Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. General
3.2. General Procedure for Preparation of Dienaminone 3
2,6-Bis(3-dimethylamino-1-oxoprop-2-en-yl)pyridine (3) [62]
3.3. General Procedure for Preparation of Bis(azoles) 4 and 5
2,6-Bis(1H-pyrazol-3-yl)pyridine (4) [62]
2,6-Di(isoxazol-5-yl)pyridine (5) [62]
3.4. General Procedure for Preparation of Bis(pyrimidines) 6, 7a and 7b
4,4′-(Pyridine-2,6-diyl)bis(pyrimidin-2-amine) (6) [67]
4,4′-(Pyridine-2,6-diyl)bis(pyrimidin-2-ol) (7a) [67]
4,4′-(Pyridine-2,6-diyl)bis(pyrimidine-2(1H)-thione) (7b) [67]
3.5. General Procedure for Preparation of Bis(pyridine)derivative 8
6,6″-Dioxo-1,1″,6,6″-tetrahydro-[2,2′:6′,2″-terpyridine]-5,5″-dicarbonitrile (8) [68]
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Isaacs, N.S. Liquid Phase High Pressure Chemistry; John Wiley & Sons, Inc.: Chichester, UK, 1981. [Google Scholar]
- Chen, B.; Hoffmann, R.; Cammi, R. The Effect of Pressure on Organic Reactions in Fluids—A New Theoretical Perspective. Angew. Chem. Int. Ed. 2017, 56, 11126–11142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenner, G. High Pressure Molecular Science; Springer: Dordrecht, The Netherlands, 1999; pp. 313–330. [Google Scholar]
- Jenner, G. High Pressure Chemistry, Biochemistry and Materials Science; Springer: Dordrecht, The Netherlands, 1993; pp. 367–392. [Google Scholar]
- Muller, P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 1077–1184. [Google Scholar] [CrossRef] [Green Version]
- Le Noble, W.J. High Pressure Chemistry and Biochemistry; Springer: Dordrecht, The Netherlands, 1987; pp. 295–310. [Google Scholar]
- Zhang, Y.; Mosey, N.J. High pressure chemistry of thioaldehydes: A first-principles molecular dynamics study. J. Chem. Phys. 2016, 145, 194506. [Google Scholar] [CrossRef] [PubMed]
- Im, J.; Yim, N.; Kim, J.; Vogt, T.; Lee, Y. High-pressure chemistry of a zeolitic imidazolate framework compound in the presence of different fluids. J. Am. Chem. Soc. 2016, 138, 11477–11480. [Google Scholar] [CrossRef] [PubMed]
- Horvath-Bordon, E.; Riedel, R.; Zerr, A.; McMillan, P.F.; Auffermann, G.; Prots, Y.; Bronger, W.; Kniep, R.; Kroll, P. Highpressure chemistry of nitride-based materials. Chem. Soc. Rev. 2006, 35, 987–1014. [Google Scholar] [CrossRef] [PubMed]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; McNaught, A.D., Wilkinson, A., Eds.; Oxford University Press: Oxford, UK, 1997; ISBN 0-9678550-9-8. [Google Scholar] [CrossRef]
- Illustrations Together with Exhaustive Technical. Available online: http://www.qlabtech.com (accessed on 3 January 2023).
- Nacca, F.G.; Merlino, O.; Mangiavacchi, F.; Krasowska, D.; Santi, C.; Sancineto, L. The Q-Tube system, a nonconventional technology for green chemistry practitioners. Curr. Green Chem. 2017, 4, 58–66. [Google Scholar] [CrossRef]
- Wurche, F.; Klärner, F.-G. The Effect of Pressure on Organic Reactions: Basic Principles and Mechanistic Applications in High Pressure Chemistry: Synthetic, Mechanistic, and Supercritical Applications; Wiley-VCH Verlag GmbH: Winheim, Germany, 2002; pp. 41–96. [Google Scholar]
- Ball, D.; Key, J. Introductory Chemistry, 1st ed.; BCcampus: Victoria, BC, Canada, 2014; Available online: https://opentextbc.ca/introductorychemistry/ (accessed on 3 January 2023).
- Klimesová, V.; Svoboda, M.; Waisser, K.; Pour, M.; Kaustová, J. New pyridine derivatives as potential antimicrobial agents. Farmaco 1999, 54, 666–672. [Google Scholar] [CrossRef]
- Patel, H.; Chaudhari, K.; Jain, P.; Surana, S. Synthesis and in vitro antitubercular activity of pyridine analouges against the resistant Mycobacterium tuberculosis. Bioorganic Chem. 2020, 102, 104099. [Google Scholar] [CrossRef]
- Al-Omar, M.A.; Amr, A.E.-G.E.; Al-Salahi, R.A. Anti-inflammatory, analgesic, anticonvulsant and antiparkinsonian activities of some pyridine derivatives using 2,6-disubstituted isonicotinic acid hydrazides. Arch. Pharm. 2010, 343, 648–656. [Google Scholar] [CrossRef]
- El-Naggar, M.; Almahli, H.; Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A. Pyridine-Ureas as Potential Anticancer Agents: Synthesis and In Vitro Biological Evaluation. Molecules 2018, 23, 1459. [Google Scholar] [CrossRef] [Green Version]
- Davari, A.S.; Abnous, K.; Mehri, S.; Ghandadi, M.; Hadizadeh, F. Synthesis and biological evaluation of novel pyridine derivatives as potential anticancer agents and phosphodiesterase-3 inhibitors. Bioorganic Chem. 2014, 57, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Goh, A.W.; Yu, M.; Adams, J.; Lam, F.; Teo, T.; Li, P.; Noll, B.; Zhong, L.; Diab, S. Discovery of (E)-3-((Styrylsulfonyl)methyl)pyridine and (E)-2-((Styrylsulfonyl)methyl)pyridine Derivatives as Anticancer Agents: Synthesis, Structure–Activity Relationships, and Biological Activities. J. Med. Chem. 2014, 57, 2275–2291. [Google Scholar] [CrossRef]
- Raasch, A.; Scharfenstein, O.; Tränkle, C.; Holzgrabe, U.; Mohr, K. Elevation of Ligand Binding to Muscarinic M2 Acetylcholine Receptors by Bis(ammonio)alkane-Type Allosteric Modulators. J. Med. Chem. 2002, 45, 3809–3812. [Google Scholar] [CrossRef]
- Yang, G.Y.; Oh, K.-A.; Park, N.-J.; Jung, Y.-S. New oxime reactivators connected with CH2O(CH2)nOCH2 linker and their reactivation potency for organophosphorus agents-inhibited acetylcholinesterase. Bioorganic Med. Chem. 2007, 15, 7704–7710. [Google Scholar] [CrossRef] [PubMed]
- Giacomo, B.D.; Bedini, A.; Spadoni, G.; Tarzia, G.; Fraschini, F.; Pannaccib, M.; Lucinib, V. Synthesis and biological activity of new melatonin dimeric derivatives. Bioorganic Med. Chem. 2007, 15, 4643–4650. [Google Scholar] [CrossRef] [PubMed]
- Eddington, N.D.; Cox, D.S.; Roberts, R.R.; Stables, J.P.; Powell, C.B.; Scott, K.R. Enaminones-versatile therapeutic pharmacophores. Further advances. Curr. Med. Chem. 2000, 7, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Elassar, A.-Z.A.; El-Khair, A.A. Recent developments in the chemistry of enaminones. Tetrahedron 2003, 59, 8463–8480. [Google Scholar] [CrossRef]
- Stanovnik, B.; Svete, J. Synthesis of Heterocycles from Alkyl 3-(Dimethylamino)propenoates and Related Enaminones. Chem. Rev. 2004, 104, 2433–2480. [Google Scholar] [CrossRef]
- Falcó, J.L.; Loveras, M.; Buira, I.; Teixidó, J.; Borrell, J.I.; Méndez, E.; Terencio, J.; Palomer, A.; Guglietta, A. Design synthesis and biological activity of acyl substituted 3-amino-5-methyl-1,4,5,7-tetrahydropyrazolo[3,4-b]pyridin-6-ones as potential hypnoticdrugs. Eur. J. Med. Chem. 2005, 40, 1179–1187. [Google Scholar] [CrossRef]
- Anderson, J.J.; Bradbury, M.J.; Giracello, D.R.; Chapman, D.F.; Holtz, G.; Roppe, J.; King, C.; Cosford, N.D.P.; Varney, M.A. In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine). Eur. J. Pharmacol. 2003, 473, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Navidpour, L.; Shafaroodi, H.; Miri, R.; Dehpour, A.R.; Shafiee, A. Lipophilic 4-imidazoly-1,4-dihydropyridines: Synthesis, calcium channel antagonist activity and protection against pentylenetetrazole-induced seizure. Farmaco 2004, 59, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, A.; Turan-Zitouni, G.; Kaplancıklı, Z.A.; Iscan, G.; Khan, S.; Demirci, F. Synthesis and the selective antifungal activity of 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine derivatives. Eur. J. Med. Chem. 2010, 45, 2080–2084. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Perumal, S.; Shetty, K.A.; Yogeeswari, P.; Sriram, D. 1,3-Dipolar cycloaddition of C-aryl-N-phenylnitrones to (R)-1-(1-phenylethyl)-3-[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones: Synthesis and antimycobacterial evaluation of enantiomerically pure spiroisoxazolidines. Eur. J. Med. Chem. 2010, 45, 124–133. [Google Scholar] [CrossRef]
- Humphries, P.S.; Almaden, J.V.; Barnum, S.J.; Carlson, T.J.; Do, Q.T.; Fraser, J.D.; Hess, M.; Kim, Y.H.; Ogilviec, K.M.; Sun, S. Pyridine-2-propanoic acids: Discovery of dual PPARa/c agonists as antidiabetic agents. Bioorganic Med. Chem. Lett. 2006, 16, 6116–6119. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Nonoshita, K.; Ogino, Y.; Nagae, Y.; Tsukahara, D.; Hosaka, H.; Maruki, H.; Ohyama, S.; Yoshimoto, R.; Sasaki, K.; et al. Discovery of novel 2-(pyridine-2-yl)-1H-benzimidazole derivatives as potent glucokinase activators. Bioorganic Med. Chem. Lett. 2009, 19, 4450–4454. [Google Scholar] [CrossRef]
- Veron, J.-B.; Enguehard-Gueiffier, C.; Snoeck, R.; Andrei, G.; De Clercqb, E.; Gueiffier, A. Influence of 6 or 8-substitution on the antiviral activity of 3-phenethylthiomethylimidazo[1,2-a]pyridine against human cytomegalovirus (HCMV) and varicella-zoster virus (VZV). Bioorganic Med. Chem. 2007, 15, 7209–7219. [Google Scholar] [CrossRef]
- Liu, X.-H.; Liu, H.-F.; Shen, X.; Song, B.-A.; Bhadury, P.S.; Zhu, H.-L.; Liu, J.-X.; Qi, X.-B. Synthesis and molecular docking studies of novel 2-chloropyridine derivatives containing flavone moieties as potential antitumor agents. Bioorganic Med. Chem. Lett. 2010, 20, 4163–4167. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, S.Y.; Kim, J.S.; Song, H.M.; Suh, M.E.; Lee, C.O. Synthesis and cytotoxicity evaluation of pyridin[2,3-f]indole-2,4,9-trione and benz[f]indole-2,4,9-trione derivatives. Bioorganic Med. Chem. 2003, 11, 4791–4796. [Google Scholar] [CrossRef]
- Liu, J.; Cui, G.; Zhao, M.; Cui, C.; Ju, J.; Peng, S. Dual-acting agents that possess reversing resistance and anticancer activities: Design, synthesis, MES-SA/Dx5 cell assay, and SAR of Benzyl 1,2,3,5,11,11a-hexahydro-3,3-dimethyl-1-oxo-6Himidazo[3,4:1,2]pyridin[3,4-b]indol-2-substitutedacetates. Bioorganic Med. Chem. 2007, 15, 7773–7788. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Nasir Baig, R.B.; Varma, R.S. Solvent-free synthesis. In An Introduction to Green Chemistry Methods; Luque, R., Colmenares, J.C., Eds.; Future Science: London, UK, 2013. [Google Scholar]
- Sheldon, R.A. Green chemistry and resource efficiency: Towards a green economy. Green Chem. 2016, 18, 3180–3183. [Google Scholar] [CrossRef]
- Mokhtar, M.; Alzhrani, G.; Aazam, E.S.; Saleh, T.S.; Panja, S.; Maiti, D. Synergistic Effect of NiLDH@YZ Hybrid and Mechanochemical Agitation on Glaser Homocoupling Reaction. Chem. A Eur. J. 2021, 27, 8875–8885. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, M.; Saleh, T.S.; Narasimharao, K.; Al-Mutairi, E. New green perspective to dihydropyridines synthesis utilizing modified heteropoly acid catalysts. Catal. Today, 2021; in press. [Google Scholar]
- El-bendary, M.M.; Saleh, T.S.; Al-Bogami, A.S. Synthesis and structural characterization of a palladium complex as an anticancer agent, and a highly efficient and reusable catalyst for the Heck coupling reaction under ultrasound irradiation: A convenient sustainable green protocol. Polyhedron 2021, 194, 114924. [Google Scholar] [CrossRef]
- AL-Johani, M.; Al-Zaydi, K.; Mousally, S.; Alqahtani, N.; Elnagdi, N.; Elnagdi, M. Multi Component Reactions under Increased Pressure: On the Mechanism of Formation of Pyridazino [5, 4,3-de][1,6] naphthyridine Derivatives by the Reaction of Malononitrile, Aldehydes and 2-Oxoglyoxalarylhydrazones in Q-Tubes. Molecules 2017, 22, 2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Zaydi, K.M. A simplified green chemistry approaches to synthesis of 2-substituted 1,2,3-triazoles and 4-amino-5-cyanopyrazole derivatives conventional heating versus microwave and ultrasound as ecofriendly energy sources. Ultrason. Sonochem. 2009, 16, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaydi, K.M.; Borik, R.M.; Elnagdi, M.H. Arylhydrazononitriles as Precursors to 2-Substituted 1,2,3-triazoles and 4-amino-5-cyano-pyrazole Derivatives Utilizing Microwave and Ultrasound Irradiation. Green Chem. Lett. Rev. 2012, 5, 241–250. [Google Scholar] [CrossRef]
- Alzaydi, K.M.; Saleh, T.S. 2-Aryl hydrazonopropanal pharmacophores as potent cytotoxic agents against human hepatocellular carcinoma cell line. Med. Chem. Res. 2020, 29, 199–205. [Google Scholar] [CrossRef]
- Ahmed, N.S.; Saleh, T.S.; El-Mossalamy, E.-S.H. An efficiently sonochemical synthesis of novel pyrazoles, bipyrazoles and pyrazol-3-ylpyrazolo[3,4-d]pyrimidines incorporating 1H-benzoimidazole moiety. Curr. Org. Chem. 2013, 17, 194–202. [Google Scholar] [CrossRef]
- Shahid, A.; Ahmed, N.S.; Saleh, T.S.; Al-Thabaiti, S.A.; Basahel, S.N.; Schwieger, W.; Mokhtar, M. Solvent-free biginelli reactions catalyzed by hierarchical zeolite utilizing a ball mill technique: A green sustainable process. Catalysts 2017, 7, 84. [Google Scholar] [CrossRef]
- Narasimharao, K.; Al-Sabban, E.; Saleh, T.S.; Gallastegui, A.G.; Sanfiz, A.C.; Basahel, S.; Al-Thabaiti, S.; Alyoubi, A.; Obaid, A.; Mokhtar, M. Microwave assisted efficient protocol for the classic Ullmann homocoupling reaction using Cu–Mg–Al hydrotalcite catalysts. J. Mol. Catal. A Chem. 2013, 379, 152–162. [Google Scholar] [CrossRef]
- Saleh, T.S.; Narasimharao, K.; Ahmed, N.S.; Basahel, S.N.; Al-Thabaiti, S.A.; Mokhtar, M. Mg-Al hydrotalcite as an efficient catalyst for microwave assisted regioselective 1,3-dipolar cycloaddition of nitrilimines with the enaminone derivatives: A green protocol. J. Mol. Catal. A Chem. 2013, 367, 12–22. [Google Scholar] [CrossRef]
- Bassyouni, F.A.; Saleh, T.S.; Elhefnawi, M.M.; El-Moez, S.I.A.; El-Senousy, W.M.; Abdel-Rehim, M.E. Synthesis, pharmacological activity evaluation and molecular modeling of new polynuclear heterocyclic compounds containing benzimidazole derivatives. Arch. Pharmacal Res. 2012, 35, 2063–2075. [Google Scholar] [CrossRef]
- Mady, M.F.; Saleh, T.S.; El-Kateb, A.A.; El-Rahman, N.M.A.; El-Moez, S.I.A. Microwave-assisted synthesis of novel pyrazole and pyrazolo[3,4-d]pyridazine derivatives incorporating diaryl sulfone moiety as potential antimicrobial agents. Res. Chem. Intermed. 2016, 42, 753–769. [Google Scholar] [CrossRef]
- Maksod, I.H.A.E.; Saleh, T.S. The use of nano supported nickel catalyst in reduction of p-nitrophenol using hydrazine as hydrogen donor. Green Chem. Lett. Rev. 2010, 3, 127–134. [Google Scholar] [CrossRef]
- Saleh, T.S.; El-Rahman, N.M.A.; Assaker, R.S.A. Microwave promoted a green protocol for solvent free synthesis of 1,5-benzothiazepine and [1,3,4]-thiadiazepine derivatives incorporating thiophene moiety. Green Chem. Lett. Rev. 2012, 5, 315–320. [Google Scholar] [CrossRef]
- Al-Bogami, A.S.; Saleh, T.S.; Mekky, A.E.M.; Shaaban, M.R. Microwave assisted regioselective synthesis and 2D-NMR studies of novel azoles and azoloazines utilizing fluorine-containing building blocks. J. Mol. Struct. 2016, 1121, 167–179. [Google Scholar] [CrossRef]
- Mekky, A.E.M.; Saleh, T.S.; Al-Bogami, A.S. Synthesis of novel pyrazoles incorporating a phenothiazine moiety: Unambiguous structural characterization of the regioselectivity in the 1,3-dipolar cycloaddition reaction using 2D HMBC NMR spectroscopy. Tetrahedron 2013, 69, 6787–6798. [Google Scholar] [CrossRef]
- Kudyakova, Y.S.; Bazhin, D.N.; Goryaeva, M.V.; Burgart, Y.V.; Saloutin, V.I. The use of 2-(1-alkoxyalkylidene)-1,3-dicarbonyl compounds in organic synthesis. Russ. Chem. Rev. 2014, 83, 120–142. [Google Scholar] [CrossRef]
- Mittersteiner, M.; Andrade, V.P.; Bonacorso, H.G.; Martins, M.A.P.; Zanatta, N. The Wonderful World of β-Enamino Diketones Chemistry. Eur. J. Org. Chem. 2020, 2020, 6405–6417. [Google Scholar] [CrossRef]
- Gamez, P.; Steensma, R.H.; Driessen, W.L.; Reedijk, J. Copper(II) compounds of the planar-tridentate ligand 2,6- bis(pyrazol-3-yl)pyridine. Inorganica Chim. Acta 2002, 333, 51–56. [Google Scholar] [CrossRef]
- Lin, Y.-I.; Lang, S.A., Jr. Novel two step synthesis of pyrazoles and isoxazoles from aryl methyl ketones. J. Heterocycl. Chem. 1977, 14, 345–347. [Google Scholar] [CrossRef]
- Pleier, A.K.; Glas, H.; Grosche, M.; Sirsch, P.; Thiel, W.R. Microwave assisted synthesis of 1-aryl-3-dimethylaminoprop-2-enones: A simple and rapid access to 3 (5)-arylpyrazoles. Synthesis 2001, 1, 55–62. [Google Scholar] [CrossRef]
- Shaaban, M.R.; Farag, A.M.; Saleh, T.S.; Osman, F.H. Regioselective synthesis of some novel pyrazoles, isoxazoles, pyrazolo[3,4-d]pyridazines and isoxazolo[3,4-d]pyridazines pendant to benzimidazole. J. Heterocycl. Chem. 2007, 44, 177–181. [Google Scholar] [CrossRef]
- Sumrra, S.H.; Hassan, A.U.; Zafar, M.N.; Shafqat, S.S.; Mustafa, G.; Zafar, M.N.; Zubair, M.; Imran, M. Metal incorporated sulfonamides as promising multidrug targets: Combined enzyme inhibitory, antimicrobial, antioxidant and theoretical exploration. J. Mol. Struct. 2022, 1250, 131710. [Google Scholar] [CrossRef]
- Hassan, A.U.; Sumrra, S.H.; Raza, M.A.; Zubair, M.; Zafar, M.N.; Mughal, E.U.; Nazar, M.F.; Irfan, A.; Imran, M.; Assiri, M.A. Design, facile synthesis, spectroscopic characterization, and medicinal probing of metal-based new sulfonamide drugs: A theoretical and spectral study. Appl. Organomet. Chem. 2021, 35, e6054. [Google Scholar] [CrossRef]
- Abdelrazek, F.M.; Elsayed, A.N. About the reaction of β-dimethyl- amino-α,β-enones with active methylene nitriles. J. Heterocycl. Chem. 2009, 46, 949–953. [Google Scholar] [CrossRef]
- Bejan, E.; Haddou, H.A.; Daran, J.C.; Balavoine, G.G.A. The reaction of enaminones with carboxamidines: A convenient route for the synthesis of polyaza heterocycles. Synthesis 1996, 8, 1012–1018. [Google Scholar] [CrossRef]
- Hassanien, A.Z.A.E.B. 2, 6-Bis [3-N, N-Dimethylamino-1-Oxopropen-1-Yl] Pyridine as a Building Block in Heterocyclic Synthesis: Synthesis of 2, 2′: 6′, 2″-Terpyridines and 2, 6-Bis [Pyrazolyl, Isoxazolyl, Diazepinyl, Pyrazolo [5, 1-a] Pyrimidinyl and Pyrazolo-[4, 3-D] Pyridazinyl] Pyridines. J. Chem. Res. 2004, 8, 536–540. [Google Scholar]
(Q-Tube) | (∆) | |||
---|---|---|---|---|
Time (min) | Yield (%) | Time (min) | Yield (%) | |
Compound 3 | 23 | 93.3 | 960 | 80 |
(Q-Tube) | (∆) | |||
---|---|---|---|---|
Time (min) | Yield (%) | Time (min) | Yield (%) | |
Compound 4 | 10 | 75 | 120 | 75 |
Compound 5 | 15 | 29 | 240 | 30 |
(Q-Tube) | (∆) | |||
---|---|---|---|---|
Time (min) | Yield (%) | Time (min) | Yield (%) | |
Compound 6 | 15 | 97 | 960 | 95 |
Compound 7a | 15 | 96 | 960 | 91 |
Compound 7b | 15 | 41 | 960 | 31 |
Compound 8 | 20 | 99 | 1440 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zaydi, K.M.; Saleh, T.S.; Alqahtani, N.F.; Bagazi, M.S. Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System. Molecules 2023, 28, 2355. https://doi.org/10.3390/molecules28052355
Al-Zaydi KM, Saleh TS, Alqahtani NF, Bagazi MS. Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System. Molecules. 2023; 28(5):2355. https://doi.org/10.3390/molecules28052355
Chicago/Turabian StyleAl-Zaydi, Khadijah M., Tamer S. Saleh, Norah F. Alqahtani, and Meaad S. Bagazi. 2023. "Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System" Molecules 28, no. 5: 2355. https://doi.org/10.3390/molecules28052355
APA StyleAl-Zaydi, K. M., Saleh, T. S., Alqahtani, N. F., & Bagazi, M. S. (2023). Bis(pyridine)enaminone as a Precursor for the Synthesis of Bis(azoles) and Bis(azine) Utilizing Recent Economic Green Chemistry Technology: The Q-Tube System. Molecules, 28(5), 2355. https://doi.org/10.3390/molecules28052355