Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Physicochemical Characterization
2.3. Obtaining Extracts
2.4. Mass Spectrometry with Paper Spray Ionization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Chemical Profile
3.3. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanches, M.A.R.; Camelo-Silva, C.; Tussolini, L.; Tussolini, M.; Zambiazi, R.C.; Pertuzatti, P.B. Development, characterization and optimization of biopolymers films based on starch and flour from jabuticaba (Myrciaria cauliflora) peel. Food Chem. 2021, 343, 128430. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Schulz, M.; Nehring, P.; Della Betta, F.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chem. 2018, 239, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Fidelis, M.; Do Carmo, M.A.V.; Azevedo, L.; Cruz, T.M.; Marques, M.B.; Myoda, T.; Sant’Ana, A.S.; Furtado, M.M.; Wen, M.; Zhang, L.; et al. Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.] O.Berg) seeds: Antioxidant, antimicrobial, antihyperglycemic, antihypertensive and cytotoxic assessments. Food Chem. Toxicol. 2020, 142, 111439. [Google Scholar] [CrossRef] [PubMed]
- Galvão, B.V.D.; Araujo-Lima, C.F.; Dos Santos, M.C.P.; Seljan, M.P.; Carrão-Dantas, E.K.; Aiub, C.A.F.; Cameron, L.C.; Ferreira, M.S.L.; Gonçalves, É.C.B.A.; Felzenszwalb, I. Plinia cauliflora (Mart.) Kausel (Jaboticaba) leaf extract: In vitro anti-Trypanosoma cruzi activity, toxicity assessment and phenolic-targeted UPLC-MSE metabolomic analysis. J. Ethnopharmacol. 2021, 277, 114217. [Google Scholar] [CrossRef]
- Khan, M.S.; Qais, F.A.; Ahmad, I.; Hussain, A.; Alajmi, M.F. Genotoxicity inhibition by Syzygium cumini (L.) seed fraction and rutin: Understanding the underlying mechanism of DNA protection. Toxicol. Res. 2018, 7, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Ali, S.; Nazir, Y.; Murtaza, S.; Abbas, M.W.; Ziora, Z.M. Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment. J. Ethnopharmacol. 2022, 287, 114919. [Google Scholar] [CrossRef] [PubMed]
- Quatrin, A.; Pauletto, R.; Maurer, L.H.; Minuzzi, N.; Nichelle, S.M.; Carvalho, J.F.C.; Maróstica Junior, M.R.; Rodrigues, E.; Bochi, V.C.; Emanuelli, T. Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. J. Food Compos. Anal. 2019, 78, 59–74. [Google Scholar] [CrossRef]
- Tavares, I.M.C.; Nogueira, T.Y.K.; Mauro, M.A.; Goméz-Alonso, S.; Gomes, E.; Da Silva, R.; Hermosín-Gutiérrez, I.; Lago-Vanzela, E.S. Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds. Food Res. Int. 2017, 102, 32–42. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pereira, C.; Calhelha, R.C.; Alves, M.J.; Abreu, R.M.V.; Barros, L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food Chem. 2020, 309, 125735. [Google Scholar] [CrossRef] [Green Version]
- da Veiga Correia, V.T.; da Silva, P.R.; Ribeiro, C.M.S.; Ramos, A.L.C.C.; Mazzinghy, A.C.d.C.; Silva, V.D.M.; Júnior, A.H.O.; Nunes, B.V.; Vieira, A.L.S.; Ribeiro, L.V.; et al. An integrative review on the main flavonoids found in some species of the Myrtaceae family: Phytochemical characterization, health benefits and development of products. Plants 2022, 11, 2796. [Google Scholar] [CrossRef]
- Campelo, F.A.; Henriques, G.S.; Simeone, M.L.F.; Queiroz, V.A.V.; Silva, M.R.; Augusti, R.; Melo, J.O.F.; Lacerda, I.C.A.; Araújo, R.L.B. 2020 Study of thermoplastic extrusion and its impact on the chemical and nutritional characteristics in two sorghum genotypes SC 319 and BRS 332. J. Braz. Chem. Soc. 2020, 31, 788–802. [Google Scholar] [CrossRef]
- Nascimento, C.D.; De Paula, A.C.C.F.F.; Oliveira Junior, A.H.; Mendonça, H.O.P.; Reina, L.C.B.; Augusti, R.; Figueiredo-Ribeiro, R.C.L.; Melo, J.O.F. Paper Spray Mass Spectrometry on the Analysis of Phenolic Compounds in Rhynchelytrum repens: A Tropical Grass with Hypoglycemic Activity. Plants 2021, 10, 1617. [Google Scholar] [CrossRef]
- Santos, B.O.; Tanigaki, M.; Silva, M.R.; Ramos, A.L.C.C.; Labanca, R.A.; Augusti, R.; Melo, J.O.F.; Takahashi, J.A.; Araújo, R.L.B. Development and Chemical Characterization of Pequi Pericarp Flour (Caryocar brasiliense Camb.) and Effect of in vitro Digestibility on the Bioaccessibility of Phenolic Compounds. J. Braz. Chem. Soc. 2022, 33, 1058–1068. [Google Scholar] [CrossRef]
- Silva, V.D.M.; Macedo, M.C.C.; Santos, A.N.; Silva, M.R.; Augusti, R.; Lacerda, I.C.A.; Melo, J.O.F.; Fante, C.A. Bioactive activities and chemical profile characterization using paper spray mass spectrometry of extracts of Eriobotrya japonica Lindl. leaves. Rapid Commun. Mass Spectrom. 2020, 34, e8883. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.G.; Pimenta, L.P.S.; Melo, J.O.F.; Mendonça, H.O.P.; Augusti, R.; Takahashi, J.A. Phytochemicals of Avocado Residues as Potential Acetylcholinesterase Inhibitors, Antioxidants, and Neuroprotective Agents. Molecules 2022, 27, 1892. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, H.; Liu, J.; Zhang, Z.; Mcluckey, M.N.; Ouyang, Z. Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods. Chromatographia 2013, 76, 1339–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- García, Y.M.; Ramos, A.L.C.C.; Oliveira Júnior, A.H.; De Paula, A.C.C.F.F.; De Melo, A.C.; Andrino, M.A.; Silva, M.R.; Augusti, R.; de Araújo, R.L.B.; de Lemos, E.E.P.; et al. Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria floribunda (H. West ex Willd.) O. Berg Accessions. Molecules 2021, 26, 7206. [Google Scholar] [CrossRef]
- Silva, V.D.M.; Arquelau, P.B.F.; Silva, M.R.; Augusti, R.; Melo, J.O.F.; Fante, C.A. Use of paper spray-mass spectrometry to determine the chemical profile of ripe banana peel flour and evaluation of its physicochemical and antioxidant properties. Quím. Nova 2020, 43, 579–585. [Google Scholar] [CrossRef]
- Costa, D.S.; Plácido, G.R.; Takeuchi, K.P.; Sousa, T.L. Physical and biometric characterization of jabuticaba variety ‘Pingo De Mel’ oriunda of cerrado goiano. Res. Soc. Dev. 2020, 9, e146953323. [Google Scholar] [CrossRef] [Green Version]
- Zerbielli, L.; Nienow, A.A.; Dalacorte, L.; Jacobs, R.; Daronch, T. Diversidade físico-química dos frutos de jabuticabeiras em um sítio de ocorrência natural. Rev. Bras. Frutic. 2016, 38, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Steiner, F.; Zuffo, A.M.; Zoz, T. Physical characterization of fruits and seeds of jambolan [Syzygium cumini (L.) Skeels] (Myrtaceae). Acta Iguazu 2017, 6, 79–90. [Google Scholar] [CrossRef]
- Sharma, R.J.; Gupta, R.C.; Bansal, A.K.; Singh, I.P. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry. Nat. Prod. Commun. 2015, 10, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.R.; Freitas, L.G.; Souza, A.G.; Araújo, R.L.B.; Lacerda, I.C.A.; Pereira, H.V.; Augusti, R.; Melo, J.O.F. Antioxidant Activity and Metabolomic Analysis of Cagaitas (Eugenia dysenterica) using Paper Spray Mass Spectrometry. J. Braz. Chem. Soc. 2019, 30, 1034–1044. [Google Scholar] [CrossRef]
- Ramos, A.L.C.C.; Mendes, D.D.; Silva, M.R.; Augusti, R.; Melo, J.O.F.; Araújo, R.L.B.; Lacerda, I.C.A. Chemical profile of Eugenia brasiliensis (Grumixama) pulp by PS/MS paper spray and SPME-GC/MS solid-phase microextraction. Res. Soc. Dev. 2020, 9, e318974008. [Google Scholar] [CrossRef]
- Ramos, A.S.; Souza, R.O.S.; Boleti, A.P.A.; Bruginski, E.R.D.; Lima, E.S.; Campos, F.R.; Machado, M.B. Chemical characterization and antioxidant capacity of the araçá-pera (Psidium acutangulum): An exotic Amazon fruit. Food Res. Int. 2015, 75, 315–327. [Google Scholar] [CrossRef]
- Siebert, D.A.; Bastos, J.; Spudeit, D.A.; Micke, G.A.; Alberton, M.D. Determination of phenolic profile by HPLC-ESI-MS/MS and anti-inflammatory activity of crude hydroalcoholic extract and ethyl acetate fraction from leaves of Eugenia brasiliensis. Rev. Bras. Farmacogn. 2017, 27, 459–465. [Google Scholar] [CrossRef]
- Oliveira, P.S.; Chaves, V.C.; Bona, N.P.; Soares, M.S.P.; Cardoso, J.S.; Vasconcellos, F.A.; Tavares, R.G.; Vizzotto, M.; da Silva, L.M.C.; Grecco, F.B.; et al. Eugenia uniflora fruit (red type) standardized extract: A potential pharmacological tool to diet-induced metabolic syndrome damage management. Biomed. Pharmacother. 2017, 92, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Adams, L.S.; Chen, S.; Killian, C.; Ahmed, A.; Seeram, N.P. Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but Not Non-Tumorigenic Breast Cells. J. Agric. Food Chem. 2009, 57, 826–831. [Google Scholar] [CrossRef] [Green Version]
- Tavares, I.M.C.; Lago-Vanzela, E.S.; Rebello, L.P.G.; Ramos, A.M.; Gómez-Alonso, S.; García-Romero, E.; da Silva, R.; Hermosín-Gutiérrez, I. Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels). Food Res. Int. 2016, 82, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Furlan, C.M.; Santos, D.Y.A.C.; Motta, L.B.; Domingos, M.; Salatino, A. Guava flavonoids and the effects of industrial air pollutants. Atmos. Pollut. Res. 2010, 1, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Faria, A.F.; Marques, M.C.; Mercadante, A.Z. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chem. 2011, 126, 1571–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.T.; Ramos, A.L.C.C.; Mendonça, H.O.P.; Consenza, G.P.; Silva, M.R.; Fernandes, C.; Augusti, R.; Melo, J.O.F.; Ferreira, A.V.M.; Araújo, R.L.B. Quantification of 6-gingerol, metabolomic analysis by paper spray mass spectrometry and determination of antioxidant activity of ginger rhizomes (Zingiber officinale). Res. Soc. Dev. 2020, 9, e366984822. [Google Scholar] [CrossRef]
- Calloni, C.; Agnol, R.D.; Martínez, L.S.; Marcon, F.S.; Moura, S.; Salvador, M. Jaboticaba (Plinia trunciflora (O. Berg) Kausel) fruit reduces oxidative stress in human fibroblasts cells (MRC-5). Food Res. Int. 2015, 70, 15–22. [Google Scholar] [CrossRef]
- Mariano, A.P.X.; Ramos, A.L.C.C.; Augusti, R.; Araújo, R.L.B.; Melo, J.O.F. Analysis of the chemical profile of cerrado pear fixed compounds by mass spectrometry with paper spray and volatile ionization by SPME-HS CG-MS. Res. Soc. Dev. 2020, 9, e949998219. [Google Scholar] [CrossRef]
- Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Lagana, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Júnior, A.H.; Ramos, A.L.C.C.; Guedes, M.N.S.; Fagundes, M.C.P.; Augusti, R.; Melo, J.O.F. Chemical profile and bioprospecting of cocoa beans analyzed by paper spray mass spectrometry. Res. Soc. Dev. 2020, 9, e975986882. [Google Scholar] [CrossRef]
- Minighin, E.C.; Anastácio, L.R.; Melo, J.O.F.; Labanca, R.A. Açai (Euterpe oleracea) and its contributions to achieve acceptable daily intake of essential fatty acids. Res. Soc. Dev. 2020, 9, e760986116. [Google Scholar] [CrossRef]
- Rodrigues, C.G.; Silva, V.D.M.; Loyola, A.C.F.; Silva, M.R.; Augusti, R.; Melo, J.O.F.; Carlos, L.A.; Fante, C.A. Characterization and identification of bioactive compounds in agro-food waste flours. Quím. Nova 2022, 45, 403–409. [Google Scholar] [CrossRef]
- Dessimoni-Pinto, N.A.V.; Moreira, W.A.; Cardoso, L.M.; Pantoja, L.A. Jaboticaba peel for jelly preparation: An alternative technology. Ciênc. Tecnol. Aliment. 2011, 31, 864–869. [Google Scholar] [CrossRef] [Green Version]
- Tenfen, A.; Siebert, D.A.; Spudeit, D.; Cordova, C.M.M.; Micke, G.A.; Alberton, M.D. Determination of phenolic profile by HPLC-ESI-MS/MS and antibacterial activity of Eugenia platysema against mollicutes strains. J. Appl. Pharm. Sci. 2017, 7, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Loyola, A.C.F.; Silva, V.D.M.; Silva, M.R.; Rodrigues, C.R.; Santos, A.N.; Melo, J.O.F.; Augusti, R.; Fante, C.A. Use of Paper Spray Mass Spectrometry for Determining the Chemical Profile of Green Cavendish Banana (Musa AAA) Peel and Pulp Flours and Evaluation of Its Functional Potential. J. Braz. Chem. Soc. 2021, 32, 953–963. [Google Scholar] [CrossRef]
- Rodrigues, S.; Fernandes, F.A.N.; Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crops Prod. 2015, 69, 400–407. [Google Scholar] [CrossRef]
- Dastmalchi, K.; Flores, G.; Wu, S.B.; Ma, C.; Dabo, A.J.; Whalen, K.; Reynertson, K.A.; Foronjy, R.F.; Armiento, J.M.D.; Kennelly, E.J. Edible Myrciaria vexator fruits: Bioactive phenolics for potential COPD therapy. Bioorg. Med. Chem. 2012, 20, 4549–4555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, N.A.; Rodrigues, E.; Mercadante, A.Z.; Ross, V.V. Phenolic Compounds and Carotenoids from Four Fruits Native from the Brazilian Atlantic Forest. J. Agric. Food Chem. 2014, 62, 5072–5084. [Google Scholar] [CrossRef]
- Teixeira, L.L.; Bertoldi, F.C.; Lajolo, F.M.; Hassimotto, N.M.A. Identification of Ellagitannins and Flavonoids from Eugenia brasilienses Lam. (Grumixama) by HPLC-ESI-MS/MS. J. Agric. Food Chem. 2015, 63, 5417–5427. [Google Scholar] [CrossRef]
- Alves, A.M.; Dias, T.; Hassimotto, N.M.A.; Naves, M.M.V. Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Sci. Technol. 2017, 37, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Celli, G.B.; Pereira-Netto, A.B.; Beta, T. Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Res. Int. 2011, 44, 2442–2451. [Google Scholar] [CrossRef]
- Flores, G.; Wu, S.B.; Negrin, A.; Kennelly, E.J. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 2015, 170, 327–335. [Google Scholar] [CrossRef]
- Lenquiste, S.A.; Lamas, C.A.; Marineli, R.S.; Moraes, E.A.; Borck, P.C.; Camargo, R.L.; Quitete, V.H.A.C.; Carneiro, E.M.; Maróstica Junior, M.R. Jaboticaba peel powder and jaboticaba peel aqueous extract reduces obesity, insulin resistance and hepatic fat accumulation in rats. Food Res. Int. 2019, 120, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Lenquiste, S.A.; Marineli, R.S.; Moraes, E.A.; Dionísio, A.P.; Brito, E.S.; Maróstica Junior, M.R. Jaboticaba peel and jaboticaba peel aqueous extract shows in vitro and in vivo antioxidant properties in obesity model. Food Res. Int. 2015, 77, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Hýsková, V.; Ryšlavá, H. Antioxidant Properties of Phenylpropanoids. Biochem. Anal. Biochem. 2019, 8, e171. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.L.C.; Costa, R.S.; Santana, A.S.; Bello Koblitz, M.G. Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Semin. Cienc. Agrar. 2010, 31, 669–681. [Google Scholar] [CrossRef] [Green Version]
- Três, M.V.; Francheschi, E.; Borges, G.R.; Dariva, C.; Corazza, F.C.; Oliveira, J.V.; Corazza, M.L. Influência da temperatura na solubilidade de β-caroteno em solventes orgânicos à pressão ambiente. Ciênc. Tecnol. Aliment. 2007, 27, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Bazykina, N.I.; Nikolaevskii, A.N.; Fillipenko, T.A.; Kaloerova, V.G. Optimization of conditions for the extraction of natural antioxidants from raw plant materials. Pharm. Chem. J. 2002, 36, 46–49. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. J. Cereal Sci. 2018, 80, 87–93. [Google Scholar] [CrossRef]
- Setford, P.C.; Jeffery, D.W.; Grbin, P.R.; Muhlack, R.A. Mathematical modelling of anthocyanin mass transfer to predict extraction in simulated red wine fermentation scenarios. Food Res. Int. 2019, 121, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Tarone, A.G.; Silva, E.K.; Barros, H.D.F.Q.; Cazarin, C.B.B.; Marostica Junior, M.R. High-intensity ultrasound-assisted recovery of anthocyanins from jabuticaba by-products using green solvents: Effects of ultrasound intensity and solvent composition on the extraction of phenolic compounds. Food Res. Int. 2021, 140, 110048. [Google Scholar] [CrossRef]
- Melo, E.A.; Maciel, M.I.C.; Lima, V.L.A.G.; Nascimento, R.J. Capacidade antioxidante de frutas. Braz. J. Pharm. Sci. 2008, 44, 193–201. [Google Scholar] [CrossRef] [Green Version]
Properties | Jabuticaba * | Jambolan * |
---|---|---|
pH | 3.12 ± 0.03 | 3.47 ± 0.05 |
SS | 18.93 ± 2.62 | 16.08 ± 2.17 |
Weight | 5.63 ± 0.92 | 4.36 ± 1.04 |
Transversal diameter (TD) | 20.51 ± 1.18 | 15.22 ± 1.29 |
Longitudinal diameter (LD) | 20.59 ± 1.29 | 21.46 ± 0.83 |
Jabuticaba | Jambolan | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | Methanol | Water | Methanol | ||||||||||||
m/z | Compounds | PL | PP | SD | PL | PP | SD | PL | PP | SD | PL | PP | SD | MS-MS | Ref. |
Benzoic acid derivatives | |||||||||||||||
138 | p-Hydroxybenzoic acid | nd | nd | nd | X | nd | X | nd | nd | nd | X | X | nd | 159 | [23] |
Ester | |||||||||||||||
333 | Galloyl-glucose ester | nd | nd | nd | nd | nd | X | nd | nd | nd | nd | X | X | 153 | [23] |
Amino acid | |||||||||||||||
175 | L-Arginine | X | nd | X | X | nd | X | X | X | nd | nd | X | X | 70, 129 | [24] |
205 | Tryptophan | X | X | nd | X | X | nd | X | X | nd | X | X | nd | 188 | [25] |
Phenylpropanoids | |||||||||||||||
181 | Caffeic acid | X | X | X | X | X | X | X | nd | nd | X | nd | nd | - | [23] |
203 | Glucose | X | X | X | X | X | X | X | X | X | X | X | X | - | [26] |
365 | Sucrose | X | X | X | X | X | X | X | X | X | X | X | X | 203 | [25] |
Flavonoids | |||||||||||||||
270 | Apigenin | X | X | nd | X | X | nd | X | X | nd | X | X | nd | - | [27] |
287 | Cyanidin | X | X | X | X | X | X | X | X | nd | X | X | nd | - | [23] |
301 | Diosmetin | X | X | X | X | X | X | X | X | nd | X | X | nd | 286 | [25] |
303 | Delphinidin/ Peonidin | X | nd | X | X | nd | X | X | X | nd | X | X | nd | - | [23] |
317 | Petunidin | X | X | X | X | X | X | X | X | X | X | X | X | - | [23] |
331 | Malvidin | X | X | X | X | X | X | X | X | X | X | X | X | - | [23] |
433 | Pelargonidin-3-O-glucoside | X | nd | X | X | nd | X | X | nd | nd | X | nd | nd | 271 | [28] |
501 | 5-Pyranopelargonidin-3-O-glucoside | X | X | X | X | X | X | nd | nd | nd | nd | nd | nd | - | [25] |
611 | Rutin | X | X | X | X | X | X | X | X | X | X | X | X | 303 | [27] |
625 | Peonidin-3,5-diglucoside | X | nd | X | X | nd | X | X | nd | nd | X | nd | nd | 301 | [29] |
627 | Delphinidin-3,5-O-diglucoside | X | nd | X | X | nd | X | X | X | nd | X | X | nd | 465 | [30] |
629 | Quercetin-3-7-diglycoside | X | X | X | X | X | X | X | X | nd | X | X | nd | 383 | [31] |
641 | Petunidin-3,5-diglucoside | X | X | X | X | X | X | X | X | X | X | X | X | 479, 317 | [32] |
644 | Dihydromyricetin diglucoside | X | nd | X | X | nd | X | X | nd | nd | X | nd | nd | - | [23] |
655 | Malvidin-3,5-diglucoside | X | X | X | X | X | X | X | X | X | X | X | X | 493 | [33] |
Fatty acids | |||||||||||||||
285 | Octadecanoic acid | nd | nd | nd | nd | nd | X | nd | nd | nd | X | X | X | - | [34] |
293 | Lycanic acid | nd | nd | nd | X | nd | X | nd | nd | nd | X | X | X | 257 | [25] |
Carotenoids | |||||||||||||||
537 | 9-cis-β-Carotene/ All-trans-β-carotene/ 13-cis-β-Carotene | nd | nd | nd | X | X | X | nd | nd | nd | X | X | X | - | [32] |
553 | All-trans-β-cryptoxanthin | nd | nd | nd | X | X | X | nd | nd | nd | X | X | X | - | [32] |
569 | All-trans-zeaxanthin/all-trans-lutein/ cis-lutein | nd | nd | nd | X | X | X | nd | nd | nd | nd | X | X | 551 | [25,32] |
601 | cis-Neoxanthin/ cis-Violaxanthin | nd | nd | nd | X | nd | X | nd | nd | nd | X | X | nd | - | [32] |
Jabuticaba | Jambolan | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | Methanol | Water | Methanol | ||||||||||||
m/z | Compounds | PL | PP | SD | PL | PP | SD | PL | PP | SD | PL | PP | SD | MS-MS | Ref. |
Organic acid | |||||||||||||||
133 | Malic acid | X | X | nd | X | X | nd | X | X | X | X | X | X | 89, 115 | [24] |
191 | Citric acid | X | X | X | X | X | X | X | X | X | X | X | X | 85, 111 | [24] |
Benzoic acid derivatives | |||||||||||||||
137 | Salycilic acid | nd | nd | nd | nd | nd | X | nd | nd | nd | nd | X | X | - | [41] |
169 | Gallic acid | X | nd | nd | X | nd | nd | nd | nd | nd | nd | nd | nd | - | [42] |
197 | Syringic acid | X | X | X | X | X | X | X | X | X | X | X | X | - | [41] |
299 | Hydroxybenzoic-O-hexoside acid | X | X | X | X | X | X | X | X | nd | X | X | nd | - | [41] |
301 | Ellagic acid | nd | nd | nd | X | nd | X | nd | nd | nd | X | X | nd | - | [43] |
307 | Protocatechuic acid | X | X | X | X | X | X | X | X | X | X | X | X | - | [44] |
329 | Vanillic acid hexoside | X | X | nd | X | X | nd | X | X | X | X | X | X | - | [45] |
Sugar | |||||||||||||||
179 | Hexose | X | X | X | X | X | X | X | X | X | X | X | X | 89 | [24] |
Fatty acids | |||||||||||||||
255 | Palmitic acid | nd | nd | nd | nd | X | X | nd | nd | nd | nd | X | X | - | [26] |
277 | α-Linolenic acid | nd | nd | nd | X | X | X | nd | nd | nd | X | X | X | - | [26] |
279 | Linoleic acid | nd | nd | nd | nd | X | X | nd | nd | nd | nd | X | X | - | [26] |
281 | Oleic acid | nd | nd | nd | nd | X | X | nd | nd | nd | nd | X | X | - | [26] |
283 | Stearic acid | nd | nd | nd | X | X | X | nd | nd | nd | X | X | X | - | [26] |
367 | Lignoceric acid | nd | nd | nd | X | X | nd | nd | nd | nd | X | X | X | - | [26] |
Flavonoids | |||||||||||||||
285 | Kaempferol | X | nd | nd | X | nd | nd | X | X | nd | X | X | nd | 197, 213, 217, 241 | [25] |
289 | Epicatechin/ Catechin | X | X | X | X | X | X | X | X | nd | X | X | nd | 245 | [46,47] |
301 | Quercetin | X | X | X | X | X | X | X | X | X | X | X | X | - | [46] |
303 | Taxifolin | X | X | nd | X | X | nd | X | X | nd | X | X | nd | 241, 285 | [25] |
305 | Gallocatechin | X | X | X | X | X | X | X | X | nd | X | X | nd | 137, 261 | [25] |
315 | Isorhamnetin | X | nd | X | X | nd | X | nd | nd | X | nd | nd | X | 300 | [41] |
317 | Myricetin | X | nd | nd | X | nd | nd | X | nd | nd | X | nd | nd | - | [46] |
431 | Vitexin | X | X | X | X | X | X | X | X | X | X | X | X | - | [24] |
447 | Cyanidin-3-O-glucoside | X | nd | X | X | nd | X | X | X | nd | X | X | nd | 285 | [48] |
463 | Isoquercetin | X | X | nd | X | X | nd | X | X | X | X | X | X | - | [41] |
Phenylpropanoids | |||||||||||||||
311 | Caftaric acid | X | X | X | X | X | X | X | X | X | X | X | X | - | [24] |
325 | p-Coumaric acid hexoside | X | X | X | X | X | X | X | X | X | X | X | X | 145 | [25] |
339 | Cafeoil-D-glucose | X | X | X | X | X | X | X | X | X | X | X | X | - | [24] |
Terpenes | |||||||||||||||
263 | Abscisic acid | nd | nd | nd | X | nd | nd | nd | nd | nd | nd | nd | nd | 309, 527 | [49] |
485 | Annurcoic acid | nd | nd | nd | X | nd | X | nd | nd | nd | nd | X | X | 441 | [26] |
501 | Guavenoic acid | nd | nd | nd | nd | X | X | nd | nd | nd | X | X | X | 467, 503 | [26] |
Tannin | |||||||||||||||
783 | Pedunculagin | nd | nd | nd | X | nd | X | nd | nd | nd | X | X | X | 257, 301 | [46] |
933 | Castalagin/ Vescalagin | nd | nd | nd | X | nd | X | nd | nd | nd | X | X | X | 301, 915 | [46] |
935 | Potentillin | nd | nd | nd | X | nd | X | nd | nd | nd | X | X | X | 301, 633 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, V.T.d.V.; Silva, V.D.M.; Mendonça, H.d.O.P.; Ramos, A.L.C.C.; Silva, M.R.; Augusti, R.; de Paula, A.C.C.F.F.; Ferreira, R.M.d.S.B.; Melo, J.O.F.; Fante, C.A. Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules 2023, 28, 2359. https://doi.org/10.3390/molecules28052359
Correia VTdV, Silva VDM, Mendonça HdOP, Ramos ALCC, Silva MR, Augusti R, de Paula ACCFF, Ferreira RMdSB, Melo JOF, Fante CA. Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules. 2023; 28(5):2359. https://doi.org/10.3390/molecules28052359
Chicago/Turabian StyleCorreia, Vinícius Tadeu da Veiga, Viviane Dias Medeiros Silva, Henrique de Oliveira Prata Mendonça, Ana Luiza Coeli Cruz Ramos, Mauro Ramalho Silva, Rodinei Augusti, Ana Cardoso Clemente Filha Ferreira de Paula, Ricardo Manuel de Seixas Boavida Ferreira, Júlio Onésio Ferreira Melo, and Camila Argenta Fante. 2023. "Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry" Molecules 28, no. 5: 2359. https://doi.org/10.3390/molecules28052359
APA StyleCorreia, V. T. d. V., Silva, V. D. M., Mendonça, H. d. O. P., Ramos, A. L. C. C., Silva, M. R., Augusti, R., de Paula, A. C. C. F. F., Ferreira, R. M. d. S. B., Melo, J. O. F., & Fante, C. A. (2023). Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia cauliflora and Syzygium cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules, 28(5), 2359. https://doi.org/10.3390/molecules28052359