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Abstract: We reported herein efficient economic high-pressure synthesis procedures for the synthesis
of bis(azoles) and bis(azines) by utilizing the bis(enaminone) intermediate. Bis(enaminone) reacted
with hydrazine hydrate, hydroxylamine hydrochloride, guanidine hydrochloride, urea, thiourea, and
malononitrile to form the desired bis azines and bis azoles. A combination of elemental analyses
and spectral data was used to confirm the structures of the products. Compared with conventional
heating, the high-pressure Q-Tube method promotes reactions in a short period of time and provides
high yields.
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1. Introduction

Temperatures can easily be controlled in the range essential for chemical reactivity,
which is probably why organic chemists prefer temperature over high pressures. On the
other hand, high-pressure reactors are the workhorses of chemical industries. They can
run chemical reactions at pressures of a few thousand atmospheres [1]. Since chemical
reactions are influenced by pressure [2], by using pressure, chemists can force chemical
reactions to occur and accelerate transitions between solids, liquids, and gases. Initially,
we need to focus on the reaction volume and volume of activation in order to understand
pressure effects [2]. The activation volume represents a change in volume from the reactant
to transition state, and the reaction volume represents a change in volume from the reactant
to the product [3]. According to the reported literature that dealt with this issue [3,4], an
illustration of bond formations in Figure 1 schematically clarifies the working concept.
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High-pressure reactions with a positive activation volume or reaction volume are
expected to occur more slowly than at low pressure, as the positive activation volume
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or reaction volume works against compression. Therefore, we should carefully choose
the reaction that will occur under pressure [5]. For example, during some bond cleavage
phenomena, the transition state has a larger volume than the reactant, because it is less
compact, and vice versa for bond formation. An SN1 reaction mechanism (first step), for
instance, showing a significantly negative activation volume might seem counterintuitive
because a bond breaks and ionizes (or separates) when charges occur. As such, the cleavage
of heterolytic bonds does contribute to the positive activation volume, but the contribution
of the volume of ions formed with solvent molecules should not be neglected in an overall
volume change, which finally produces a negative activation volume. A very important
note was reported [6] that led to a useful summary of the activation volume (positive or
negative) for the most common reaction, which helped us decide whether to use high-
pressure reaction conditions or not.

A positive activation volume was recorded for the following reactions: neutralization,
bond cleavage, charge dispersal, and diffusion control. On the other hand, the following
reactions showed a negative activation volume: ionization, cyclization, bond formation,
displacement, steric hindrance, and charge concentration.

Using high-pressure chemistry, solvents, reagents, and final products can be improved
in terms of their physical properties in order to achieve quicker and cleaner transforma-
tions. The most modified properties are the physical properties of liquids. A pressure
reaction has the advantage of overcoming the solvent’s boiling point [7–9]; solvent boiling
points are directly proportional to vapor pressure when pressure increases. As defined
by the Arrhenius equation, the reaction rate can double relative to every 10 ◦C increase in
temperature [10]. A Q-Tube device for high-pressure chemistry was developed, and it is
undoubtedly the most straightforward and cheapest alternative to expensive microwave
synthesizers (Figure 2).
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Q-Tube, unlike other pressure reactors, features a pressure release and resealing
system to prevent overpressure explosions [11]. Of note, the conversions and yield values
of the Q-Tube high-pressure reactor are higher than that of the MW reactor [12]. Q-Tube
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influences two factors that enhance the organic reaction. One of them is carried out at an
extreme temperature that exceeds the solvent’s boiling point. A temperature increase of
10 ◦C doubles the reaction rate, according to the Arrhenius equation, as represented in
Equation (1). The other factor is an increase in the concentration of substrates due to the
high pressure exerted by the Q-Tube system that reduces the reaction volume, including
liquids; consequently, the collision frequency increases, leading to faster reactions.

k = Ae−Ea/RT (1)

A rate constant is defined as k, activation energy is defined as Ea, and a gas constant
is defined as R (8.3145 J/Kmol). In contrast, temperature is defined as T. A frequency
factor of A, with units of L·mol−1·s−1, is calculated by considering the frequency of re-
actions and the likelihood of correct molecular orientation [13,14]. On the other hand,
pyridine rings attracted particular attention regarding their unique biological activities. It
has been claimed that many pyridine derivatives possess engaging biological and phar-
macological properties, such as antimicrobial [15], antitubercular [16], anticonvulsant,
analgesic, anti-inflammatory [17], and anticancer properties [18–20]. In addition, one of
the most elementary classes that exhibit potential biological and pharmacological activities
is bis-heterocyclic compounds [21–23]. Moreover, enaminones are valuable intermedi-
ates for synthesizing several heterocyclic systems in addition to their pharmacological
potentialities [24–26]. Aiming to obtain bis-pyridine enaminone as a precursor for differ-
ent pyridine-azoles hybrids and pyridine-azine hybrids via green synthesis for biological
screening purposes, several studies show that pyridine–azole hybrids and pyridine–azine
hybrids have fascinating medicinal properties [27]. These hybrids show the highly po-
tent and selective mGlu5 receptor antagonist with good brain penetration and receptor
occupancy [28] as well as calcium channel blocking for the treatment of hypertension [29].
Moreover, they exhibited excellent antifungal activity against Candida albicans [30] and in-
hibited bacterial biofilms, DNA gyrase, and Mycobacterium tuberculosis [31]. Moreover, they
demonstrated antihyperglycemic activity [32], in which their compounds metabolically
stabilized the glucokinase activator [33] and exhibited acute oral glucose-lowering efficacy.
In addition, some hybrids showed antiviral activities as potent efficacy against human
cytomegalovirus (CMV) and the varicella-zoster virus [34]. For cancer treatments, several
hybrids showed cytotoxicity against several human cancer cells, including ovarian cancer
cells [35] and gastric cancer cells [36], with antiproliferative effects [37]. Green chemistry is
based on the design (or redesign) of products and/or manufacturing processes to reduce
their impact on human health and the environment [38,39]; therefore, the green organic
synthesis trend induces the prevention of the harmful impact on the environment. Catalysis,
and any system that reduces reaction time to save energy and lower emissions, is an excel-
lent choice by applying different green chemistry principles [38–40]. Our previous results
encouraged us to continue synthesizing biologically active heterocyclic compounds [41–46]
using other green chemistry methods [47–57]. A high-pressure Q-Tube reactor is used
in this study to synthesize bis(enaminone), an essential building block for synthesizing
bis-heterocyclic compounds.

2. Results and Discussions

The design of the Q-Tube™ system allows it to be operated safely and accurately with
high reproducibility. The design is clarified in Figure 3, showing the presence of a Qian cap
(Figure 3a), which consists of a Teflon septa and needle (Figure 3b) to release pressure via
the perforation of the Teflon septa (acts as active ventilation for safety, avoiding a rapid
increase in pressure).
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Figure 3. Detailed schematic diagram for the Q-Tube system and Qian cap photo. (a) Qian cap photo
and Teflon septa (b) Schematic diagram for the Q tube System.

The reactivity of enaminone towards different nucleophiles is frequently studied
by many reports [58,59]. Schemes 1–3 show the synthetic procedures used to obtain the
target compounds. In a reflux and/or Q-Tube reactor, we used N,N-dimethylformamide
dimethyl acetal (DMF-DMA) 2 to react with 2,6-diacetylpyridine 1 in the presence of a little
excess of DMF-DMA to produce a single product identified as bis(pyridine)enaminone 3
(Scheme 1). A high percentage of yield was observed when using high-pressure reactors
(Q-Tubes) instead of the conventional reflux method [60,61]. With the previously reported
microwave radiation method, almost the same % yield was obtained utilizing high-pressure
reactors (Q-Tubes) [62]. Scheme 1 and Table 1 show comparative results between the two
preparation methods.
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Table 1. Effect of the Q-Tube method versus conventional the heating synthesis of bis(pyridine)enaminone.

(Q-Tube) (∆)

Time (min) Yield (%) Time (min) Yield (%)

Compound 3 23 93.3 960 80
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Scheme 3. Reaction of bis(pyridine)enaminone 3 with guanidine hydrochloride, urea/thiourea, or
malononitrile to synthesize bis(aminopyrimidine) 6, bis(pyrimidines) (7a, 7b) or bis(pyridine) 8,
respectively, by utilizing the Q-Tube.

The analytical data for both preparation methods agreed with structure 3 (Scheme 1).
The 1H spectrum of the isolated compound exhibited two singlet signals at δ 2.90 and 3.20
due to N,N-dimethylamino protons, two doublet signals at δ 6.55 and 7.85 (J = 12.3 Hz) due
to olefinic protons, and pyridine ring protons showed two doublet signals at δ 8.074 ppm
and a triplet signal at δ 8.012 ppm. Based on the olefinic proton coupling constant value of
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12.3 Hz, bis(enaminone) 3 has an E-configuration [63]. By condensing hydrazine hydrate
and hydroxylamine with bis(enaminone), we investigated its potential for the synthesis
of novel bis(pyrazoles) and bis(isoxazoles). Compound 3 reacted with hydrazine mono-
hydrate in ethanol in the high-pressure reactor Q-Tube. A single product was identified
as bis(pyrazole) derivative 4 (Scheme 2). There are two doublets identified as one doublet
for CH-4 pyrazole at δ 6.95 ppm and one doublet for CH-5 pyrazole at δ 7.62 ppm in its
1HNMR spectroscopy [64].

By using the high-pressure reactor Q-Tube, compound 3 also condensed with hydrox-
ylamine hydrochloride in the presence of a base such as sodium carbonate in ethanol as
a solvent. Bis(isoxazole) 5 was detected exclusively in TLC. 1HNMR indicated that two
characteristic doublets were obtained for the isolated compound, with one of them at δ 8.78
(d, J = 1.86 Hz CH-5 isoxazole) downfield while the other was at δ 7.25 (d, J = 1.86 Hz CH-4
isoxazole) upfield [65], which is completely consistent with the proposed structure depicted
in Scheme 2. It is noteworthy that to find an advantage of the high-pressure reactor on
the reactions shown in Scheme 2, these reactions had been carried out with conventional
heating; for both compounds 4 and 5, almost the same yield but shorter reaction times was
found with the high-pressure Q-Tube reactor. Scheme 2 and Table 2 represent the time of
reactions and % yield.

Table 2. Effect of the Q-Tube method versus the conventional heating synthesis of bis(azoles).

(Q-Tube) (∆)

Time (min) Yield (%) Time (min) Yield (%)

Compound 4 10 75 120 75
Compound 5 15 29 240 30

The Q-Tube reactor demonstrated that bis(enaminone) 3 is an important precursor
in synthesizing bis(azines) 6–8 from its reactions with guanidine, urea, thiourea, and
malononitrile; only one product was obtained in each case (Scheme 3). By utilizing the
high-pressure Q-Tube in comparison to conventional heating (Scheme 3), bis(enaminone) 3
gives excellent yields and the fastest reaction times for pyrimidines resulting from reactions
with guanidine hydrochloride, urea, and/or thiourea. The IR spectrum of compound 6
shows symmetric and asymmetric bands at 3250–3450 cm−1 due to the amino group [64].
Its 1HNMR shows a D2O exchangeable singlet peak at δ 6.79, representing the amino
group [65].

The IR spectrum of compound 7a exhibits an OH absorbance band at 3284 cm−1 [64],
which confirms the presence of tautomeric isomer “enol form is predominant”, as shown
in Figure 4. Moreover, 1HNMR confirms the presence of the D2O exchangeable signal for
OH due to two Hydroxy groups at 5.89 ppm (cf. Materials and Methods).
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Compound 7b shows a distinct absorbance band due to C=S in IR at 1407 cm−1 and a
signal in 13CNMR above 185 ppm for (C=S). As tested by TLC, only one compound formed
from the reaction of compound 3 with malononitrile in ethanol and drops of piperidine at
120 ◦C/25 psi. A band at 2174 cm−1 is evident in the IR spectrum of the formed compound
8 due to the cyano group, and the 1HNMR spectrum is consistent with the formed mixture
(cf. Materials and Method). The obtained spectroscopic data confirm that compound 8
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was identified as bis(pyridine) via the pyridine bridge (Scheme 3). According to Table 3,
the compounds formed using the high-pressure Q-Tube have a higher yield and a shorter
reaction time than the conventional heating method.

Table 3. Effect of the Q-Tube method versus the conventional heating synthesis of bis(azines).

(Q-Tube) (∆)

Time (min) Yield (%) Time (min) Yield (%)

Compound 6 15 97 960 95
Compound 7a 15 96 960 91
Compound 7b 15 41 960 31
Compound 8 20 99 1440 35

Of note, the formation of compound 8 is in line with the reported literature [66], which
suggested that malononitrile substitutes the dimethylamino group first to give intermediate
A, followed by cyclization to bisaminopyran (intermediate B) and then the ring opening of
the formed aminopyran to afford intermediate C, which readily eliminates dimethylamine
to afford the final isolable pyridinone derivative 8 (in a Dimroth-type rearrangement)
(Scheme 4).
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Finally, we succeeded in introducing a technique considered as state of the art in
modern green organic chemistry techniques. Green chemistry tends to perform organic
reactions under atmospheric pressures, avoiding the high amount of energy that is con-
sumed to obtain highly pressurized reactions, or develops a new catalyst to reduce the
operating temperature and pressure for the process; consequently, less energy is consumed,
which is good for the industry. However, the Q-Tube system works in a manner that does
not consume more energy to attain high pressure as the pressure released in our reactions
described above is considered autogenic pressure. Another important advantage is the
high reproducibility of the obtained results. On the other hand, we succeeded in applying
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the use of this economic Q-Tube system in comparison to the microwave reactor in order to
synthesize the bis(azoles)-pyridine hybrids and bis(azines)-pyridine hybrids of expected
high biological and pharmacological activities.

3. Materials and Methods
3.1. General

All melting points were measured on a Gallenkamp Electrothermal melting point
apparatus (Gallenkamp, Cambridge, UK) and were uncorrected. The infrared spectra (KBr
disks) in 4000 to 400 cm−1 were recorded on a Perkin-Elmer Frontier spectrometer (Perkin-
Elmer, San Diego, CA, USA). The N.M.R. spectra were recorded on a 850 and 600 MHz NMR
spectrometer (Bruker, Fällanden, Switzerland) that is deuterated in dimethylsulphoxide
(DMSO-d6) and chloroform (CDCl3). Chemical shifts were quoted in δ and were related to
that of the solvent. Mass spectrometry was carried out using a direct probe controller inlet
part in a single quadrupole mass analyzer (Thermo Fisher Scientific GCMS Model I.S.Q. LT,
Carlsbad, CA, USA) using Thermo X-Calibur Software at the regional center for mycology
and biotechnology (R.C.M.B.), Al-Azhar University, Cairo. The reaction temperature was
manually input depending on the boiling point of the solvent used and stabilized for
more than an hour. Q-Tube-assisted reactions were performed in a Q-Tube-safe pressure
reactor from Q Labtech (Washington, DC, USA) equipped with a cap/sleeve, pressure
adapter (120 psi), needle, borosilicate glass tube, Teflon septum, and catch bottle. Elemental
analyses were performed using a Perkin-Elmer 2400 Analyzer (Perkin-Elmer, San Diego,
CA, USA). T.L.C. Sigma-Aldrich (St Louis, MA, USA) silica gel was used on TLC Al foils
and a silica gel matrix, with a fluorescent indicator at 254 nm. The 1HNMR spectra of the
synthesized compounds can be found in Supplementary Materials (Figures S1–S6)

3.2. General Procedure for Preparation of Dienaminone 3

Method I: A mixture of compound 1 (10 mmol) and DMF-DMA (25 mmol) was
refluxed at 90–100 ◦C overnight. The mixture was left at room temperature, and the solid
was collected by hexane and petroleum ether 40–60 and then washed by ethanol.

Method II: The same above mixture scale was placed in a Q-Tube at 120 ◦C/under the
autogenic pressure (15 psi) for 23–24 min. The products were collected and washed with
ethanol: one spot on TLC; eluent (CHCl3:MeOH 85:15).

2,6-Bis(3-dimethylamino-1-oxoprop-2-en-yl)pyridine (3) [62]

Orange shine grain; (Q-Tube) yield 94%; m.p. 236–237 ◦C, FT-IR cm−1: 3026, 2911
(CH aromatic), 2807(CH aliphatic), 1643(C=O ketone); fingerprint area matched precisely
with the product obtained from conventional heating. 1HNMR (850 MHz, DMSO-d6): δ,
ppm = 2.96 (s, 6H), 3.20 (s, 6H), 6.55 (s, 2H broad alkene), 7.84–7.85(d, 2H alkene), 8.01–8.07
(dt, 3H, pyridine ring).

3.3. General Procedure for Preparation of Bis(azoles) 4 and 5

Method I: For bis(pyrazoles), A mixture of compound 3 (10 mmol) and hydrazine
monohydrate (20 mmol) in ethanol was refluxed at 50–60 ◦C for 120 min. The mixture was
left to cool and then added to iced water. The solid was collected by filtration and washed
by EtOH. For bis(isoxazoles), a mixture of compound 3 (10 mmol), hydroxylamine hy-
drochloride (25 mmol) and sodium carbonate (25 mmol) in EtOH was refluxed at 50–60 ◦C
for 240 min. The mixture was left to cool and then added to iced water. The solid was
collected by filtration and washed by EtOH.

Method II: The same above mixture scale was placed in a Q-Tube at 120 ◦C/under an
autogenic pressure of 30 psi for an appropriate period time as examined by TLC. Then, the
products were obtained by following the same workup mentioned above.
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2,6-Bis(1H-pyrazol-3-yl)pyridine (4) [62]

White cotton; (Q-Tube) yield 75%; m.p.c 257–259 ◦C, FT-IR cm−1: 3190; 3049; 2947
(CH aromatic), 1591 (C=N), 1596–1564 (C=C aromatic). 1HNMR (850 MHz, DMSO-d6):
δ ppm = 6.95 (d, 2H, CH-4 pyrazole), 7.62−7.86 (m, 2H, CH-5 pyrazole and 3H pyridine
ring), 13.02 (s, 1H, NH), 13.51 (s, 1H, NH).

2,6-Di(isoxazol-5-yl)pyridine (5) [62]

Beige powder; (Q-Tube) yield 29%; 143–147 ◦C, FT-IR cm−1: 3126, 3097 (CH aromatic),
1601 (C=N). 1HNMR (600 MHz, DMSO-d6): δ, ppm = 7.25 (d, 2H, CH-4 isoxazole), 8.76 (d,
2H, CH-5 isoxazole), 8.08 (d, 2H, pyridine), 8.19 (t, 1H, pyridine).

3.4. General Procedure for Preparation of Bis(pyrimidines) 6, 7a and 7b

Method I: A mixture of compound 3 (10 mmol), guanidine hydrochloride, urea or
thiourea (20 mmol), and sodium ethoxide (30 mmol) in EtOH was refluxed at 60–70 ◦C
for the appropriate time, as examined by TLC. The mixture was left to cool. The solid was
collected by filtration and washed by EtOH.

Method II: The same above mixture scale was placed in a Q-Tube at 120 ◦C under an
autogenic pressure of 30 psi for an appropriate period of time as examined by TLC. The
products were collected and washed by ethanol. Recrystallization by DMF.

4,4′-(Pyridine-2,6-diyl)bis(pyrimidin-2-amine) (6) [67]

Pink powder; (Q-Tube) yield 97%; m.p. > 300 ◦C, FT-IR cm−1: 3442; 3290 (NH2),
3145 (CH aromatic), 1596 (C=N), 1549 (C=C aromatic), 1HNMR (850 MHz, DMSO-d6): δ,
ppm = 6.79 (4H, NH2), 7.65 (d, 2H, CH-5 pyrimidine), 8.40 (d, 2H, CH-6 pyrimidine), 8.46
(d, 2H, pyridine), 8.16 (t, 1H, pyridine).

4,4′-(Pyridine-2,6-diyl)bis(pyrimidin-2-ol) (7a) [67]

Dark violet powder; (Q-Tube) yield 96% m.p. > 300 ◦C, FT-IR cm−1: 3284 (OH), 1575
(C=C aromatic). 1HNMR (850 MHz, DMSO-d6): δ, ppm = 5.89 (d, OH), 7.69–8.51 (m, 7H,
pyridine and pyrimidine) 9.49 (d, OH). GC-MS: m/z [M]+ 267.84

4,4′-(Pyridine-2,6-diyl)bis(pyrimidine-2(1H)-thione) (7b) [67]

Orange powder; (Q-Tube) yield 41%, m.p. > 300 ◦C. FT-IR cm−1: 3306 (NH), 1532; 1556
(C=C aromatic), 1605 (C=N); 1HNMR (600 MHz, DMSO-d6): δ, ppm 7.52 (d, 2H, pyrimidine
ring) 8.05 (t, 1H, pyridine ring) 8.16 (d, 2H, pyridine ring) 8.38 (d, 2H, pyrimidine ring);
13CNMR (213 MHz, DMSO-d6): δ, ppm = 127.3, 135.4, 141.0, 158.7, 179.2, 194.8. GC-MS:
m/z [M]+ 299.27.

3.5. General Procedure for Preparation of Bis(pyridine)derivative 8

Method I: A mixture of compound 3 (10 mmol) and malononitrile (20 mmol) and
piperidine drops in EtOH was refluxed at 75 ◦C for 1440 min. The solid was collected by
filtration and washed by EtOH.

Method II: The same above mixture scale was placed in a Q-Tube at 120 ◦C under the
autogenic pressure of 30 psi for an appropriate period of time, as examined by TLC. The
product was collected and washed by ethanol, Recrystallization by EtOH.

6,6′′-Dioxo-1,1′′,6,6′′-tetrahydro-[2,2′:6′,2′′-terpyridine]-5,5′′-dicarbonitrile (8) [68]

Orange powder; (Q-Tube) yield 99%, m.p. 202–204 ◦C; FT-IR cm−1: 3412; 3326 (OH
and NH keto-enol form), 2184 (C≡N), 1645 (C=O) and 1534 (C=C aromatic); 1HNMR
(850 MHz, DMSO-d6): δ, ppm = 5.62–5.64 (dd, 1H), 6.09–6.11 (dd, 1H), 6.99–7.04 (dd, 2H),
7.48–7.53 (dd, 2H), 8.11 (t, 1H, pyridine), 6.85 (broad s, OH), 6.69 (s, OH).
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4. Conclusions

This study developed an efficient green organic synthesis protocol that saves energy
by using a high-pressure Q-Tube reactor as an economic and safe alternative to a microwave
reactor. A bis(enaminone) precursor was used in this protocol for preparing bis azoles
and bis azines of expected biological and pharmacological efficacy. A mechanism for
the reaction of bis(enaminone) with malononitrile suggested that the reaction proceeded
via a Dimorth-type rearrangement. Modern Q-Tubes with a Qian cap have the fastest
reaction time compared to conventional heating methods and almost identical results to
microwave reactors. The technique opens the door to working on new substrates for
biological screening in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052355/s1. Figures S1–S6: The 1HNMR spectra of
the synthesized compounds.
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