S.G.; Medeiros, L.B.P.; Cunha, C.N.L.C.; da Silva, D.; de Andrade, N.C.; Neto, J.M.M.; Lopes, J.A.D.; Steffen, R.A.; Araújo, B.Q.; Reis, F.D.A. Chemical composition of essential oils of Croton hirtus L’Her from Piauí (Brazil). J. Essent. Oil Res. 2012, 24, 371–376. [Google Scholar] [CrossRef]
  52. Santos, H.S.; Santiago, G.M.P.; de Oliveira, J.P.P.; Arriaga, A.M.C.; Marques, D.D.; Lemos, T.L.G. Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton zehntneri. Nat. Prod. Commun. 2007, 2, 1934578X0700201. [Google Scholar] [CrossRef] [Green Version]
  53. Coutinho, H.D.M.; Matias, E.F.F.; Santos, K.K.A.; Tintino, S.R.; Souza, C.E.S.; Guedes, G.M.M.; Santos, F.A.D.; Costa, J.G.M.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P. Enhancement of the norfloxacin antibiotic activity by gaseous contact with the essential oil of Croton zehntneri. J. Young Pharm. 2010, 2, 362–364. [Google Scholar] [CrossRef] [Green Version]
  54. Donati, M.; Mondin, A.; Chen, Z.; Miranda, F.M.; do Nascimento, B.B.; Schirato, G.; Pastore, P.; Froldi, G. Radical scavenging and antimicrobial activities of Croton zehntneri, Pterodon emarginatus and Schinopsis brasiliensis essential oils and their major constituents: Estragole, trans-anethole, β-caryophyllene and Myrcene. Nat. Prod. Res. 2015, 29, 939–946. [Google Scholar] [CrossRef] [PubMed]
  55. Suárez, A.I.; Vásquez, L.J.; Taddei, A.; Arvelo, F.; Compagnone, R.S. Antibacterial and cytotoxic activity of leaf essential oil of Croton malambo. J. Essent. Oil Bear. Plants 2008, 11, 208–213. [Google Scholar] [CrossRef]
  56. Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Brilhante, R.S.N.; Cordeiro, R.A.; Nascimento, N.R.F.; Kerntopf, M.R.; Sidrim, J.J.C.; Rocha, M.F.G. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga Biome. J. Appl. Microbiol. 2008, 104, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
  57. Rosa, M.D.S.S.; Mendonça-Filho, R.R.; Bizzo, H.R.; de Almeida Rodrigues, I.; Soares, R.M.A.; Souto-Padron, T.; Alviano, C.S.; Lopes, A.H.C.S. Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob. Agents Chemother. 2003, 47, 1895–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. Huy Hung, N.; Ngoc Dai, D.; Satyal, P.; Thi Huong, L.; Thi Chinh, B.; Quang Hung, D.; Anh Tai, T.; Setzer, W.N. Lantana camara essential oils from Vietnam: Chemical composition, molluscicidal, and mosquito larvicidal activity. Chem. Biodivers. 2021, 18, e2100145. [Google Scholar] [CrossRef]
  59. Ravi Kiran, S.; Bhavani, K.; Sita Devi, P.; Rajeswara Rao, B.R.; Janardhan Reddy, K. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour. Technol. 2006, 97, 2481–2484. [Google Scholar] [CrossRef]
  60. Govindarajan, M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. Ex Benth (Rutaceae) against three mosquito species. Asian Pac. J. Trop. Med. 2010, 3, 874–877. [Google Scholar] [CrossRef] [Green Version]
  61. De Oliveira, A.C.; Simões, R.C.; Lima, C.A.P.; da Silva, F.M.A.; Nunomura, S.M.; Roque, R.A.; Tadei, W.P.; Nunomura, R.C.S. Essential oil of Piper purusanum C.DC (Piperaceae) and its main sesquiterpenes: Biodefensives against malaria and dengue vectors, without lethal effect on non-target aquatic fauna. Environ. Sci. Pollut. Res. 2022, 29, 47242–47253. [Google Scholar] [CrossRef]
  62. Govindarajan, M.; Benelli, G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2016, 133, 395–402. [Google Scholar] [CrossRef]
  63. Govindarajan, M.; Benelli, G. α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: Highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol. Res. 2016, 115, 2771–2778. [Google Scholar] [CrossRef]
  64. Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: Toxicity on non-target aquatic predators. Environ. Sci. Pollut. Res. 2018, 25, 10272–10282. [Google Scholar] [CrossRef]
  65. De Lima, G.P.G.; de Souza, T.M.; de Paula Freire, G.; Farias, D.F.; Cunha, A.P.; Ricardo, N.M.P.S.; de Morais, S.M.; Carvalho, A.F.U. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol. Res. 2013, 112, 1953–1958. [Google Scholar] [CrossRef]
  66. Périco, L.L.; Rodrigues, V.P.; Fernando, L.; De Almeida, R.; Fortuna-Perez, A.P. Medicinal and Aromatic Plants of South America; Albuquerque, U.P., Patil, U., Máthé, Á., Eds.; Medicinal and Aromatic Plants of the World; Springer: Dordrecht, The Netherlands, 2018; Volume 5, ISBN 978-94-024-1550-6. [Google Scholar]
  67. Cruz, R.C.D.; Silva, S.L.C.E.; Souza, I.A.; Gualberto, S.A.; Carvalho, K.S.; Santos, F.R.; Carvalho, M.G. Toxicological evaluation of essential oil from the leaves of Croton argyrophyllus (Euphorbiaceae) on Aedes aegypti (Diptera: Culicidae) and Mus musculus (Rodentia: Muridae). J. Med. Entomol. 2017, 54, 985–993. [Google Scholar] [CrossRef] [PubMed]
  68. Dória, G.A.A.; Silva, W.J.; Carvalho, G.A.; Alves, P.B.; Cavalcanti, S.C.H. A study of the larvicidal activity of two Croton species from Northeastern Brazil against Aedes aegypti. Pharm. Biol. 2010, 48, 615–620. [Google Scholar] [CrossRef] [PubMed]
  69. Pino, C.C.C.; de Menezes, J.E.S.A.; Siqueira, S.M.C.; Melo, D.S.; Feitosa, C.R.S.; Santos, H.S. Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton jacobinenesis Baill. Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 2016, 15, 122–127. [Google Scholar]
  70. Amado, J.R.R.; Prada, A.L.; Diaz, J.G.; Souto, R.N.P.; Arranz, J.C.E.; de Souza, T.P. Development, larvicide activity, and toxicity in nontarget species of the Croton linearis Jacq essential oil nanoemulsion. Environ. Sci. Pollut. Res. 2020, 27, 9410–9423. [Google Scholar] [CrossRef]
  71. Torres, M.C.M.; Assunção, J.C.; Santiago, G.M.P.; Andrade-Neto, M.; Silveira, E.R.; Costa-Lotufo, L.V.; Bezerra, D.P.; Filho, J.D.B.M.; Viana, F.A.; Pessoa, O.D.L. Larvicidal and nematicidal activities of the leaf essential oil of Croton regelianus. Chem. Biodivers. 2008, 5, 2724–2728. [Google Scholar] [CrossRef]
  72. Santos, G.; Dutra, K.; Lira, C.; Lima, B.; Napoleão, T.; Paiva, P.; Maranhão, C.; Brandão, S.; Navarro, D. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules 2014, 19, 16573–16587. [Google Scholar] [CrossRef] [Green Version]
  73. Morais, S.M.; Cavalcanti, E.S.B.; Bertini, L.M.; Oliveira, C.L.L.; Rodrigues, J.R.B.; Cardoso, J.H.L. Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J. Am. Mosq. Control Assoc. 2006, 22, 161–164. [Google Scholar] [CrossRef]
  74. Da Silva Carvalho, K.; da Cunha e Silva, S.L.; de Souza, I.A.; Gualberto, S.A.; da Cruz, R.C.D.; dos Santos, F.R.; de Carvalho, M.G. Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus. Parasitol. Res. 2016, 115, 3441–3448. [Google Scholar] [CrossRef]
  75. Da Cruz, R.C.D.; da Silva Carvalho, K.; Costa, R.J.O.; da Silva, P.A.; da Cunha e Silva, S.L.; Gualberto, S.A.; de Gusmão, N.B.; de Souza, I.A. Phytochemical and toxicological evaluation of a blend of essential oils of Croton species on Aedes aegypti and Mus musculus. S. Afr. J. Bot. 2020, 132, 188–195. [Google Scholar] [CrossRef]
  76. Silva, M.V.; Silva, S.A.; Teixera, T.L.; De Oliveira, A.; Al Morais, S.; Da Silva, C.V.; Espindola, L.S.; Sousa, R.M. Essential Oil from leaves of Eugenia calycina Cambes: Natural larvicidal against Aedes aegypti. J. Sci. Food Agric. 2021, 101, 1202–1208. [Google Scholar] [CrossRef]
  77. Dhinakaran, S.R.; Mathew, N.; Munusamy, S. Synergistic terpene combinations as larvicides against the dengue vector Aedes aegypti Linn. Drug Dev. Res. 2019, 80, 791–799. [Google Scholar] [CrossRef]
  78. Pereira Filho, A.A.; Pessoa, G.C.D.; Yamaguchi, L.F.; Stanton, M.A.; Serravite, A.M.; Pereira, R.H.M.; Neves, W.S.; Kato, M.J. Larvicidal activity of essential oils from Piper species against strains of Aedes aegypti (Diptera: Culicidae) resistant to pyrethroids. Front. Plant Sci. 2021, 12, 685864. [Google Scholar] [CrossRef] [PubMed]
  79. Waliwitiya, R.; Kennedy, C.J.; Lowenberger, C.A. Larvicidal and oviposition-altering activity of monoterpenoids, trans-anithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag. Sci. 2009, 65, 241–248. [Google Scholar] [CrossRef] [PubMed]
  80. Cheng, S.-S.; Liu, J.-Y.; Tsai, K.-H.; Chen, W.-J.; Chang, S.-T. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum Provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar] [CrossRef]
  81. Seo, S.-M.; Jung, C.-S.; Kang, J.; Lee, H.-R.; Kim, S.-W.; Hyun, J.; Park, I.-K. Larvicidal and acetylcholinesterase inhibitory activities of Apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef]
  82. Knio, K.M.; Usta, J.; Dagher, S.; Zournajian, H.; Kreydiyyeh, S. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius. Bioresour. Technol. 2008, 99, 763–768. [Google Scholar] [CrossRef]
  83. Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
  84. Pavela, R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015, 114, 3835–3853. [Google Scholar] [CrossRef]
  85. Kimbaris, A.C.; Koliopoulos, G.; Michaelakis, A.; Konstantopoulou, M.A. Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol. Res. 2012, 111, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
  86. De Castro, D.S.B.; da Silva, D.B.; Tibúrcio, J.D.; Sobral, M.E.G.; Ferraz, V.; Taranto, A.G.; Serrão, J.E.; de Siqueira, J.M.; Alves, S.N. Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp. Parasitol. 2016, 171, 84–90. [Google Scholar] [CrossRef] [PubMed]
  87. Perumalsamy, H.; Chang, K.S.; Park, C.; Ahn, Y.J. Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and-resistant Culex pipiens Pallens and Aedes aegypti and Ochlerotatus togoi. J. Agric. Food Chem. 2010, 58, 10001–10006. [Google Scholar] [CrossRef]
  88. Ahn, Y.; Kim, N.; Byun, S.; Cho, J.; Chung, K. Larvicidal activity of Kaempferia galanga rhizome phenylpropanoids towards three mosquito species. Pest Manag. Sci. 2008, 64, 857–862. [Google Scholar] [CrossRef]
  89. Zhu, L.; Tian, Y. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol. Res. 2013, 112, 1137–1142. [Google Scholar] [CrossRef]
  90. Lucia, A.; Audino, P.G.; Seccacini, E.; Licastro, S.; Zerba, E.; Masuh, H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 2007, 23, 299–303. [Google Scholar] [CrossRef] [PubMed]
  91. Silva, W.J.; Dória, G.A.A.; Maia, R.T.; Nunes, R.S.; Carvalho, G.A.; Blank, A.F.; Alves, P.B.; Marçal, R.M.; Cavalcanti, S.C.H. Effects of essential oils on Aedes aegypti larvae: Alternatives to environmentally safe insecticides. Bioresour. Technol. 2008, 99, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
  92. Lucia, A.; Zerba, E.; Masuh, H. Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships. Parasitol. Res. 2013, 112, 4267–4272. [Google Scholar] [CrossRef]
  93. Park, H.-M.; Kim, J.; Chang, K.-S.; Kim, B.-S.; Yang, Y.-J.; Kim, G.-H.; Shin, S.-C.; Park, I.-K. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J. Med. Entomol. 2011, 48, 405–410. [Google Scholar] [CrossRef]
  94. Traboulsi, A.F.; Taoubi, K.; El-Haj, S.; Bessiere, J.; Rammal, S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens Molestus (Diptera: Culicidae). Pest Manag. Sci. 2002, 58, 491–495. [Google Scholar] [CrossRef]
  95. Koliopoulos, G.; Pitarokili, D.; Kioulos, E.; Michaelakis, A.; Tzakou, O. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol. Res. 2010, 107, 327–335. [Google Scholar] [CrossRef]
  96. Cheng, S.-S.; Huang, C.-G.; Chen, Y.-J.; Yu, J.-J.; Chen, W.-J.; Chang, S.-T. Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour. Technol. 2009, 100, 452–456. [Google Scholar] [CrossRef] [PubMed]
  97. Giatropoulos, A.; Kimbaris, A.; Michaelakis, A.; Papachristos, D.P.; Polissiou, M.G.; Emmanouel, N. Chemical composition and assessment of larvicidal and repellent capacity of 14 lamiaceae essential oils against Aedes albopictus. Parasitol. Res. 2018, 117, 1953–1964. [Google Scholar] [CrossRef]
  98. Huang, H.-T.; Lin, C.-C.; Kuo, T.-C.; Chen, S.-J.; Huang, R.-N. Phytochemical composition and larvicidal activity of essential oils from herbal plants. Planta 2019, 250, 59–68. [Google Scholar] [CrossRef] [PubMed]
  99. Nogueira Sobrinho, A.C.; de Morais, S.M.; Marinho, M.M.; de Souza, N.V.; Lima, D.M. Antiviral activity on the Zika virus and larvicidal activity on the Aedes spp. of Lippia alba essential oil and β-caryophyllene. Ind. Crops Prod. 2021, 162, 113281. [Google Scholar] [CrossRef]
  100. Cheng, S.-S.; Chang, H.-T.; Lin, C.-Y.; Chen, P.-S.; Huang, C.-G.; Chen, W.-J.; Chang, S.-T. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag. Sci. 2009, 65, 339–343. [Google Scholar] [CrossRef]
  101. Wang, Z.; Perumalsamy, H.; Wang, M.; Shu, S.; Ahn, Y.-J. Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag. Sci. 2016, 72, 897–906. [Google Scholar] [CrossRef]
  102. Benelli, G.; Pavela, R.; Drenaggi, E.; Maggi, F. Insecticidal efficacy of the essential oil of Jambú (Acmella oleracea (L.) R.K. Jansen) cultivated in Central Italy against filariasis mosquito vectors, houseflies and moth pests. J. Ethnopharmacol. 2019, 229, 272–279. [Google Scholar] [CrossRef]
  103. Hoi, T.M.; Huong, L.T.; Van Chinh, H.; Hau, D.V.; Satyal, P.; Tai, T.A.; Dai, D.N.; Hung, N.H.; Hien, V.T.; Setzer, W.N. Essential oil compositions of three invasive Conyza species collected in Vietnam and their larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Molecules 2020, 25, 4576. [Google Scholar] [CrossRef]
  104. Luo, D.-Y.; Yan, Z.-T.; Che, L.-R.; Zhu, J.J.; Chen, B. Repellency and insecticidal activity of seven Mugwort (Artemisia argyi) essential oils against the malaria vector Anopheles sinensis. Sci. Rep. 2022, 12, 5337. [Google Scholar] [CrossRef]
  105. Tabanca, N.; Demirci, B.; Ali, A.; Ali, Z.; Blythe, E.K.; Khan, I.A. Essential oils of green and red Perilla frutescens as potential sources of compounds for mosquito management. Ind. Crops Prod. 2015, 65, 36–44. [Google Scholar] [CrossRef]
  106. Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Liu, Y.H.; Huang, C.G.; Chang, S.T. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind. Crops Prod. 2013, 47, 310. [Google Scholar] [CrossRef]
  107. Cheng, S.-S.; Chua, M.-T.; Chang, E.-H.; Huang, C.-G.; Chen, W.-J.; Chang, S.-T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour. Technol. 2009, 100, 465–470. [Google Scholar] [CrossRef] [PubMed]
  108. Semerdjieva, I.B.; Zheljazkov, V.; Cantrell, C.L.; Astatkie, T.; Ali, A. Essential oil yield and composition of the Balkan endemic Satureja pilosa Velen. (Lamiaceae). Molecules 2020, 25, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Tabanca, N.; Avonto, C.; Wang, M.; Parcher, J.F.; Ali, A.; Demirci, B.; Raman, V.; Khan, I.A. Comparative investigation of Umbellularia californica and Laurus nobilis leaf essential oils and identification of constituents active against Aedes aegypti. J. Agric. Food Chem. 2013, 61, 12283–12291. [Google Scholar] [CrossRef]
  110. He, Q.; Wang, W.; Zhu, L. Larvicidal activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis. Malar. J. 2018, 17, 194. [Google Scholar] [CrossRef] [Green Version]
  111. Seo, S.M.; Lee, J.W.; Shin, J.; Tak, J.H.; Hyun, J.; Park, I.K. Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus. Sci. Rep. 2021, 11, 12038. [Google Scholar] [CrossRef] [PubMed]
  112. Giatropoulos, A.; Papachristos, D.P.; Kimbaris, A.; Koliopoulos, G.; Polissiou, M.G.; Emmanouel, N.; Michaelakis, A. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol. Res. 2012, 111, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
  113. Michaelakis, A.; Papachristos, D.; Kimbaris, A.; Koliopoulos, G.; Giatropoulos, A.; Polissiou, M.G. Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol. Res. 2009, 105, 769–773. [Google Scholar] [CrossRef]
  114. Hung, N.H.; Dai, D.N.; Cong, T.N.; Dung, N.A.; Linh, L.D.; Van Hoa, V.; Hien, T.T.; Chuong, N.T.H.; Hien, V.T.; Van Nguyen, B.; et al. Pesticidal activities of Callicarpa and Premna essential oils from Vietnam. Nat. Prod. Commun. 2022, 17, 1934578X2211106. [Google Scholar] [CrossRef]
  115. Ribeiro, I.A.T.A.; Sá, J.L.F.; Lima, M.V.; Veras, S.T.S.; Aguiar, J.C.R.O.F.; Aires, A.L.; Albuquerque, M.C.P.A.; da Silva, M.V.; Melo, A.M.M.A.; Navarro, D.M.A.F.; et al. Toxic effect of Croton rudolphianus leaf essential oil against Biomphalaria glabrata, Schistosoma mansoni Cercariae and Artemia salina. Acta Trop. 2021, 223, 106102. [Google Scholar] [CrossRef]
  116. Lahlou, M. Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharm. Biol. 2003, 41, 207–210. [Google Scholar] [CrossRef]
  117. Corpas-López, V.; Merino-Espinosa, G.; López-Viota, M.; Gijón-Robles, P.; Morillas-Mancilla, M.J.; López-Viota, J.; Díaz-Sáez, V.; Morillas-Márquez, F.; Navarro Moll, M.C.; Martín-Sánchez, J. Topical treatment of Leishmania tropica infection using (−)-α-bisabolol ointment in a hamster model: Effectiveness and safety assessment. J. Nat. Prod. 2016, 79, 2403–2407. [Google Scholar] [CrossRef] [PubMed]
  118. Arruda, D.C.; D’Alexandri, F.L.; Katzin, A.M.; Uliana, S.R.B. Antileishmanial activity of the terpene nerolidol. Antimicrob. Agents Chemother. 2005, 49, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
  119. Morais, S.; Cossolosso, D.; Silva, A.; de Moraes, M.; Teixeira, M.; Campello, C.; Bonilla, O.; de Paula, V.; Vila-Nova, N. Essential oils from Croton species: Chemical composition, in vitro and in silico antileishmanial evaluation, antioxidant and cytotoxicity activities. J. Braz. Chem. Soc. 2019, 5, 49–52. [Google Scholar] [CrossRef]
  120. Braga de Oliveira, M.I.; Rodrigues Brandão, F.; Rocha da Silva, M.J.; Carvalho Rosa, M.; Santana Farias, C.F.; Silva dos Santos, D.; Majolo, C.; de Oliveira, M.R.; Chaves, F.C.M.; Bizzo, H.R.; et al. In vitro anthelmintic efficacy of essential oils in the control of Neoechinorhynchus buttnerae, an endoparasite of Colossoma macropomum. J. Essent. Oil Res. 2021, 33, 509–522. [Google Scholar] [CrossRef]
  121. Díaz, J.G.; Arranz, J.C.E.; Da Gama Jaen Batista, D.; Fidalgo, L.M.; De La Vega Acosta, J.; de Macedo, M.B.; Cos, P. Antileishmanial potentialities of Croton linearis leaf essential oil. Nat. Prod. Commun. 2018, 13, 1934578X1801300. [Google Scholar] [CrossRef] [Green Version]
  122. García-Díaz, J.; Escalona-Arranz, J.C.; Ochoa-Pacheco, A.; Dos Santos, S.G.; González-Fernández, R.; Rojas-Vargas, J.A.; Monzote, L.; Setzer, W.N. Chemical composition and in vitro and in silico antileishmanial evaluation of the essential oil from Croton linearis Jacq. stems. Antibiotics 2022, 11, 1712. [Google Scholar] [CrossRef] [PubMed]
  123. Tariku, Y.; Hymete, A.; Hailu, A.; Rohloff, J. Constituents, antileishmanial activity and toxicity profile of volatile oil from berries of Croton macrostachyus. Nat. Prod. Commun. 2010, 5, 975–980. [Google Scholar] [CrossRef] [Green Version]
  124. De Carvalho, M.G.; Rondon, F.C.M.; Carneiro-Torres, D.S.; Fampa, P.; Bevilaqua, C.M.L.; Nogueira Bandeira, P.; Amorim Gomes, G. Croton pulegiodorus Baill and Croton piauhiensis Mull. Arg. (Euphorbiaceae) essential oils: Chemical composition and anti-Leishmania activity. Rev. Virtual Química 2022, 14, 938–946. [Google Scholar] [CrossRef]
  125. Rodrigues, I.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Bizzo, H.R.; Corte-Real, S.; Alviano, D.S.; Alviano, C.S.; Rosa, M.S.S.; Vermelho, A.B. In vitro cytocidal effects of the essential oil from Croton cajucara (Red Sacaca) and its major constituent 7- hydroxycalamenene against Leishmania chagasi. BMC Complement. Altern. Med. 2013, 13, 249. [Google Scholar] [CrossRef] [Green Version]
  126. Monzote, L.; García, M.; Pastor, J.; Gil, L.; Scull, R.; Maes, L.; Cos, P.; Gille, L. Essential oil from Chenopodium ambrosioides and main components: Activity against Leishmania, their mitochondria and other microorganisms. Exp. Parasitol. 2014, 136, 20–26. [Google Scholar] [CrossRef]
  127. Pastor, J.; García, M.; Steinbauer, S.; Setzer, W.N.; Scull, R.; Gille, L.; Monzote, L. Combinations of ascaridole, carvacrol, and caryophyllene oxide against Leishmania. Acta Trop. 2015, 145, 31–38. [Google Scholar] [CrossRef] [PubMed]
  128. Nibret, E.; Wink, M. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine 2010, 17, 911–920. [Google Scholar] [CrossRef] [PubMed]
  129. Costa, S.; Cavadas, C.; Cavaleiro, C.; Salgueiro, L.; do Céu Sousa, M. In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components. Exp. Parasitol. 2018, 190, 34–40. [Google Scholar] [CrossRef] [PubMed]
  130. Guzmán, M.; González-Coloma, A.; Fe Andrés, M.; Navarro-Rocha, J.; Martínez-Díaz, R.A. Biological evaluation of essential oils from selected medicinal plants and their main components against Phytomonas davidi (Kinetoplastea: Trypanosomatidae). Chem. Biodivers. 2020, 17, e2000521. [Google Scholar] [CrossRef]
  131. Essid, R.; Rahali, F.Z.; Msaada, K.; Sghair, I.; Hammami, M.; Bouratbine, A.; Aoun, K.; Limam, F. Antileishmanial and cytotoxic potential of essential oils from medicinal plants in Northern Tunisia. Ind. Crops Prod. 2015, 77, 795–802. [Google Scholar] [CrossRef]
  132. Tasdemir, D.; Kaiser, M.; Demirci, B.; Demirci, F.; Baser, K.H.C. Antiprotozoal activity of Turkish Origanum onites essential oil and its components. Molecules 2019, 24, 4421. [Google Scholar] [CrossRef] [Green Version]
  133. Do Carmo, D.F.M.; Amaral, A.C.F.; MacHado, G.M.C.; Leon, L.L.; De Andrade Silva, J.R. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules 2012, 17, 1819–1829. [Google Scholar] [CrossRef]
  134. Leal, S.M.; Pino, N.; Stashenko, E.E.; Martínez, J.R.; Escobar, P. Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. J. Essent. Oil Res. 2013, 25, 512–519. [Google Scholar] [CrossRef]
  135. Almohammed, H.I.; Alkhaibari, A.M.; Alanazi, A.D. Antiparasitic effects of Elettaria cardamomum L. essential oil and its main compounds, 1,8-cineole alone and in combination with albendazole against Echinococcus granulosus Protoscoleces. Saudi J. Biol. Sci. 2022, 29, 2811–2818. [Google Scholar] [CrossRef]
  136. Silva, A.; Scher, R.; Santos, F.; Ferreira, S.; Cavalcanti, S.; Correa, C.; Bueno, L.; Alves, R.; Souza, D.; Fujiwara, R.; et al. Leishmanicidal activity and structure-activity relationships of essential oil constituents. Molecules 2017, 22, 815. [Google Scholar] [CrossRef] [Green Version]
  137. Machado, M.; Dinis, A.M.; Santos-Rosa, M.; Alves, V.; Salgueiro, L.; Cavaleiro, C.; Sousa, M.C. Activity of Thymus capitellatus volatile extract, 1,8-cineole and borneol against Leishmania species. Vet. Parasitol. 2014, 200, 39–49. [Google Scholar] [CrossRef] [Green Version]
  138. Kpadonou Kpoviessi, B.G.H.; Kpoviessi, S.D.S.; Yayi Ladekan, E.; Gbaguidi, F.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J.; Accrombessi, G.C.; Bero, J. In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. J. Ethnopharmacol. 2014, 155, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
  139. De Menezes, R.R.P.P.B.; Sampaio, T.L.; Lima, D.B.; Sousa, P.L.; de Azevedo, I.E.P.; Magalhães, E.P.; Tessarolo, L.D.; Marinho, M.M.; dos Santos, R.P.; Martins, A.M.C. Antiparasitic effect of (−)-α-bisabolol against Trypanosoma cruzi Y strain forms. Diagn. Microbiol. Infect. Dis. 2019, 95, 114860. [Google Scholar] [CrossRef] [PubMed]
  140. Hajaji, S.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Jiménez, I.A.; Bazzocchi, I.L.; Valladares, B.; Akkari, H.; Lorenzo-Morales, J.; Piñero, J.E. Leishmanicidal activity of α-bisabolol from Tunisian chamomile essential oil. Parasitol. Res. 2018, 117, 2855–2867. [Google Scholar] [CrossRef] [PubMed]
  141. Clemente, C.M.; Pineda, T.; Yepes, L.M.; Upegui, Y.; Allemandi, D.A.; Robledo, S.M.; Ravetti, S. Eugenol carbonate activity against Plasmodium falciparum, Leishmania braziliensis, and Trypanosoma cruzi. Arch. Pharm. 2022, 355, 2100432. [Google Scholar] [CrossRef]
  142. Ueda-Nakamura, T.; Mendonça-Filho, R.R.; Morgado-Díaz, J.A.; Korehisa Maza, P.; Prado Dias Filho, B.; Aparício Garcia Cortez, D.; Alviano, D.S.; Rosa, M.D.S.S.; Lopes, A.H.C.S.; Alviano, C.S.; et al. Antileishmanial activity of eugenol-rich essential oil from Ocimum gratissimum. Parasitol. Int. 2006, 55, 99–105. [Google Scholar] [CrossRef]
  143. Wanas, A.S.; Radwan, M.M.; Mehmedic, Z.; Jacob, M.; Khan, I.A.; Elsohly, M.A. Antifungal activity of the volatiles of high potency Cannabis sativa L. against Cryptococcus neoformans. Rec. Nat. Prod. 2015, 10, 214–220. [Google Scholar]
  144. Menezes, L.R.A.; Santos, N.N.; Meira, C.S.; dos Santos, J.A.F.; Guimarães, E.T.; Soares, M.B.P.; Nepel, A.; Barison, A.; Costa, E.V. A new source of (R)-limonene and rotundifolone from leaves of Lippia pedunculosa (Verbenaceae) and their trypanocidal properties. Nat. Prod. Commun. 2014, 9, 1934578X1400900. [Google Scholar] [CrossRef]
  145. Matos-Rocha, T.; dos Santos Cavalcanti, M.; Barbosa-Filho, J.; Lúcio, A.; Veras, D.; Feitosa, A.; de Siqueira Júnior, J.; de Almeida, R.; Marques, M.; Alves, L.; et al. In vitro evaluation of schistosomicidal activity of essential oil of Mentha x villosa and some of its chemical constituents in adult worms of Schistosoma mansoni. Planta Med. 2013, 79, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
  146. Ceole, L.F.; Cardoso, M.D.G.; Soares, M.J. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity. Parasitology 2017, 144, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
  147. Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; da Silva Calabrese, K.; Abreu-Silva, A.L.; Marinho, S.C.; Mouchrek, A.N.; Filho, V.E.M.; Almeida-Souza, F. Aniba rosaeodora (var. amazonica Ducke) essential oil: Chemical composition, antibacterial, antioxidant and antitrypanosomal activity. Antibiotics 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
  148. Villamizar, L.H.; das Graças Cardoso, M.; de Andrade, J.; Teixeira, M.L.; Soares, M.J. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4 °C. Mem. Inst. Oswaldo Cruz 2017, 112, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  149. Mikus, J.; Harkenthal, M.; Steverding, D.; Reichling, J. In vitro effect of essential oils and isolated mono- and sesquiterpenes on Leishmania major and Trypanosoma brucei. Planta Med. 2000, 66, 366–368. [Google Scholar] [CrossRef]
  150. Pereira Filho, A.A.; Cunha, M.M.; Alves Stanton, M.; Fumiko Yamaguchi, L.; Jorge Kato, M.; Martins-Duarte, É.S. In vitro activity of essential oils from Piper species (Piperaceae) against tachyzoites of Toxoplasma gondii. Metabolites 2023, 13, 95. [Google Scholar] [CrossRef]
  151. Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
  152. Hossain, M.A.; Ismail, Z.; Rahman, A.; Kang, S.C. Chemical composition and anti-fungal properties of the essential oils and crude extracts of Orthosiphon stamineus Benth. Ind. Crops Prod. 2008, 27, 328–334. [Google Scholar] [CrossRef]
  153. Lazarević, J.S.; Ðorđević, A.S.; Kitić, D.V.; Zlatković, B.K.; Stojanović, G.S. Chemical composition and antimicrobial activity of the essential oil of Stachys officinalis (L.) Trevis. (Lamiaceae). Chem. Biodivers. 2013, 10, 1335–1349. [Google Scholar] [CrossRef]
  154. Ximenes, R.M.; de Morais Nogueira, L.; Cassundé, N.M.R.; Jorge, R.J.B.; dos Santos, S.M.; Magalhães, L.P.M.; Silva, M.R.; de Barros Viana, G.S.; Araújo, R.M.; de Sena, K.X. da F.R.; et al. Antinociceptive and wound healing activities of Croton adamantinus Müll. Arg. essential oil. J. Nat. Med. 2013, 67, 758–764. [Google Scholar] [CrossRef]
  155. Cucho-Medrano, J.L.L.; Mendoza-Beingolea, S.W.; Fuertes-Ruitón, C.M.; Salazar-Salvatierra, M.E.; Herrera-Calderon, O. Chemical profile of the volatile constituents and antimicrobial activity of the essential oils from Croton adipatus, Croton thurifer, and Croton collinus. Antibiotics 2021, 10, 1387. [Google Scholar] [CrossRef]
  156. Da Silva Brito, S.S.; Silva, F.; Malheiro, R.; Baptista, P.; Pereira, J.A. Croton argyrophyllus Kunth and Croton heliotropiifolius Kunth: Phytochemical characterization and bioactive properties. Ind. Crops Prod. 2018, 113, 308–315. [Google Scholar] [CrossRef] [Green Version]
  157. Araújo, L.G.; Veras, G.; Oliveira Alves, J.V.; Oliveira de Veras, B.; Silva, M.V.; Bacalhau Rodrigues, J.F.; Lia Fook, M.V.; Sagoe Amoah, S.K.; Conceição de Menezes Torres, M. Chemodiversity and antibacterial activity of the essential oil of leaves of Croton argyrophyllus. Chem. Biodivers. 2020, 17, e2000575. [Google Scholar] [CrossRef] [PubMed]
  158. Vasconcelos, B.M.; Pereira, A.M.G.; Coelho, P.A.T.; Cavalcante, R.M.B.; Carneiro-Torres, D.S.; Bandeira, P.N.; da Silva, F.F.; Rodrigues, T.H.S.; Gomes, G.A.; Carneiro, V.A. Enhancement of chlorhexidine activity against planktonic and biofilm forms of oral streptococci by two Croton spp. essential oils from the caatinga biome. Biofouling 2022, 38, 984–993. [Google Scholar] [CrossRef] [PubMed]
  159. Barreto Alves, J.A.; da Silva Nunes, M.; Fakhouri, R.; Saquete Martins-Filho, P.R.; do Carmo de Oliveira Ribeiro, M.; Correa de Vasconcellos, A.; Oliveira Santos, P.; Marchioro, M.; de Cassia Trindade, R.; Santos Frazão, G.G.; et al. Inhibition of drug-sensitive and drug-resistant mycobacterium tuberculosis strains by essential oil from Croton argyrophylloides Mull. Arg. Int. Arch. Med. 2016, 9, 1–7. [Google Scholar] [CrossRef]
  160. Malveira, E.A.; Souza, P.F.N.; Neto, N.A.S.; Aguiar, T.K.B.; Rodrigues, N.S.; Henrique, C.W.B.; Silva, A.F.B.; Lima, L.B.; Albuquerque, C.C.; Freitas, C.D.T. Essential oil from Croton blanchetianus leaves: Anticandidal potential and mechanisms of action. J. Fungi 2022, 8, 1147. [Google Scholar] [CrossRef]
  161. De Vasconcelos, E.C.; Longhi, D.A.; Paganini, C.C.; Severo, D.d.S.; Canuto, K.M.; de Queiroz Souza, A.S.; de Figueiredo, E.A.T.; de Aragão, G.M.F. Modeling the effect of Croton blanchetianus Baill essential oil on pathogenic and spoilage bacteria. Arch. Microbiol. 2022, 204, 618. [Google Scholar] [CrossRef]
  162. Alviano, W.S.; Mendonca-Filho, R.R.; Alviano, D.S.; Bizzo, H.R.; Souto-Padron, T.; Rodrigues, M.L.; Bolognese, A.M.; Alviano, C.S.; Souza, M.M.G. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Immunol. 2005, 20, 101–105. [Google Scholar] [CrossRef]
  163. Azevedo, M.M.B.; Almeida, C.A.; Chaves, F.C.M.; Ricci-Júnior, E.; Garcia, A.R.; Rodrigues, I.A.; Alviano, C.S.; Alviano, D.S. Croton cajucara essential oil nanoemulsion and its antifungal activities. Processes 2021, 9, 1872. [Google Scholar] [CrossRef]
  164. Azevedo, M.M.B.; Pereira, A.Q.; Chaves, F.C.M.; Bizzo, H.R.; Alviano, C.S.; Alviano, D.S. Antimicrobial activity of the essential oils from the leaves of two morphotypes of Croton cajucara Benth. J. Essent. Oil Res. 2012, 24, 351–357. [Google Scholar] [CrossRef]
  165. Azevedo, M.; Chaves, F.; Almeida, C.; Bizzo, H.; Duarte, R.; Campos-Takaki, G.; Alviano, C.; Alviano, D. Antioxidant and antimicrobial activities of 7-hydroxy-calamenene-rich essential oils from Croton cajucara Benth. Molecules 2013, 18, 1128–1137. [Google Scholar] [CrossRef] [Green Version]
  166. El Babili, F.; Fouraste, I.; Moulis, C.; Bessiere, J.M.; Roques, C.; Haddioui, L. Essential oil of leaves of Croton campestris St. Hilaire, its secretory elements, and its biological activity. J. Essent. Oil Res. 2009, 21, 272–275. [Google Scholar] [CrossRef]
  167. Sánchez-Hernández, G.R.; Villa-Ruano, N.; Rubio-Rosas, E.; Zarate-Reyes, J.A.; Cruz-Durán, R.; Lozoya-Gloria, E. Chemical constituents and anti-fungal activity of the essential oils from Lantana hirta and Croton ciliatoglandulifer. Rev. Latinoam. Quim. 2018, 46, 17–24. [Google Scholar]
  168. De Oliveira, G.D.; da Rocha, W.R.V.; Rodrigues, J.F.B.; da Silva Alves, H. Synergistic and antibiofilm effects of the essential oil from Croton conduplicatus (Euphorbiaceae) against methicillin-resistant Staphylococcus aureus. Pharmaceuticals 2022, 16, 55. [Google Scholar] [CrossRef] [PubMed]
  169. Albuquerque, Y.E.; Danelon, M.; Salvador, M.J.; Koga-Ito, C.Y.; Botazzo Delbem, A.C.; Ramirez-Rueda, R.Y.; Lacerda Gontijo, A.V.; Brighenti, F.L. Mouthwash containing Croton doctoris essential oil: In vitro study using a validated model of caries induction. Future Microbiol. 2018, 13, 631–643. [Google Scholar] [CrossRef] [PubMed]
  170. Valarezo, E.; Gaona-Granda, G.; Morocho, V.; Cartuche, L.; Calva, J.; Meneses, M.A. Chemical constituents of the essential oil from Ecuadorian endemic species Croton ferrugineus and its antimicrobial, antioxidant and α-glucosidase inhibitory activity. Molecules 2021, 26, 4608. [Google Scholar] [CrossRef]
  171. Lawal, O.A.; Ogunwande, I.A.; Osunsanmi, F.O.; Opoku, A.R.; Oyedeji, A.O. Croton gratissimus leaf essential oil composition, antibacterial, antiplatelet aggregation, and cytotoxic activities. J. Herbs. Spices Med. Plants 2017, 23, 77–87. [Google Scholar] [CrossRef]
  172. De Medeiros, V.M.; do Nascimento, Y.M.; Souto, A.L.; Madeiro, S.A.L.; Costa, V.C.d.O.; Silva, S.M.P.M.; Falcão Silva, V.d.S.; Agra, M.d.F.; de Siqueira-Júnior, J.P.; Tavares, J.F. Chemical composition and modulation of bacterial drug resistance of the essential oil from leaves of Croton grewioides. Microb. Pathog. 2017, 111, 468–471. [Google Scholar] [CrossRef]
  173. De Alencar Filho, J.M.T.; Araújo, L.D.C.; Oliveira, A.P.; Guimarães, A.L.; Pacheco, A.G.M.; Silva, F.S.; Cavalcanti, L.S.; Lucchese, A.M.; Almeida, J.R.G.D.S.; Araújo, E.C.D.C. Chemical composition and antibacterial activity of essential oil from leaves of Croton heliotropiifolius in different seasons of the year. Rev. Bras. Farmacogn. 2017, 27, 440–444. [Google Scholar] [CrossRef]
  174. Araújo, F.M.; Dantas, M.C.S.M.; e Silva, L.S.; Aona, L.Y.S.; Tavares, I.F.; de Souza-Neta, L.C. Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind. Crops Prod. 2017, 105, 203–206. [Google Scholar] [CrossRef]
  175. Moreno, P.R.H.; Lima, M.E.L.; Caruzo, M.B.R.; Torres, D.S.C.; Cordeiro, I.; Young, M.C.M. Chemical composition and antimicrobial activity of the essential oil from Croton heterocalyx Baill. (Euphorbiaceae s.s.) leaves. J. Essent. Oil Res. 2009, 21, 190–192. [Google Scholar] [CrossRef]
  176. De Heluani, C.S.; de Lampasona, M.P.; Vega, M.I.; Catalan, C.A.N. Antimicrobial activity and chemical composition of the leaf and root oils from Croton hieronymi Griseb. J. Essent. Oil Res. 2005, 17, 351–353. [Google Scholar] [CrossRef]
  177. Rossi, D.; Guerrini, A.; Maietti, S.; Bruni, R.; Paganetto, G.; Poli, F.; Scalvenzi, L.; Radice, M.; Saro, K.; Sacchetti, G. Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: A new functional food ingredient? Food Chem. 2011, 126, 837–848. [Google Scholar] [CrossRef]
  178. Werka, J.S.; Boehme, A.K.; Setzer, W.N. Biological activities of essential oils from Monteverde, Costa Rica. Nat. Prod. Commun. 2007, 2, 1215–1219. [Google Scholar] [CrossRef]
  179. Setzer, W.N. Chemical compositions of the bark essential oils of Croton monteverdensis and Croton niveus from Monteverde, Costa Rica. Nat. Prod. Comun. 2006, 1, 567–572. [Google Scholar] [CrossRef]
  180. Athikomkulchai, S.; Tadtong, S.; Ruangrungsi, N.; Hongratanaworakit, T. Chemical composition of the essential oil from Croton oblongifolius and its antibacterial activity against Propionibacterium acnes. Nat. Prod. Commun. 2015, 10, 1934578X1501000. [Google Scholar] [CrossRef] [Green Version]
  181. Vidal, C.S.; Oliveira-Tintino, C.D.M.; Tintino, S.R.; Galvão, H.B.F.; da Costa, J.G.M.; Coutinho, H.D.M.; de Menezes, I.R.A. Chemical composition, antibacterial and modulatory action of the essential oil of Croton rhamnifolioides Pax and Hoffman leaves. Biosci. J. 2016, 32, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
  182. Martins, A.P.; Salgueiro, L.R.; Gonçalves, M.J.; Vila, R.; Tomi, F.; Adzet, T.; Proença da Cunha, A.; Cañigueral, S.; Casanova, J. Antimicrobial activity and chemical composition of the bark oil of Croton stellulifer, an endemic species from S. Tomé e Príncipe. Planta Med. 2000, 66, 647–650. [Google Scholar] [CrossRef]
  183. Almeida-Pereira, C.S.; de Lima Nogueira, P.C.; Barbosa, A.A.T.; Aparecida de Castro Nizio, D.; de Fatima Arrigoni-Blank, M.; Sampaio, T.S.; Alves, R.P.; de Araujo-Couto, H.G.S.; Feitosa-Alcantara, R.B.; de Melo, J.O.; et al. Chemical composition and antimicrobial activity of essential oils of a Croton tetradenius Baill. Germplasm. J. Essent. Oil Res. 2019, 31, 379–389. [Google Scholar] [CrossRef]
  184. Siqueira, I.B.; Teixeira Barbosa, A.A.; Jain, S.; Miranda Fernandes, R.P.; Tavares Silva, A.R.S.; Ferreira Barbosa, F.H.; Schimieguel, D.M.; Blank, A.F.; Sacramento, A.G.; de Castro Nizio, D.A.; et al. In vitro antibacterial activity of essential oils of Croton tetradenius Baill. from the Brazilian Caatinga Biome and its synergistic effect with ciprofloxacin and meropenem. J. Essent. Oil Bear. Plants 2021, 24, 12–21. [Google Scholar] [CrossRef]
  185. Rocha, R.R.; Matos, M.N.C.; Guerrero, J.A.P.; Cavalcante, R.M.B.; Melo, R.S.; Azevedo, Á.M.A.; Pereira, A.M.G.; Lopes, P.H.R.; Rodrigues, T.H.S.; Bandeira, P.N.; et al. Comparative study of the chemical composition, antibacterial activity and synergic effects of the essential oils of Croton tetradenius Baill. and C. Pulegiodorus Baill. against Staphylococcus aureus isolates. Microb. Pathog. 2021, 156, 104934. [Google Scholar] [CrossRef]
  186. Miranda, F.M.; Braga do Nascimento Junior, B.; Aguiar, R.M.; Pereira, R.S.; De Oliveira Teixeira, A.; Menzes De Oliveira, D.; de Oliveira Lima, E.; Oigman, S.S.; Moraes de Rezende, C.; Froldi, G. Promising antifungal activity of Croton tricolor stem essential oil against Candida yeasts. J. Essent. Oil Res. 2019, 31, 223–227. [Google Scholar] [CrossRef]
  187. Simionatto, E.; Bonani, V.F.L.; Morel, A.F.; Poppi, N.R.; Raposo Júnior, J.L.; Stuker, C.Z.; Peruzzo, G.M.; Peres, M.T.L.P.; Hess, S.C. Chemical composition and evaluation of antibacterial and antioxidant activities of the essential oil of Croton urucurana Baillon (Euphorbiaceae) stem bark. J. Braz. Chem. Soc. 2007, 18, 879–885. [Google Scholar] [CrossRef] [Green Version]
  188. Yagi, S.; Babiker, R.; Tzanova, T.; Schohn, H. Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pac. J. Trop. Med. 2016, 9, 763–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  189. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017; ISBN 9780998155722. [Google Scholar]
  190. Mondello, L. FFNSC 3; Shimadzu Scientific Instruments: Columbia, MD, USA, 2016. [Google Scholar]
  191. NIST17. NIST17; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
  192. Satyal, P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. Ph.D. Thesis, University of Alabama in Huntsville, Huntsville, AL, USA, 2015. [Google Scholar]
  193. Huong, L.T.; Hung, N.H.; Dai, D.N.; Tai, T.A.; Hien, V.T.; Satyal, P.; Setzer, W.N. Chemical compositions and mosquito larvicidal activities of essential oils from Piper species growing wild in Central Vietnam. Molecules 2019, 24, 3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  194. Hadacek, F.; Greger, H. Testing of antifungal natural products: Methodologies, comparability of results and assay choice. Phytochem. Anal. 2000, 11, 137–147. [Google Scholar] [CrossRef]
  195. Finney, D. Probit Analysis, Reissue, ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0521135900. [Google Scholar]
  196. Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective effects of (E)-β-caryophyllene (bcp) in chronic inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef]
Table 1. Mosquito larvicidal activity of Croton hirtus essential oil (μg/mL).
Table 1. Mosquito larvicidal activity of Croton hirtus essential oil (μg/mL).
Test Organism24-h LC50
(95% Limits)
24-h LC90
(95% Limits)
48-h LC50
(95% Limits)
48-h LC90
(95% Limits)
Aedes aegypti (third–fourth instar)29.71 (28.04–31.85)39.55 (36.11–45.53)25.67 (24.08–27.82)34.59 (31.57–39.82)
Aedes albopictus (third–fourth instar)15.38 (14.51–16.53)20.10 (18.38–22.99)14.29 (13.31–15.55)19.36 (17.61–22.31)
Aedes albopictus (fourth instar, wild)78.27 (71.15–86.89)128.37 (115.56–146.48)60.0 (53.17–67.73)155.80 (129.95–197.41)
Culex quinquefasciatus (third instar)50.84 (45.90–56.15)100.87 (88.39–119.70)30.42 (28.37–33.78)38.98 (34.82–48.06)
Culex fuscocephala (third–fourth instar)65.84 (62.24–69.56)95.15 (89.61–102.41)38.21 (33.34–43.62)156.96 (123.03–220.31)
Table 2. Larvicidal activity of major compounds against Aedes aegypti (μg/mL).
Table 2. Larvicidal activity of major compounds against Aedes aegypti (μg/mL).
CompoundsLC50 (95% Limits)LC90 (95% Limits)χ2p
24 h
Caryophyllene oxide39.65 (35.83–42.53)49.41 (46.31–53.36)0.0111.00
α-Humulene48.19 (44.33–52.29)87.64 (78.81–100.02)1.8900.596
β-Caryophyllene111.66 (105.55–118.0)160.10 (151.39–170.85)3.7820.436
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:19.54 (8.06–11.00)23.08 (20.48–26.83)11.9050.018
48 h
Caryophyllene oxide37.92 (34.73–40.82)47.94 (44.58–52.34)0.0151.00
α-Humulene36.22 (33.15–39.51)70.58 (62.82–81.67)5.1240.163
β-Caryophyllene94.43 (88.37–100.84)145.91 (136.85–157.04)1.8210.769
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:18.97 (7.48–10.40)22.30 (19.78–25.93)9.2520.055
Table 3. Larvicidal activity of major compounds against Aedes albopictus (μg/mL).
Table 3. Larvicidal activity of major compounds against Aedes albopictus (μg/mL).
CompondsLC50 (95% Limits)LC90 (95% Limits)χ2p
24 h
Caryophyllene oxide38.68 (35.84–41.44)53.28 (49.31–58.93)0.2120.976
α-Humulene31.49 (28.62–34.67)65.14 (56.73–78.08)8.1860.042
β-Caryophyllene30.11 (27.65–32.81)53.88 (47.80–63.20)1.8650.601
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:1>50>50NdNd
48 h
Caryophyllene oxide33.95 (31.55–36.61)49.37 (44.93–56.02)2.1360.545
α-Humulene26.44 (24.0–29.13)55.80 (48.53–66.95)5.6620.129
β-Caryophyllene25.70 (23.46–28.17)50.26 (44.15–59.60)3.2580.354
Caryophyllene oxide/α-Humulene/β-Caryophyllene: 7:2:1>50>50NdNd
Nd: not determined.
Table 4. Summary of Aedes aegypti larvicidal activity of essential oils of Croton spp.
Table 4. Summary of Aedes aegypti larvicidal activity of essential oils of Croton spp.
SpeciesYield (%)Main Components a24-h LC50
(μg/mL)
24-h LC90
(μg/mL)
Ref.
Croton argyrophylloides MuellAerial parts: Ndtrans-β-Guaiene, α-pinene, β-elemene, 1,8-cineole.94.6Nd[65]
Croton argyrophyllus KunthDried leaves: 0.48Spathulenol, β-caryophyllene, α-pinene, bicyclogermacrene. 310700[67]
Croton heliotropiifolius KunthDried leaves: 0.2β-Caryophyllene, bicyclogermacrene, germacrene D.544Nd[68]
Croton jacobinenesis Baill.Leaves: 0.801,8-Cineole, β-caryophyllene, viridiflorene, α-pinene, β-pinene.79.3Nd[69]
Stalks: 0.70δ-Cadinene, β-caryophyllene, γ-muurolene, γ-cadinene, 6,9-guaiadiene, viridiflorene, 117.2Nd[69]
Inflorescences: 0.051,8-Cineole, β-caryophyllene, viridiflorene, α-pinene.65.8Nd[69]
Croton linearis JacqFresh leaves: 1.501,8-Cineole, sabinene, 10-epi-γ-eudesmol, hinesol64.24143.85[70]
Croton nepetaefolius BailAerial parts: Nd Methyleugenol, α-copaene, croweacin, caryophyllene oxide.66.4154[65]
Croton pulegiodorus Baill.Dried leaves: 5.0β-Caryophyllene,
bicyclogermacrene, germacrene D.
159Nd[68]
Croton regelianus Müll. Arg.Fresh leaves: 1.3p-Cymene, ascaridole, camphor, α- phellandrene.66.74Nd[71]
Fresh leaves: 0.5Ascaridole, p-cymene, α-terpinene, γ-terpinene.24.22Nd[71]
Croton rhamnifolioides Pax and K. Hoffm.Fresh leaves: NdSesquicineole, α-phellandrene, β-caryophyllene, 1,8-cineole,122.3Nd[72]
Dried leaves: 0.80%1,8-Cineole, o-cymene, α-pinene, α-phellandrene, sabinene.89.0Nd[72]
Croton sonderianus MuellAerial parts: NdSpathulenol, β-caryophyllene, caryophyllene oxide, 1,8-cineole54.5Nd[65]
Leaves: Ndβ-Phellandrene, trans-β-guaiene, α-pinene, β-caryophyllene, γ-muurolene.104119[73]
Croton tetradenius Baill.2.73Camphor, γ-terpineol, α-terpinene, p-cymene, γ-terpinene.152297[74]
Blend (1:1, w/w) of Croton argyrophyllus Kunth. and Croton tetradenius Baill.Nd Camphor, isopinocampheol, β-caryophyllene, spathulenol.160400[75]
Croton zehntneri Pax et HoffmAerial parts: Nd(E)-Anethole26.2Nd [65]
Aerial parts: Nd(E)-Anethole2832[73]
Croton zehntneri Pax et HoffmLeaves: 1.04(E)-Anethole56.2Nd[52]
Stalks: 0.46(E)-Anethole, p-anisaldehyde, anisyl acetate, estragole.51.3Nd[52]
Inflorescences: 0.30(E)-Anethole 57.5Nd[52]
Leaves: Ndα-Pinene, trans-β-guaiene, β-pinene, β-gurjunene, β-elemene.102129[73]
Leaves: NdMethyleugenol, α-copaene, β-caryophyllene84Nd[73]
a: The order of the compounds is sorted by percentage from high to low and greater than 5.0%. Nd = not determined.
Table 5. Summary of mosquito larvicidal activity of main components in Croton spp. essential oils (24 h or 48 h exposure).
Table 5. Summary of mosquito larvicidal activity of main components in Croton spp. essential oils (24 h or 48 h exposure).
CompoundLC50, μg/mLLC90 μg/mLMosquitoRef.
(E)-Anethole69.2NdAedes aegypti[52]
50.1965.21Aedes aegypti[77]
34.41–38.9871.03–82.72Aedes aegypti[78]
67.1–85.5NdAedes aegypti[79]
42>50Aedes aegypti[80]
50 < LC50 < 100NdAedes albopictus[81]
73.99109.86Ochlerotatus caspius[82]
24.8 μL/L32.1 μL/LCulex quinquefasciatus[83]
2134Culex quinquefasciatus[84]
16.5625.29Culex pipiens[85]
Ascaridole (89.5%)41.8574.45Culex quinquefasciatus[86]
9.60NdAedes aegypti[71]
α-Asarone22.38–23.82NdCulex pipiens pallens[87]
Bicyclogermacrene11.122.14Aedes albopictus[62]
12.524.2Culex tritaeniorhynchus[62]
10.320.9Anopheles subpictus[62]
Borneol>500>500Aedes aegypti[79]
(+)-Borneol>100NdCulex pipiens pallens[88]
(−)-Borneol>100NdCulex pipiens pallens[88]
δ-Cadinene8.23NdAnopheles stephensi[60]
9.03NdAedes aegypti[60]
9.86NdCulex quinquefasciatus[60]
Camphor>250>250Culex quinquefasciatus[84]
129.17192.42Anopheles anthropophagus[89]
>500NdAedes aegypti[79]
>50>50Aedes aegypti[80]
1,8-Cineole>100NdAedes aegypti[72]
57.2NdAedes aegypti[90]
1381NdAedes aegypti[91]
53.63NdAedes aegypti[92]
>100NdAedes aegypti[93]
>100>100Culex pipiens pallens[88]
191207Culex pipiens molestus[94]
>200NdCulex pipiens[95]
>50.0>50.0Aedes aegypti[96]
>50.0>50.0Aedes albopictus[96]
>100NdAedes albopictus[81]
>200>200Aedes albopictus[97]
>250>250Culex quinquefasciatus[84]
β-Caryophyllene1038NdAedes aegypti[68]
136.85280.86Aedes aegypti[98]
298.41227.3Aedes aegypti[99]
1202NdAedes aegypti[91]
>50>50Aedes aegypti[80]
>50>50Aedes aegypti[100]
29.9748.34Aedes aegypti[61]
>100NdAedes aegypti[93]
54.95NdAedes aegypti[101]
73.4434.22Aedes albopictus[99]
44.8NdAedes albopictus[102]
53.14NdAedes albopictus[101]
>200>200Aedes albopictus[97]
>100NdAedes albopictus[81]
31.0954.92Aedes albopictus[61]
>50>50Aedes albopictus[100]
69.60164.59Culex quinquefasciatus[98]
165.4220.6Culex quinquefasciatus[103]
44.99NdCulex pipiens pallens[101]
48.2NdCulex tritaeniorhynchus[102]
>200NdAnopheles anthropophagus[89]
134.77NdAnopheles sinensis[104]
41.7NdAnopheles subpictus[102]
28.8651.82Anopheles nuneztovari[61]
26.5246.51Anopheles triannulatus[61]
25.1454.73Anopheles darlingi[61]
26.3653.92Anopheles albitarsis[61]
60.17NdAnopheles sinensis[101]
Caryophyllene oxide49.46115.38Anopheles anthropophagus[89]
39.09NdAnopheles sinensis[104]
125NdAedes aegypti[91]
>50>50Aedes aegypti[80]
>50>50Aedes aegypti[100]
29.8 (1 day old)74.1 (1 day old)Aedes aegypti[105]
20.6127.56Aedes albopictus[58]
>50>50Aedes albopictus[100]
98.52144.5Culex quinquefasciatus[58]
p-Cymene19.241.3Aedes aegypti[96]
21.86–49.2555.02–115.51Aedes aegypti[78]
17.0527.30Aedes aegypti[98]
43.3>50.0Aedes aegypti[100]
69.495.2Aedes aegypti[106]
37.1>100.0Aedes aegypti[107]
12.49NdAedes aegypti[92]
36.9 (1 day old larvae)54.4 (1 day old larvae)Aedes aegypti[108]
23.3 (1 day old larvae)46.7 (1 day old larvae)Aedes aegypti[109]
>500 NdAedes aegypti[79]
25 < LC50 < 50<50Aedes aegypti[93]
33.93NdAedes aegypti[101]
46.7>50.0Aedes albopictus[96]
34.9>50.0Aedes albopictus[100]
25.966.3Aedes albopictus[107]
35.10NdAedes albopictus[101]
68.395.0Aedes albopictus[106]
19.428.8Aedes albopictus[97]
50 < LC50 < 100NdAedes albopictus[81]
2130Culex quinquefasciatus[84]
15.1325.41Culex quinquefasciatus[98]
29.34NdCulex pipiens pallens[101]
38.07NdAnopheles sinensis[101]
β-Elemene10.2620.02Anopheles subpictus[63]
11.1521.32Aedes albopictus[63]
12.0522.40Culex tritaeniorhynchus[63]
Elemicin>100NdAedes albopictus[81]
Estragole14.0124.41Culex quinquefasciatus[60]
12.7022.32Aedes aegypti[60]
11.0119.79Anopheles stephensi[60]
38.5695.90Anopheles anthropophagus[110]
41.67107.89Anopheles sinensis[110]
Eugenol7.5312.35Ochlerotatus caspius[82]
117180Culex quinquefasciatus[84]
82.2–142.9NdAedes aegypti[79]
12.5 < LC50 < 2550 < LC90 < 100Aedes albopictus[81]
Eugenol (74.0%)18.2843.11Culex pipiens[85]
Germacrene D49.81106.19Anopheles anthropophagus[89]
59.596.4Anopheles stephensi[59]
63.6100.7Aedes aegypti[59]
21.2837.04Culex quinquefasciatus[60]
18.7633.37Aedes aegypti[60]
35.9661.46Aedes aegypti[61]
33.5166.43Aedes albopictus[61]
16.9530.95Anopheles stephensi[60]
32.3658.68Anopheles nuneztovari[61]
30.3158.53Anopheles triannulatus[61]
24.4945.11Anopheles darlingi[61]
31.2255.46Anopheles albitarsis[61]
α-Humulene37.8983.95Aedes aegypti[58]
53.0582.78Aedes aegypti[103]
28.1151.1Aedes aegypti[61]
>100NdAedes aegypti[93]
108.06NdAedes aegypti[101]
38.7263.40Aedes albopictus[58]
106.25NdAedes albopictus[101]
6.8612.98Aedes albopictus[63]
28.8948.28Aedes albopictus[61]
87.81140.0Culex quinquefasciatus[58]
108.3158.2Culex quinquefasciatus[103]
96.35NdCulex pipiens pallens[101]
7.3913.68Culex tritaeniorhynchus[63]
107.35NdAnopheles sinensis[101]
6.1912.03Anopheles subpictus[63]
26.6349.56Anopheles nuneztovari[61]
33.0861.41Anopheles triannulatus[61]
30.3668.88Anopheles darlingi[61]
37.4282.58Anopheles albitarsis[61]
R-(+)-limonene11.8817.78Aedes aegypti[77]
37NdAedes aegypti[91]
25 < LC50 < 50LC90 < 100Aedes albopictus[81]
71.996.9Aedes aegypti[106]
25 < LC50 < 5050 < LC90 < 100Aedes aegypti[93]
41.288.2Aedes albopictus[106]
(±)-Limonene17.04NdAedes aegypti[101]
14.05NdCulex pipiens pallens[101]
S-(−)-Limonene25 < LC50 < 50LC90 < 100Aedes albopictus[81]
25 < LC50 < 5025 < LC90 < 50Aedes aegypti[93]
29.1 (1 day old larvae)81.3 (1 day old larvae)Aedes aegypti[105]
Limonene18.141.0Aedes aegypti[96]
19.4>50.0Aedes aegypti[100]
32.750.0Aedes albopictus[96]
31.6341.51Culex quinquefasciatus[103]
15.034.0Aedes albopictus[100]
Linalool155.73237.29Ochlerotatus caspius[82]
>50.0>50.0Aedes aegypti[100]
>50.0>50.0Aedes albopictus[100]
>500NdAedes aegypti[79]
>100NdAedes aegypti[93]
38.6469.08Aedes aegypti[60]
35.1763.45Anopheles stephensi[60]
42.2873.13Culex quinquefasciatus[60]
(−)-Linalool169.6220.5Aedes albopictus[97]
Methyleugenol36.5 (1 day old larvae)99.2 (1 day old larvae)Aedes aegypti[109]
12.5 < LC50 < 25NdAedes albopictus[111]
53.30–67.02NdCulex pipiens pallens[87]
β-Myrcene>100NdAedes albopictus[81]
167218Culex quinquefasciatus[84]
27.9NdAedes aegypti[102]
>500NdAedes aegypti[79]
23.5NdAedes albopictus[102]
β-Myrcene35.8>100.0Aedes aegypti[107]
27.075.4Aedes albopictus[107]
35.8>100.0Aedes aegypti[106]
>100.0NdAedes aegypti[93]
27.075.5Aedes albopictus[106]
α-Phellandrene39.3NdAedes aegypti[72]
16.636.9Aedes aegypti[96]
39.9>50.0Aedes albopictus[96]
25 < LC50 < 50<100Aedes albopictus[81]
>100 NdAedes aegypti[93]
39.3NdAedes aegypti[72]
α-Pinene>50.0>50.0Aedes aegypti[96]
79.1>100.0Aedes aegypti[107]
45.17–45.7092.52–96.49Aedes aegypti[78]
15.4NdAedes aegypti[90]
>100.0>100.0Aedes aegypti[106]
15.87NdAedes aegypti[92]
>500NdAedes aegypti[79]
>100NdAedes aegypti[93]
>50.0>50.0Aedes albopictus[96]
74.0>100.0Aedes albopictus[107]
80.6>100.0Aedes albopictus[106]
74.0>100.0Aedes albopictus[106]
>100.0NdAedes albopictus[81]
68.68–72.30113.88–114.43Aedes albopictus[112]
95581Culex quinquefasciatus[84]
58.44–61.46124.2–144.56Culex pipiens[113]
(1R)-(+)-α-Pinene4762Culex pipiens molestus[94]
>100NdAedes albopictus[111]
(1S)-(−)-α-Pinene4985Culex pipiens molestus[94]
>100NdAedes albopictus[111]
β-Pinene65359Culex quinquefasciatus[84]
32.97–35.1393.11–105.59Aedes aegypti[78]
12.1NdAedes aegypti[90]
23.6332.12Aedes aegypti[103]
>500NdAedes aegypti[79]
27.6949.91Aedes aegypti[60]
50 < LC50 < 100NdAedes aegypti[93]
>100NdAedes albopictus[81]
42.39–47.3363.10–73.11Aedes albopictus[112]
30.4641.58Culex quinquefasciatus[103]
32.2356.58Culex quinquefasciatus[60]
36.53–66.5276.27–109.53Culex pipiens[113]
32.2NdAnopheles stephensi[102]
23.1743.39Anopheles stephensi[60]
Sabinene74.1>100.0Aedes aegypti[106]
21.2039.22Aedes aegypti[60]
39.571.4Aedes albopictus[106]
6.25 < LC50 < 12.525 < LC90 < 50Aedes albopictus[81]
25.0145.15Culex quinquefasciatus[60]
19.6736.45Anopheles stephensi[60]
Spathulenol>100NdAedes aegypti[76]
γ-Terpinene30.7>50.0Aedes aegypti[96]
26.868.7Aedes aegypti[107]
9.7616.99Aedes aegypti[77]
11.2521.55Aedes aegypti[98]
24.58–44.8072.55–100.71Aedes aegypti[78]
95NdAedes aegypti[91]
26.8>50.0Aedes aegypti[100]
27.2 (1 day old larvae)52.4 (1 day old larvae)Aedes aegypti[108]
25 < LC50 < 5050 < LC90 < 100Aedes aegypti[93]
27.53NdAedes aegypti[101]
2648Culex quinquefasciatus[84]
13.4423.52Culex quinquefasciatus[98]
24.70NdCulex pipiens pallens[101]
29.847.5Aedes albopictus[96]
22.857.4Aedes albopictus[107]
22.8>50.0Aedes albopictus[100]
30.03NdAedes albopictus[101]
25 < LC50 < 5050 < LC90 < 100Aedes albopictus[81]
20.2132.31Aedes albopictus[112]
36.42NdAnopheles sinensis[101]
20.232.3Aedes albopictus[97]
α-Terpinene14.739.3Aedes aegypti[96]
28.176.4Aedes aegypti[107]
0.4NdAedes aegypti[92]
12.5 < LC50 < 2512.5 < LC90 < 25Aedes aegypti[93]
21.30NdAedes aegypti[101]
25.2>50.0Aedes albopictus[96]
22.458.8Aedes albopictus[107]
25 < LC50 < 50<100Aedes albopictus[81]
>250>250Culex quinquefasciatus[84]
α-Terpineol>50.0>50.0Aedes aegypti[96]
76.68NdAedes aegypti[92]
>100NdAedes aegypti[93]
23.49NdAedes aegypti[101]
>50.0>50.0Aedes albopictus[96]
21.26NdAedes albopictus[101]
>250>250Culex quinquefasciatus[84]
>100>100Culex pipiens pallens[88]
21.30NdCulex pipiens pallens[101]
194216Culex pipiens molestus[94]
27.16NdAnopheles sinensis[101]
>500NdAedes aegypti[79]
Nd: not determined.
Table 6. Molluscicidal activity of Croton hirtus essential oil and its major components against Physella acuta adults (μg/mL).
Table 6. Molluscicidal activity of Croton hirtus essential oil and its major components against Physella acuta adults (μg/mL).
MaterialLC50 (95% Limits)LC90 (95% Limits)χ2p
Essential oil10.09 (8.37–12.21)17.12 (13.80–25.81)0.680.877
Caryophyllene oxide5.78 (4.86–6.92)8.96 (7.38–13.42)0.500.921
α-Humulene7.24 (6.00–8.67)11.88 (9.71–17.50)0.620.887
β-Caryophyllene9.58 (7.79–11.72)18.08 (14.32–27.14)0.880.829
Table 7. Summary of antiparasitic activities of Croton spp. essential oils.
Table 7. Summary of antiparasitic activities of Croton spp. essential oils.
SpeciesYield (%)Main Components aM/S/PIC50 (μg/mL)SI bOrganismsRef.
Croton argyrophylloides Müll. Arg.0.2 to 3Spathulenol, caryophyllene oxide, β-elemeneM: 0
S: 95.17
15.50
16.71
16.41
>6.45
>6.0
>6.1
Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi[119]
Croton cajucara Benth.Nd LinaloolNd 0.0083Nd Promastigotes of Leishmania amazonensis[57]
Nd LinaloolNd 0.022Nd Amastigotes of Leishmania amazonensis[57]
Linalool Essential oil at 15.0 ng/mL was able to kill 100% of the parasites in 60 min.Nd Adults of Leishmania amazonensis.[57]
Croton cajucara Benth.
(white morphotype)
Nd Linalool,
β-caryophyllene,
Germacrene D
Nd 1490NdAdults of Neoechinorhynchus buttnerae[120]
Croton cajucara Benth.
(red morphotype)
Nd Germacrene D,
germacrene A,
β-elemene
Nd 1030Nd Adults of Neoechinorhynchus buttnerae[120]
Croton jacobinensis Müll. Arg.0.2 to 3Caryophyllene oxide, spathulenol, germacrene BM: 0
S: 91.64
23.79
22.06
17.69
>4.2
>4.53
>5.65
Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi[119]
Croton linearis Jacq.1.6GuaiolM: 4.89
S: 90.06
20.04Promastigotes of Leishmania amazonensis[121]
13.86.46Amastigotes of Leishmania amazonensis[121]
197.261.55Promastigotes of Trypanosoma cruzi[121]
% Inhibition
infection
(10 µg/mL): 13.32
NdAmastigotes of Trypanosoma cruzi[121]
Croton linearis Jacq.0.9% (v/w)1,8-Cineole, α-pinene, sabineneM: 75.89
S: 24.11
21.42Promastigotes of Leishmania amazonensis[122]
18.93Amastigotes of Leishmania amazonensis[122]
Croton macrostachyus Hochst. ex Delile0.038Benzyl benzoate, linalool, γ-muuroleneAr: 52.5
M: 11.6
S: 34.9
MIC = 0.08 µL/mLNd Promastigotes of Leishmania donovani[123]
20.00 nL/mL0.5Amastigotes of Leishmania donovani[123]
MIC = 0.16 µL/mLNdPromastigotes of Leishmania aethiopica[123]
6.66 nL/mL1.5Amastigotes of Leishmania aethiopica[123]
Croton nepetifolius Baill.0.2 to 3Methyl eugenol, β-caryophyllene, 1,8-cineole, germacrene B, 3,5-dimethoxytolueneM: 14.02
S: 29.18
P: 39.63
9.87
9.08
14.80
>10.13>11.01>6.76Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi[119]
Croton piauhiensis Mull. Arg.0.04β-Caryophyllene, caryophyllene oxide, limonene, τ-muurolol, p-cymene, bicyclogermacreneM:39.57
S: 58.85
1.70NdPromastigotes of Leishmania infantum[124]
13.79NdAxenic amastigotes of Leishmania infantum[124]
Croton
pulegiodorus Baill.
0.27Ascaridole, p-cymene, camphor, isoascaridoleM: 92.9
S: 0
0.05NdPromastigotes of Leishmania infantum[124]
2.33NdAxenic amastigotes of Leishmania infantum[124]
Croton rudolphianus Müll. Arg.0.96β-Caryophyllene, bicyclogermacrene, δ-cadinene, germacrene DM: 8.98
S: 50.94
14.81Nd Schistosoma mansoni cercariae[115]
7-hydroxycalameneneSIC50: 66.7. MIC: 250>7.5Promastigote forms Leishmania chagasi[125]
Croton sincorensis Mart. ex Müll. Arg.0.2 to 3Caryophyllene oxide, β-eudesmol, spathulenol, hedycaryol, globulol, humulene epoxide II, viridiflorol, 1,8-cineoleM: 8.24
S: 77.92
27.03
14.16
13.05
>3.7
>7.06
>7.66
Promastigotes of Leishmania (V.) braziliensis Promastigotes of Leishmania (L.) amazonensis Promastigotes of Leishmania (L.) chagasi[119]
Croton zehntneri Pax and K. Hoffm.Nd (E)-Anethole, anisaldehyde, estragole, anisyl acetateNd 550 (Ovicidal)NdHaemonchus contortus[28]
Nd (E)-Anethole, anisaldehyde, estragole, anisyl acetateNd 1170 (Larvicidal)NdHaemonchus contortus[28]
Croton zehntneri Pax and K. Hoffm.Nd (E)-Anethole, estragole, germacrene B 740
(Ovicidal)
NdHaemonchus contortus[28]
Nd 1370
(Larvicidal)
NdHaemonchus contortus[28]
a: The order of the compounds is sorted by percentage from high to low and greater than 5.0%. b: SI: LC50 cytotoxicity/LC50 parasitic toxicity. Ar: aromatic, M: monoterpenoids, S: sesquiterpenoids, P: phenylpropanoids. Nd = not determined.
Table 8. Summary of antiparasitic activities of essential oil components.
Table 8. Summary of antiparasitic activities of essential oil components.
CompoundIC50/EC50/LC50 (μg/mL)ParasitesSI aRef.
(E)-Anethole690Eggs of Haemonchus contortusNd[28]
2110Larvae of Haemonchus contortusNd[28]
Ascaridole0.1 ± 0.01Promastigotes of Leishmania amazonensis4[126]
0.3 ± 0.05Amastigotes of Leishmania amazonensis11[126]
0.1 ± 0.01Promastigotes of Leishmania amazonensis4[127]
Combination 20:80 mg/kg of ascaridole—carvacrol showed lower (p < 0.05) lesion size and parasite burden compared with control groups in in vivo testing on BALB/c mice.Leishmania amazonensisNd[127]
α-Asarone20.19Bloodstream forms of Trypanosoma brucei brucei5.21[128]
Camphor>100Bloodstream forms of Trypanosoma brucei bruceiNd[129]
IC50 > 100Promastigotes of Phytomonas davidiNd[130]
37.39Bloodstream forms of Trypanosoma brucei brucei>6.69[128]
5.55 Promastigotes of Leishmania infantum4.56[131]
7.90 Promastigotes of Leishmania major3.20[131]
β-Caryophyllene12.8Erythrocytic stages Plasmodium falciparum4.86[132]
28.9 Bloodstream forms of Trypanosoma brucei rhodesiense2.15[132]
50.1 Trypomastigote forms (mammalian stage) of Trypanosoma cruzi1.24[132]
52.4 Amastigotes (the clinically relevant form) of Leishmania donovani1.19[132]
96 µMPromastigotes of Leishmania amazonensisNd[133]
13.78Bloodstream forms of Trypanosoma brucei brucei1.40[128]
1.06 Promastigotes of Leishmania infantum20.82[131]
1.33 Promastigotes of Leishmania major16.59[131]
2.89Epimastigotes of Trypanosoma cruzi12.93[134]
24.54Intracellular amastigotes infecting Vero cells of Trypanosoma cruziNd[134]
24.02Promastigotes of Leishmania (Leishmania) infantum143.85[134]
53.39Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantumNd[134]
Caryophyllene
oxide
4.9 Promastigotes of Leishmania amazonensis0.92[126]
4.4 Amastigotes of Leishmania amazonensis1.0[126]
IC50 > 100Promastigotes of Phytomonas davidiNd[130]
17.70Bloodstream forms of Trypanosoma brucei brucei2.14[128]
4.9 Promastigotes of Leishmania amazonensisNd[127]
1,8-CineoleAt 200 μg/mL it killed 100% of protoscoleces after 30 min.Protoscoleces of Echinococcus granulosusNd[135]
568.1 Promastigotes of Leishmania amazonensis>0.18[136]
>100Bloodstream forms of Trypanosoma brucei bruceiNd[129]
IC50 > 100Promastigotes of Phytomonas davidiNd[130]
83.15Bloodstream forms of Trypanosoma brucei brucei>3.00[128]
InactivePromastigotes of Leishmania infantumNd[137]
InactivePromastigotes of Leishmania tropicaNd[137]
InactivePromastigotes of Leishmania majorNd[137]
53.40 Promastigotes of Leishmania infantum5.74[131]
74.80 Promastigotes of Leishmania major4.10[131]
0.63Epimastigotes of Trypanosoma cruzi63.49[134]
>100Intracellular amastigotes infecting Vero cells of Trypanosoma cruziNd[134]
>100Promastigotes of Leishmania (Leishmania) infantumNd[134]
>100Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantumNd[134]
p-Cymene>20Erythrocytic stages Plasmodium falciparum4.5[132]
45.0 Bloodstream forms of Trypanosoma brucei rhodesiense2.0[132]
>90Trypomastigote forms (mammalian stage) of Trypanosoma cruziNd[132]
>90Amastigotes (the clinically relevant form) of Leishmania donovaniNd[132]
>1000Promastigotes of Leishmania amazonensisNd[136]
76.32Bloodstream of Trypanosoma brucei brucei>0.66[138]
IC50 > 100Promastigotes of Phytomonas davidiNd[130]
156.17Promastigotes of Leishmania infantumNd[131]
219.17 Promastigotes of Leishmania majorNd[131]
(−)-α-Bisabolol20μMPromastigotes of Trypanosoma cruzi26.5[139]
285μMEpimastigote of Trypanosoma cruzi2.05[139]
Topical treatment at 2.5% reduced lesion thickness to 56% and had a higher efficacy than
the reference control, meglumine antimoniate.
Leishmania tropicaNd[117]
5.9 Amastigotes of Leishmania amazonensis5.41[140]
4.8 Amastigotes of Leishmania infantum6.65[140]
Borneol>20Erythrocytic stages Plasmodium falciparum4.5[132]
24.3 Bloodstream forms of Trypanosoma brucei rhodesiense3.70[132]
>90Trypomastigote forms (mammalian stage) of Trypanosoma cruziNd[132]
52.1 Amastigotes (the clinically relevant form) of Leishmania donovani1.73[132]
>100Bloodstream forms of Trypanosoma brucei bruceiNd[129]
InactivePromastigotes of Leishmania infantumNd[137]
InactivePromastigotes of Leishmania tropicaNd[137]
InactivePromastigotes of Leishmania majorNd[137]
Eugenol82.9 Promastigotes of Leishmania amazonensisNd[136]
>100Bloodstream forms of Trypanosoma brucei bruceiNd[129]
60.4 Amastigotes of Leishmania braziliensis1.3[141]
43.8 Amastigotes of Trypanosoma cruzi1.8[141]
665.6 Amastigotes of Plasmodium falciparum0.12[141]
37.20Bloodstream forms of Trypanosoma brucei brucei2.50[128]
80Promastigote forms of Leishmania amazonensisNd[142]
Estragole32.08Bloodstream forms of Trypanosoma brucei brucei>7.80[128]
α-Humulene9.76Leishmania donovaniNd[143]
R-(+)-Limonene4.24 Bloodstream of Trypanosoma brucei brucei>11.79[138]
35.55Bloodstream forms of Trypanosoma brucei brucei4.50[128]
14.1 Trypomastigote forms of Trypanosoma cruziNd[144]
33.7Epimastigotes of Trypanosoma cruziNd[144]
LimoneneAt a concentration of 43.75 µg/mL it produced decreased motility.Adult worms of Schistosoma mansoniNd[145]
278 µMPromastigotes of Leishmania amazonensisNd[133]
252.0 μM.Promastigotes of Leishmania amazonensis
147.0 μMAmastigote of Leishmania amazonensis
354.0 μMPromastigotes of Leishmania major
185.0 μMPromastigotes of Leishmania braziliensis
201.0 μMPromastigotes of chagasi
38.71Epimastigotes of Trypanosoma cruzi>100[134]
145.94Intracellular amastigotes infecting Vero cells of Trypanosoma cruziNd[134]
>100Promastigotes of Leishmania (Leishmania) infantumNd[134]
>100Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantumNd[134]
(−)-Linalool>20Erythrocytic stages Plasmodium falciparum4.5[132]
3.6Bloodstream forms of Trypanosoma brucei rhodesiense25[132]
>90Trypomastigote forms (mammalian stage) of Trypanosoma cruziNd[132]
86.3 Amastigotes (the clinically relevant form) of Leishmania donovani1.04[132]
276.2 Promastigotes of Leishmania amazonensisNd[136]
(±)-Linalool39.32Bloodstream forms of Trypanosoma brucei brucei5.20[128]
Linalool430Promastigotes of Leishmania braziliensis16.93[146]
NdAmastigote of Leishmania braziliensisNd[146]
>100Bloodstream forms of Trypanosoma brucei bruceiNd[129]
198.6 Epimastigote of Trypanosoma cruzi>5[147]
249.6 Intracellular amastigote of Trypanosoma cruzi>4[147]
IC50 > 100Promastigotes of Phytomonas davidiNd[130]
30.16Epimastigotes of Trypanosoma cruzi26.33[134]
>100Intracellular amastigotes infecting Vero cells of Trypanosoma cruziNd[134]
>100Promastigotes of Leishmania (Leishmania) infantumNd[134]
>100Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantumNd[134]
0.31Trypomastigote forms of Trypanosoma cruzi2.7[148]
0.0043Promastigotes of Leishmania amazonensisNd[57]
0.0155Amastigote of Leishmania amazonensisNd[57]
Myrcene>20Erythrocytic stages Plasmodium falciparum4.5[132]
22 Bloodstream forms of Trypanosoma brucei rhodesiense4.10[132]
>90Trypomastigote forms (mammalian stage) of Trypanosoma cruziNd[132]
48.2 Amastigotes (the clinically relevant form) of Leishmania donovani1.87[132]
2.24 Bloodstream of Trypanosoma brucei brucei>22.32[138]
Nerolidol74.3Promastigotes of Leishmania braziliensis20.19[146]
47.5Amastigote of Leishmania braziliensis2.20[146]
85Promastigotes of Leishmania amazonensisNd[118]
67Amastigote of Leishmania amazonensisNd[118]
74Promastigotes of Leishmania braziliensisNd[118]
75Promastigotes of Leishmania chagasiNd[118]
Leishmania-amazonensis-infected BALB/c mice were treated with intraperitoneal doses of 100 mg/kg/day for 12 days or topically with 5 or 10% ointments for 4 weeks, and both resulted in significant reductions in lesion sizes.Leishmania amazonensisNd[118]
(Z)-Nerolidol15.78Bloodstream forms of Trypanosoma brucei brucei1.87[128]
α-Phellandrene9.2Bloodstream of Trypanosoma brucei2.9[149]
32.8Promastigotes of Leishmania major0.8[149]
α-Pinene10.7 Erythrocytic stages Plasmodium falciparum8.21[132]
0.42 Bloodstream forms of Trypanosoma brucei rhodesiense209.05[132]
>90Trypomastigote forms (mammalian stage) of Trypanosoma cruziNd[132]
81.9 Amastigotes (the clinically relevant form) of Leishmania donovani1.07[132]
4.1Bloodstream form of Trypanosoma brucei0.6[149]
55.3Promastigotes of Leishmania major<0.1[149]
2.9 Bloodstream forms of Trypanosoma brucei brucei>34.5[129]
1.145Tachyzoites of Toxoplasma gondii RH strain126[150]
17.60 Promastigotes of Leishmania infantum13.08[131]
19.80Promastigotes of Leishmania major11.63[131]
2.74Epimastigotes of Trypanosoma cruzi11.57[134]
1.92Intracellular amastigotes infecting Vero cells of Trypanosoma cruziNd[134]
45.94Promastigotes of Leishmania (Leishmania) infantum57.25[134]
>100Intracellular amastigotes infecting THP-1 cells of Leishmania (Leishmania) infantumNd[134]
β-Pinene47.37Bloodstream form of Trypanosoma brucei brucei>1.06[138]
54.8Bloodstream form of Trypanosoma brucei0.5[149]
200.1Promastigotes of Leishmania major0.1[149]
0.326 Tachyzoites of Toxoplasma gondii RH strain61[150]
50 < IC50 < 100Promastigotes of Phytomonas davidiNd[130]
Sabinene17.7Bloodstream of Trypanosoma brucei1.3[149]
126.6Promastigotes of Leishmania major0.2[149]
α-Terpinene3.7 Erythrocytic stages Plasmodium falciparum22.89[132]
3.1Bloodstream forms of Trypanosoma brucei rhodesiense27.32[132]
49.1 Trypomastigote forms (mammalian stage) of Trypanosoma cruzi1.73[132]
10.5 Amastigotes (the clinically relevant form) of Leishmania donovani8.07[132]
γ-TerpineneIC50 > 100Promastigotes of Phytomonas davidiNd[130]
>20Erythrocytic stages Plasmodium falciparum4.5[132]
32.9 Bloodstream forms of Trypanosoma brucei rhodesiense2.74[132]
>90Trypomastigote forms (mammalian stage) of Trypanosoma cruziNd[132]
>90Amastigotes (the clinically relevant form) of Leishmania donovaniNd[132]
Terpinen-4-ol>20Erythrocytic stages Plasmodium falciparum2.17[132]
0.66 Bloodstream forms of Trypanosoma brucei rhodesiense65.61[132]
46.8 Trypomastigote forms (mammalian stage) of Trypanosoma cruzi0.93[132]
68.7 Amastigotes (the clinically relevant form) of Leishmania donovani0.66[132]
0.02Bloodstream form of Trypanosoma brucei1025.0[149]
335.9Promastigotes of Leishmania major0.1[149]
(−)-Terpinen-4-ol39.51Bloodstream forms of Trypanosoma brucei brucei2.64[128]
α-Terpineol>20Erythrocytic stages Plasmodium falciparum1.62[132]
0.56 Bloodstream forms of Trypanosoma brucei rhodesiense57.68[132]
61.0 Trypomastigote forms (mammalian stage) of Trypanosoma cruzi0.53[132]
75.9 Amastigotes (the clinically relevant form) of Leishmania donovani0.43[132]
a: SI: LC50 cytotoxicity/LC50 parasitic. Nd: not determined.
Table 9. Antimicrobial activity of Croton hirtus essential oil and major compounds (MIC, IC50, and µg/mL).
Table 9. Antimicrobial activity of Croton hirtus essential oil and major compounds (MIC, IC50, and µg/mL).
MaterialGram-PositiveGram-NegativeYeast
E. faecalis ATCC29212S. aureus ATCC25923B. cereus ATCC13245E. coli ATCC25922P. aeruginosa ATCC27853S. enterica ATCC13076C. albicans ATCC10231
MIC (µg/mL)
Essential oil8161616Na16Na
β-Caryophyllene32646464Na64Na
α-Humulene8163232Na16Na
Caryophyllene oxide8323232Na32Na
Streptomycin25625612832256128Nt
Kanamycin128481286416Nt
Tetracycline41664825664Nt
NystatinNtNtNtNtNtNt4
CyclohexamideNtNtNtNtNtNt32
IC50 (µg/mL)
Essential oil3.12 ± 1.365.34 ± 0.985.23 ± 0.215.67 ± 1.45Na5.98 ± 0.09Na
β-Caryophyllene9.35 ± 2.3421.23 ± 1.3518.56 ± 1.3221.46 ± 1.34Na20.15 ± 1.48Na
α-Humulene3.24 ± 2.125.34 ± 1.349.35 ± 0.3610.45 ± 1.56Na5.23 ± 0.08Na
Caryophyllene oxide2.67 ± 2.009.56 ± 1.439.32 ± 0.2112.56 ± 2.56Na9.34 ± 0.91Na
Streptomycin50.34 ± 2.3245.24 ± 1.3620.45 ± 0.399.45 ± 0,3568.67 ± 1.8945.67 ± 2.30Nt
CyclohexamideNtNtNtNtNtNt10.46 ± 0.32
Na: Not active; Nt: not tested.
Table 10. Summary of antimicrobial activity of Croton spp. essential oils.
Table 10. Summary of antimicrobial activity of Croton spp. essential oils.
SpeciesYield (%)Main Components aM/S/P/B or Other (%)MIC or IC50 (μg/mL)OrganismsRef.
Croton
adamantinus Müll. Arg.
0.6Methyl eugenol, 1,8-cineole, bicyclogermacrene, β-caryophyllene.M: 27.66
S: 32.42
P: 14.81
Synergistic effect with gentamicin.Enterobacter aerogenes, Pseudomonas aeruginosa,
Methicillin-resistant Staphylococcus aureus.
[154]
Synergistic effect with amoxicillin
+ clavulanate.
Methicillin-resistant Staphylococcus aureus.[154]
Synergistic effect with cefepime.Enterobacter aerogenes, Methicillin-resistant Staphylococcus aureus.[154]
Croton adipatus Kunth0.47 ± 0.01β-Myrcene; α-thujene; limonene; α-phellandrene, β-elemene.M: 72.73
S: 18.82
>1000Staphylococcus aureus[155]
286.4Bacillus subtilis
>1000Escherichia coli
>1000Pseudomonas aeruginosa
572.8Candida albicans
Croton argyrophyllus KunthNdBicyclogermacrene, β-pinene, spathulenol, β-caryophyllene, β-phellandrene.M: 27.94
S: 62.14
10Bacillus cereus[156]
25Bacillus subtilis
25Staphylococcus aureus
25Escherichia coli
25Pseudomonas aeruginosa
NdCandida albicans
NdCandida glabrata
NdCandida parapsilosis
Croton argyrophyllus Kunth0.1 to 0.7Bicyclogermacrene, epi-longipinanol, spathulenol.M: 0
S: 99.17–100
312Staphylococcus aureus[157]
NIEscherichia coli
0.1 to 0.7Bicyclogermacrene, (Z)-caryophyllene, epi-longipinanol, germacrene B, guaiol, 10-epi-γ-eudesmol, α-muurolol.M: 0
S: 99.1–99.61
78Staphylococcus aureus[157]
≥1024Escherichia coli
0.1 to 0.7Bicyclogermacrene, (Z)-caryophyllene, germacrene B, epi-longipinanol.M: 0
S: 100
156Staphylococcus aureus[157]
NIEscherichia coli
Croton argyrophyllus Kunth0.38α-Pinene, bicyclogermacreneM: 68.5
S: 29.87
Synergistic effect with chlorhexidine.Streptococcus mutans
Streptococcus salivarius
Streptococcus sanguinis
[158]
Croton argyrophylloides Müll. Arg. (syn Croton tricolor Baill.)NdSpathulenol, bicyclogermacrene, 1,8-cineole, β-elemene, β-caryophyllene, α-pinene. NICandida albicans[56]
NICandida tropicalis
9–19Microsporum canis
Croton argyrophylloides Müll. Arg0.5Bicyclogermacrene, spathulenol, β-caryophyllene, myrcene, α-pinene, β-phellandrene, 1,8-cineole.M: 48.22
S: 47.7
97–195Forty-nine clinical strains of Mycobacteria tuberculosis[159]
97Standard strain H37RV of Mycobacteria tuberculosis[159]
Croton blanchetianus Baill.NdCaryophyllene oxide, δ-amorphene, τ-muurolol, 1,8-cineole.M: 10.05
S: 38.84
Inhibition of planktonic cells growth at 50 µg/mL: 78%.Candida albicans[160]
Inhibition of planktonic cells growth at 50 µg/mL: 75%.Candida parapsilosis
Croton blanchetianus Baill.7.5α-Pinene, eucalyptol, sativene, β-caryophyllene, bicyclogermacrene, spathulenol.M: 35.55–38.07
S: 55.45–55.95
Inactivated at a concentration of 900 µg/mLListeria monocytogenesStaphylococcus aureus
Leuconostoc mesenteroides
Weissella viridescens
[161]
Croton cajucara Benth.0.4LinaloolNd22.3Lactobacillus casei[162]
13.8Streptococcus sobrinus
40.1Streptococcus mutans
31.2Porphyromonas gingivalis
33.4Staphylococcus aureus
13.4Candida albicans
Croton cajucara Benth.Nd7-Hydroxycalamenene, δ-cadinene, γ-cadinene, germacrene B, τ-cadinol, caryophyllene oxide.M: 0
S: 97.59
12.21Absidia cylindospora[163]
Croton cajucara Benth.0.8Linalool, 7-hydroxycalamenene, β-caryophyllene, germacrene D. Dominated by SesquiterpenesInhibition growth zones (in cm): 0.9–1.3.Candida albicans[164]
Dominated by SesquiterpenesInhibition growth zones (in cm): 0.5–1.6.Staphylococcus aureus[164]
1.0Linalool, nerolidol, β-caryophyllene, bicyclogermacrene germacrene D.Dominated by SesquiterpenesInhibition growth zones (in cm): 0.9–1.3Candida albicans[164]
Linalool, nerolidol, β-caryophyllene, bicyclogermacrene germacrene D.Dominated by SesquiterpenesInhibition growth zones (in cm): 0.2–1.0Staphylococcus aureus[164]
Croton cajucara Benth.0.657-Hydroxycalamenene, α-pinene, linalool.Nd39.06Mycobacterium smegmatis[165]
4.88Mycobacterium tuberculosis
0.019Methicillin-resistant Staphylococcus aureus
1.22Candida albicans
NdMucor circinelloides
NdRhizopus oryzae
α-Pinene, linalool, β-caryophyllene.Nd5000Mycobacterium smegmatis[165]
4.88Mycobacterium tuberculosis
NaMethicillin-resistant Staphylococcus aureus
1250Candida albicans
NdMucor circinelloides
NdRhizopus oryzae
7-Hydroxycalamenene (28.4%), linalool (11.0%).Nd78.12Mycobacterium smegmatis[165]
4.88Mycobacterium tuberculosis
0.019Methicillin-resistant Staphylococcus aureus
156.25Candida albicans
NdMucor circinelloides
NdRhizopus oryzae
7-Hydroxycalamenene (30.9%), linalool (9.9%).Nd156.25Mycobacterium smegmatis[165]
4.88Mycobacterium tuberculosis
0.004Methicillin-resistant Staphylococcus aureus
0.001Candida albicans
NdMucor circinelloides
NdRhizopus oryzae
7-Hydroxycalamenene (32.9%), linalool (13.2%).Nd156.25Mycobacterium smegmatis[165]
4.88Mycobacterium tuberculosis
0.001Methicillin-resistant Staphylococcus aureus
0.38Candida albicans
3.63 × 10−8Mucor circinelloides
0.152Rhizopus oryzae
7-Hydroxycalamenene.S39.06Mycobacterium smegmatis[165]
312.5Mycobacterium tuberculosis
39.06Methicillin-resistant Staphylococcus aureus
78.125Candida albicans
19.53Mucor circinelloides
39.06Rhizopus oryzae
Croton campestris A. St.Hil.0.04 (leaves)β-Caryophyllene, bicyclogermacrene, limonene, τ-cadinol.M: 28.1
S: 67.6
≥512Escherichia coli[9]
≥512Staphylococcus aureus
≥1024Shigella flexneri
≥1024Pseudomonas aeruginosa
≥1024Bacillus cereus
0.02 (branches)Spathulenol, bicyclogermacrene, β-caryophyllene, terpinen-4-ol, murola-4,10(14)-dien-1-ol.M: 25.1
S: 67.8
≥512Escherichia coli[9]
≥128Staphylococcus aureus
≥512Shigella flexneri
≥512Pseudomonas aeruginosa
≥256Bacillus cereus
Synergistic effect with gentamicinStaphylococcus aureus, Shigella flexneri.
Synergistic effect with neomycin.Pseudomonas aeruginosa, Bacillus cereus
Synergistic effect with kanamycin.Staphylococcus aureus, Bacillus cereus
Croton campestris St. Hilaire.0.40Caryophyllene oxide, humulene oxide II.M: 16.9
S: 75.2
1.56Staphylococcus aureus[166]
6.25Enterrococcus hirae
6.25Candida albicans
Croton ceanothifolius Baill.0.23Bicyclogermacrene, germacrene D, β-caryophyllene, 1,10-di-epi-cubebol.M: 8.7
S: 91.3
Synergistic effect with norfloxacin, gentamicin, penicillin.Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli.[10]
Croton ciliatoglandulifer Ortega.NdCaryophyllene oxide, cubenol, β-caryophyllene.M: 3.5
S: 91.3
500Candida albicans[167]
Croton conduplicatus Kunth. 1,8-Cineole, p-cymene, β-caryophyllene, spathulenol.M: 51.31
S: 44.42
256
512
Methicillin-sensitive Staphylococcus aureus
Methicillin-resistant Staphylococcus aureus
Synergistic effect with ampicillin.Methicillin-sensitive Staphylococcus aureus
Methicillin-resistant Staphylococcus aureus
[168]
Croton doctoris S. Moore.0.4β-Caryophyllene; caryophyllene oxide; α-humulene; α-selinene.M: 0
S: 83.32
0.625 (v/v)Streptococci group[169]
Croton ferrugineus Kunth.0.06 ± 0.02β-Caryophyllene, limonene + β-phellandrene, myrcene, germacrene D, linalool, α-humulene.M: 47.03
S: 47.63
>2000Escherichia coli[170]
>2000Enterococcus faecalis
2000Micrococcus luteus
>2500Staphylococcus aureus
1000Cándida albicans
Croton ferrugineus Kunth.0.06 ± 0.001β-Caryophyllene, limonene, β-thujene, β-myrcene, β-elemene.M: 28.03
S: 70.26
>1000Staphylococcus aureus[155]
72Bacillus subtilis
>1000Escherichia coli
>1000Pseudomonas aeruginosa
576.2Candida albicans
Croton gratissimus Burch. Sabinene,
α-phellandrene, β-phellandrene, α-pinene, germacrene D.
M: 64.8
S: 27.3
1300Bacillus cereus[171]
600Staphylococcus aureus
200Staphylococcus faecalis
1300Escherichia coli
2500Proteus vulgaris
5000Pseudomonas aeruginosa
5000Kiebsiella pneumoniae
>10,000Proteus vulgaris
>10,000Enterobacter cloacae
Croton grewioides Baill.0.1α-Pinene, sabinene, limonene, bicyclogermacrene, β-caryophyllene.M: 55.56
S: 44.44
Synergistic effect with norfloxacin, tetracycline.Staphylococcus aureus[172]
Croton heliotropiifolius Kunth.NdLimonene, α-pinene, β-caryophyllene, bicyclogermacrene, γ-terpinene.M: 62.23
S: 35.27
NIBacillus cereus[156]
NIBacillus subtilis
NIStaphylococcus aureus
NIEscherichia coli
NIPseudomonas aeruginosa
NICandida albicans
NICandida glabrata
NICandida parapsilosis
Croton heliotropiifolius Kunth (Summer, February).0.36β-Caryophyllene, bicyclogermacrene, 1,8-cineole, limonene.M: 31.72
S: 64.86
500Bacillus cereus[173]
6.25Enterococcus faecalis
500Escherichia coli
NdKlebsiella pneumoniae
500Salmonella enterica
500Serratia marcescens
500Shigella flexneri
NdStaphylococcus aureus
Croton heliotropiifolius Kunth (Autumn, May).0.16β-Caryophyllene, 1,8-cineole, limonene, bicyclogermacrene.M: 41.12
S: 50.96
NdBacillus cereus[173]
125Enterococcus faecalis
NdEscherichia coli
NdKlebsiella pneumoniae
NdSalmonella enterica
500Serratia marcescens
500Shigella flexneri
NdStaphylococcus aureus
Croton heliotropiifolius Kunth (Winter, August).0.60β-Caryophyllene, bicyclogermacrene, germacrene D.M: 16.05
S: 82.39
NdBacillus cereus[173]
500Enterococcus faecalis
500Escherichia coli
NdKlebsiella pneumoniae
NdSalmonella enterica
500Serratia marcescens
NdShigella flexneri
NdStaphylococcus aureus
Croton heliotropiifolius Kunth (Spring, November).0.24β-Caryophyllene, bicyclogermacrene, germacrene D.M: 6.04
S: 84.74
NdBacillus cereus[173]
500Enterococcus faecalis
500Escherichia coli
NdKlebsiella pneumoniae
500Salmonella enterica
500Serratia marcescens
NdShigella flexneri
NdStaphylococcus aureus
Croton heliotropiifolius Kunth. β-Caryophyllene, γ-muurolene, viridiflorene.M: 2.01
S: 77.14
˃500Micrococcus luteus[174]
500Sthaphylococcus
aureus
[174]
62.5Bacillus subtilis[174]
˃500Escherichia coli[174]
˃500Pseudomonas aeruginosa[174]
˃500Salmonella choleraesuis[174]
Croton heterocalyx Baill.0.45Germacrene D, bicyclogermacrene, δ-elemene, β-elemene, spathulenol, linalool. M: 13.9
S: 84.8
2800 μg/mLAspergillus niger
Candida albicans
Pseudomonas aeruginosa
Escherichia coli
Staphylococcus aureus
[175]
Croton hieronymi Griseb.0.07γ-Asarone,
(E)-asarone, borneol, camphor.
M: 35.4
S: 9.9
P: 37.1
Percentage of living microorganism: 0% at 100 μg/mL.Escherichia coli
Candida albicans
[176]
Percentage of living microorganism: 50% at 1000 μg/mL.Salmonella typhimurium
Percentage of living microorganism: 50% at 100 μg/mL.Klebsiella pneumoniae
Croton hirtus L’ Hér.0.60β-caryophyllene, germacrene D, α-humulene, β-elemene.M: 15.55
S: 77.94
>512Escherichia coli[8]
512Staphylococcus aureus
Synergistic effect with gentamicin, ceftazidime.Staphylococcus aureus
Croton limae A.P. Gomes.0.36Cedrol, 1,8-cineole, α-pinene.M: 42.4
S: 41
512Staphylococcus aureus[24]
≥1024Escherichia coli
≥1024Pseudomonas aeruginosa
≥1024Klebsiella pneumoniae
≥1024Candida tropicalis
≥1024C. krusei
≥1024C. albicans
Croton lechleri Müll. Arg.0.061Sesquicineole, α-calacorene.M: 18.84
S: 76.82
10,100Pseudomonas aeruginosa[177]
1010 Klebsiella oxytoca
100Escherichia coli
10,100Staphylococcus aureus subsp. aureus
10,100Enterococcus foecalis
10,100Micrococcus luteus
Croton malambo H. Karst.NdMethyl eugenol.M: 0.8
S: 3.3
P: 95.1
Inhibition zones in mm from 7.0–8.0 at 10 mg/mL.Staphylococcus aureus
Candida tropicalis
[55]
Croton monteverdensis Huft.0.03α-Pinene, β-pinene, linalool.M: 47.9
S: 51.0
625
156
Bacillus cereus
Staphylococcus aureus
[178,179]
Croton niveus Jacq.0.10α-Pinene, 1,8-cineole, borneol.M: 78.3
S: 19.1
625
78
Bacillus cereus
Staphylococcus aureus
[178,179]
Croton nepetifolius Baill. Methyl eugenol, bicyclogermacrene, β-caryophyllene, trans-α-bergamotene, 1,8-cineole, α-humulene, ortho-vanillin. NICandida albicans[56]
NICandida tropicalis
>5000Microsporum canis
Croton oblongifolius Roxb.0.9Terpinen-4-ol; α-guaiene; α-bulnesene; β-caryophyllene; myrcene; cyclosativene.M: 40.3
S: 47.2
0.125%, v/vPropionibacterium acnes[180]
Croton piauhiensis Müll. Arg.0.02β-caryophyllene, limonene, γ-terpinene,
germacrene D.
Nd0.15 (v/v)
1.25 (v/v)
Staphylococcus aureus Staphylococcus aureus (methicillin-resistant)[49]
5.0 (v/v)Staphylococcus epidermidis
>5.0 (v/v)Pseudomonas aeruginosa
5.0 (v/v)Escherichia coli
Croton pluriglandulosus.0.461,8-Cineole, methyleugenol, elemicin, β-caryophyllene, bicyclogermacrene, 1,3,5-trimethoxybenzene, 3,5-dimethoxytoluene.M: 6.57
S: 24.83
B: 48.98
Synergistic effect with chlorhexidine.Streptococcus mutans
Streptococcus salivarius
Streptococcus sanguinis
[158]
Croton rhamnifolioides.NdSpathulenol, 1,8-cineole, o-cymene, α-terpineol, trans-caryophyllene.M: 45.65
S: 51.06
1024
Synergistic with
antibiotics aminoglycoside and β-lactam, and the antifungal polyene.
Escherichia coli
Staphylococcus aureus
Pseudomonas aeruginosa
Candida albicans
Candida krusei
Candida tropicalis
[181]
Croton stellulifer B.L. Burtt.0.25–0.44α-Phellandrene, p-cymene, linalool, α-pinene.M: 73.5–77.4
S: 5.1–5.4
Inhibition zones in mm from 9.3–17.3.Escherichia coli
Staphylococcus aureus
Staphylococcus faecalis
Staphylococcus epidermidis
Proteus vulgaris
Cryptococcus neoforomans
Cladosporium cladosporioidesAspergillus fumigatus
[182]
Croton tetradenius Baill. 2.4–4.9p-Cymene, camphor, 1,8-cineole, γ-terpinene, trans-ascaridole, cis-ascaridole.M: 94.05
S: 2.52
125Staphylococcus aureus[183]
31.5Bacillus cereus
250Escherichia coli
62.5Listeria monocytogenes
125Salmonella typhimurium
Croton tetradenius Baill.2.4–4.9Camphor, p-cymene, trans-ascaridole, trans-pinocarveol, 1,8-cineole, α-pinene, pinocarvone.M: 93.22
S: 1.34
125Staphylococcus aureus[183]
31.25Bacillus cereus
250Escherichia coli
62.5Listeria monocytogenes
125Salmonella typhimurium
Croton tetradenius Baill. (CTE101)4.0Camphor, p-cymene, trans-ascaridole.M: 93.22
S: 1.34
5600Escherichia coli[184]
11,300Staphylococcus aureus
11,300Klebsiella pneumoniae
Croton tetradenius Baill. (CTE407)4.0p-Cymene, trans-ascaridole, 1,8-cineole, camphor, α-terpinene, γ-terpinene, cis-ascaridole.M: 95.94
S: 1.39
2800Escherichia coli[184]
2800Staphylococcus aureus
5600Klebsiella pneumoniae
Croton tetradenius Baill.0.47p-Cymene, camphor, α-phellandrene, γ-terpinene, α-terpinene, trans-chrysanthenyl acetate.M: 99.34
S: 0.66
4000Staphylococcus aureus[185]
Croton tetradenius Baill.0.27trans-Chrysanthenyl acetate, α-terpinene, p-cymene, γ-terpinene.M: 87.49
S: 1.28
8000Staphylococcus aureus[185]
Croton thurifer Kunth.0.07 ± 0.005β-Elemene, germacrene D.M: 35.39
S: 62.26
296.1Staphylococcus aureus[155]
148Bacillus subtilis
>1000Escherichia coli
>1000Pseudomonas aeruginosa
>1000Candida albicans
Croton tricolor Baill.NdEpiglobulol, α-bisabolol, trans-α-bergamotol, β-caryophyllene, α-acorenol.M: 3.4
S: 88.6
1.0 to 1024Candida strains[186]
Croton urucurana Baillon.(Leaves)0.35Bicyclogermacrene, germacrene D, germacrene D-4-ol, α-cadinol.S: 85.9
Other: 2.8
10Staphylococcus aureus[6]
10Staphylococcus epidermidis
10Pseudomonas aeruginosa
10Bacillus subtilis
10Klebsiella pneumoniae
10Escherichia coli
10Salmonella setubal
5Saccharomyces cerevisiae
>20Candida albicans
Croton urucurana Baillon.
(Stem bark)
0.05Borneol, cadina-4,10(14)-dien-1α-ol, sesquicineole, bornyl acetate, γ-gurjunene epoxide.M: 34
S: 57.3
2500Staphylococcus aureus[6], [187]
1250Staphylococcus epidermidis
2500Pseudomonas aeruginosa
10,000Bacillus subtilis
5000Klebsiella pneumoniae
1250Escherichia coli
2500Salmonella setubal
5000Saccharomyces cerevisiae
5000Cryptococcus neoformans
10,000Candida albicans
Croton zambesicus Mull-Arg.0.281,8-Cineole,
cymene, α-terpineol, L-linalool.
M: 69.84
S: 15.62
16.0
250.0
16.0
16.0
Escherichia coli
Pseudomonas aeruginosa
Bacillus subtilis
Staphylococcus aureus
[188]
Croton zehntneri Pax and K. Hoffm. Estragole, (E)-anethole, bicyclogermacrene. >5000Candida albicans[56]
2500Candida tropicalis
620–1250Microsporum canis
Croton zehntneri Pax and Hoffm.NdEstragole, 1,8-cineole, eugenol.M: 13.61
S: 1.7
P: 82.1
Synergistic effect with norfloxacin.Staphylococcus aureus[53]
BarkEstragole, (E)-anethole.M: 1.92
S: 0.47
P: 95.96
Inhibition zone diameter (mm): 8.0 at 10 mL.Staphylococcus aureus[54]
Inhibition zone diameter (mm): 19.3 at 10 mL.Candida parapsilosis
LeavesEstragole.M: 0
S: 4.5
P: 93.94
Inhibition zone diameter (mm): 8.3 at 10 mL.Staphylococcus aureus[54]
Inhibition zone diameter (mm): 19.0 at 10 mL.Candida parapsilosis
Croton zehntneri Pax and Hoffm. Estragole, 1,8-cineol, eugenol.M: 13.61
S: 1.7
P: 82.1
25Shigella fl exneri[15]
NdSalmonella typhimurium
500Escherichia coli
500Sthaphylococcus aureus
500Streptococus β-haemolyticus
Croton zehntneri Pax and K. Hoffm. (Fresh leaves)1.8Estragole, spathulenol.M: 85.0
S: 12.0
58.75Bacillus subtilis[14]
63.15Bacillus megaterium
145.0Staphylococcus aureus
63.43Shigella sonnei
38.52Salmonella paratyphi
131.2Blastomyces dermatitidis
58.75Candida albicans
61.54Pityrosporum ovale
88.51Cryptococcus neoformans
a: The order of the compounds is sorted by percentage from high to low and greater than 5.0%. Nd: Not defined; NI: not inhibited; M: monoterpenoids, S: sesquiterpenoids, B: benzenoids. P: phenylpropanoids.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Luu-dam, N.A.; Le, C.V.C.; Satyal, P.; Le, T.M.H.; Bui, V.H.; Vo, V.H.; Ngo, G.H.; Bui, T.C.; Nguyen, H.H.; Setzer, W.N. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules 2023, 28, 2361. https://doi.org/10.3390/molecules28052361

AMA Style

Luu-dam NA, Le CVC, Satyal P, Le TMH, Bui VH, Vo VH, Ngo GH, Bui TC, Nguyen HH, Setzer WN. Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules. 2023; 28(5):2361. https://doi.org/10.3390/molecules28052361

Chicago/Turabian Style

Luu-dam, Ngoc Anh, Canh Viet Cuong Le, Prabodh Satyal, Thi Mai Hoa Le, Van Huong Bui, Van Hoa Vo, Gia Huy Ngo, Thi Chinh Bui, Huy Hung Nguyen, and William N. Setzer. 2023. "Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam" Molecules 28, no. 5: 2361. https://doi.org/10.3390/molecules28052361

APA Style

Luu-dam, N. A., Le, C. V. C., Satyal, P., Le, T. M. H., Bui, V. H., Vo, V. H., Ngo, G. H., Bui, T. C., Nguyen, H. H., & Setzer, W. N. (2023). Chemistry and Bioactivity of Croton Essential Oils: Literature Survey and Croton hirtus from Vietnam. Molecules, 28(5), 2361. https://doi.org/10.3390/molecules28052361

Article Metrics

Back to TopTop