Comparative Study for Spectrofluorimetric Determination of Ambroxol Hydrochloride Using Aluminum Metal Transfer Chelation Complex and Biogenic Synthesis of Aluminum Oxide Nanoparticles Using Lavandula spica Flowers Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Green Synthesized Al2O3NPs
2.2. Spectral Characteristics
2.3. Optimization of Analytical Conditions
2.4. Effect of Solvent
2.5. Effect of pH
2.6. Effect of Volume of Al2O3NPs and Al(NO3)3
2.7. Effect of Response Time
2.8. Effect of Surfactants
2.9. Method Validation
2.10. Possible Effects of Al2O3NPs and Metal Chelation
2.11. Analytical Applications
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Instruments
3.4. Preparation of Plant Extract
3.5. Preparation of Al2O3NPs Using Lavandula spica Flower Extract
3.6. Characterization of the Synthesized Al2O3NPs
3.7. Preparation of Analytical Reagents
3.8. Preparation of Standard AMH and Commercial Syrup Samples
3.9. General Procedure for AMH Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Migliori, G.B.; Marx, F.M.; Ambrosino, N.; Zampogna, E.; Schaaf, H.S.; van der Zalm, M.M.; Allwood, B.; Byrne, A.L.; Mortimer, K.; Wallis, R.S.; et al. Clinical standards for the assessment, management and rehabilitation of post-TB lung disease. Int. J. Tubercul. Lung Dis. 2021, 25, 797–813. [Google Scholar] [CrossRef] [PubMed]
- Dippenaar, A.; Goossens, S.N.; Grobbelaar, M.; Oostvogels, S.; Cuypers, B.; Laukens, K.; Meehan, C.J.; Warren, R.M.; Van Rie, A. Nanopore sequencing for mycobacterium tuberculosis, A critical review of the literature, new developments, and future opportunities. Eur. J. Clin. Microbiol. 2022, 60, e00646-21. [Google Scholar] [CrossRef]
- Md, S.; Abdullah, S.T.; Alhakamy, N.A.; Bani-Jaber, A.; Radhakrishnan, A.K.; Karim, S.; Shahzad, N.; Gabr, G.A.; Alamoudi, A.J.; Rizg, W.Y. Ambroxol hydrochloride loaded gastro-retentive nanosuspension gels potentiate anticancer activity in lung cancer (A549) cells. Gels 2021, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Panchale, W.A.; Badukle, N.A.; Sabhadinde, A.F.; Bakal, R.L.; Manwar, J.V. Concurrent analysis of ambroxol HCl and salbutamol sulphate from tablet formulation by RP-HPLC. GSC Biol. Pharm. Sci. 2020, 13, 197–202. [Google Scholar] [CrossRef]
- El-Sayed, H.M.; Hashem, H. Quality by design strategy for simultaneous HPLC determination of bromhexine HCl and its metabolite ambroxol HCl in dosage forms and plasma. Chromatographia 2020, 83, 1075–1085. [Google Scholar] [CrossRef]
- El-Sayed, A.; Elmansi, H.; Shalan, S.; Eid, M. Facile approaches for determination of Bromhexine Hydrochloride and its active metabolite Ambroxol Hydrochloride using Eosin Y. In Annales Pharmaceutiques Françaises; Elsevier Masson: Paris, France, 2022; Volume 5, pp. 687–696. [Google Scholar] [CrossRef]
- Prabu, S.L.; Shirwaikar, A.A.; Shirwaikar, A.; Kumar, C.D.; Kumar, G.A. Simultaneous UV spectrophotometric estimation of ambroxol hydrochloride and levocetirizine dihydrochloride. Ind. J. Pharm. Sci. 2008, 70, 236. [Google Scholar]
- Rele Rajan, V.; Gurav Pankaj, J. Simple Spectrophotometric methods for determination of Ambroxol Hydrochloride from pharmaceutical formulation. Int.J. PharmTech Res. 2012, 4, 994–998. [Google Scholar]
- Shah, P.S.; Patel, K.G.; Shah, P.A.; Gandhi, T.R. UV-spectrophotometry-assisted chemometric methods for simultaneous determination of ambroxol hydrochloride and doxofylline in pharmaceutical formulation. J. Chem. Metrol. 2020, 14, 106–113. [Google Scholar] [CrossRef]
- Levent, A.; Yardım, Y.; Şentürk, Z. Electrochemical performance of boron-doped diamond electrode in surfactant-containing media for ambroxol determination. Sens. Actuators B Chem. 2014, 203, 517–526. [Google Scholar] [CrossRef]
- Liu, J.; Sui, X. Hospital wireless sensor network coverage and ambroxol hydrochloride in the treatment of mycoplasma pneumonia in children. Microprocess Microsyst. 2021, 81, 103707. [Google Scholar] [CrossRef]
- Dong, M.W. The Essence of Modern HPLC: Advantages, Limitations, Fundamentals, and Opportunities. LCGC N. Am. 2013, 6, 472–479. [Google Scholar]
- Refat, M.S.; Saad, H.A.; Gobouri, A.A.; Alsawat, M.; Adam, A.M.; Shakya, S.; Gaber, A.; Alsuhaibani, A.M.; El-Megharbel, S.M. Synthesis and spectroscopic characterizations of nanostructured charge transfer complexes associated between moxifloxacin drug donor and metal chloride acceptors as a catalytic agent in a recycling of wastewater. J. Mol. Liq. 2022, 349, 118121. [Google Scholar] [CrossRef]
- Mishra, R.K.; Ha, S.K.; Verma, K.; Tiwari, S.K. Recent progress in selected bio-nanomaterials and their engineering applications: An overview. J. Sci. Adv. Mater. Devices 2018, 3, 263–288. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Mohamed, G.G.; Elsawy, H.A.; Radwan, M.A. Metal complexes of novel Schiff base derived from the condensation of 2-quinoline carboxaldehyde and ambroxol drug with some transition metal ions. Appl. Organomet. Chem. 2018, 32, e4392. [Google Scholar] [CrossRef]
- Pipattanaporn, P.; Pansiri, P.; Kumpeerakij, P.; Yaemphutchong, S.; Siri-apai, P.; Suetrong, N.; Chansaenpak, K.; Singkammo, S.; Kanjanaboos, P.; Hanlumyuang, Y.; et al. Effect of triethanolamine chelating agent on crystallinities, phase purities, and optical properties of zinc aluminate spinel synthesized by thermal decomposition. Ceram. Int. 2022, 48, 186–195. [Google Scholar] [CrossRef]
- Prozorovska, L.; Baker, B.A.; Laibinis, P.E.; Jennings, G.K. Surface-Initiated, Catechol-Containing Polymer Films for Effective Chelation of Aluminum Ions. Langmuir 2021, 37, 13617–13626. [Google Scholar] [CrossRef] [PubMed]
- Ziva, A.Z.; Suryana, Y.K.; Kurniadianti, Y.S.; Nandiyanto, A.B.; Kurniawan, T. Recent progress on the production of aluminum oxide (Al2O3) nanoparticles: A review. MESI 2021, 1, 54–77. [Google Scholar] [CrossRef]
- Meng, L.Y.; Jiang, W.; Piao, W.; Meng, W. Effect of bio-template on the properties of SiO2/Al2O3 composites for drug delivery. J. Ind. Eng. Chem. 2016, 37, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Sani, O.N.; Yazdani, M.; Taghavi, M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. JWPE 2019, 32, 100894. [Google Scholar] [CrossRef]
- Hassanpour, P.; Panahi, Y.; Ebrahimi-Kalan, A.; Akbarzadeh, A.; Davaran, S.; Nasibova, A.N.; Khalilov, R.; Kavetskyy, T. Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett. 2018, 13, 1227–1231. [Google Scholar] [CrossRef]
- Tulinski, M.; Jurczyk, M. Nanomaterials synthesis methods. In Metrology and Standardization of Nanotechnology: Protocols and Industrial Innovations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; Volume 15, pp. 75–98. [Google Scholar] [CrossRef]
- Shamaila, S.; Sajjad, A.K.; Farooqi, S.A.; Jabeen, N.; Majeed, S.; Farooq, I. Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today 2016, 5, 150–199. [Google Scholar] [CrossRef]
- Sumesh, K.R.; Kanthavel, K. Green synthesis of aluminium oxide nanoparticles and its applications in mechanical and thermal stability of hybrid natural composites. J. Polym. Environ. 2019, 21, 2189–2200. [Google Scholar] [CrossRef]
- Kurkin, V.A.; Lamrini, M.; Klochkov, S.G. Lavandoside from Lavandula spica flowers. Chem. Natural Comnds. 2008, 44, 169–170. [Google Scholar] [CrossRef]
- Badr, M.M.; Badawy, M.E.; Taktak, N.E. Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. J. Drug Deliv. Sci. Technol. 2021, 65, 102732. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Singla, M.L.; Tabassum, S.; Naqvi, A.H.; Azam, A. Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 2011, 131, 1–6. [Google Scholar] [CrossRef]
- Prashanth, P.A.; Raveendra, R.S.; Hari Krishna, R.; Ananda, S.; Bhagya, N.P.; Nagabhushana, B.M.; Lingaraju, K.; Raja, N.H. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J. Asian Ceram. Soc. 2015, 3, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Özsevinç, A.; Alkan, C. Polyurethane shell medicinal lavender release microcapsules for textile materials: An environmentally friendly preparation. Ind. Crops Prod. 2023, 192, 116131. [Google Scholar] [CrossRef]
- Tanna, J.A.; Gomaji, C.R.; Gandhare, N.V.; Juneja, H.D. Alumina nanoparticles: A new and reusable catalyst for synthesis of dihydropyrimidinones derivatives. Adv. Mater. Lett. 2016, 7, 933–938. [Google Scholar] [CrossRef]
- Mulon, J.B.; Destandau, É.; Alain, V.; Bardez, É. How can aluminium (III) generate fluorescence? J. Inorg. Biochem. 2005, 99, 1749–1755. [Google Scholar] [CrossRef]
- ICH. Q2 (R1): Validation of analytical procedures: Text and methodology. In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 1–13 November 2005. [Google Scholar]
- Miller, J.C.; Miller., J.N. Statistics for Analytical Chemistry, 3rd ed.; Ellis Horwood PTR Prentice Hall: New York, NY, USA, 1993. [Google Scholar]
- Panchale, W.A.; Bakal, R.L. First-order derivative spectrophotometric estimation of gemifloxacin mesylate and ambroxol HCl in tablet dosage form. GSC Biol. 2021, 14, 29–36. [Google Scholar] [CrossRef]
- Xiong, F.M.; Tang, Y.H.; Sun, S.J.; Wang, N.N. Determination of ambroxol using flow-injection chemiluminescence method. J. Chin. Pharm. Sci. 2006, 26, 1740–1742. [Google Scholar] [CrossRef]
- Li, L. Electrochemical Methods for Quantitative Estimation of Ambroxol Hydrochloride in drug for the Treatment of Asthmatic Bronchitis. Int. J. Electrochem. Sci. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Akram, N.M.; Gopal, N.M.; Balakrishna, A.; Reddy, N.B.; Sravya, G.; Zyryanov, G.V. RP-HPLC method for the simultaneous analysis of ambroxol hydrochloride and nitazoxanide in API and tablet dosage form. AIP Conf Proc. 2022, 2390, 020002. [Google Scholar] [CrossRef]
- Guo, X.; Wang, P. Aroma Characteristics of Lavender Extract and Essential Oil from Lavandula angustifolia Mill. Molecules 2020, 25, 5541. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, V.; Jayanthi, P.; Priyadharsan, A.; Vijayaprathap, E.; Anbarasan, P.M.; Velmurugan, P. Green synthesis of pH-responsive Al2O3 nanoparticles: Application to rapid removal of nitrate ions with enhanced antibacterial activity. J. Photochem. Photobiol. B 2019, 371, 205–215. [Google Scholar] [CrossRef]
Parameter | Studies Range | AMH | |
---|---|---|---|
Al2O3NPs | Al(NO3)3 | ||
λex/em (nm) | 220–800 | 260/460 | 244/369 |
Buffer type | Acetate, phosphate, borate | Phosphate | Phosphate |
Buffer pH | 3–9.3 | 5.8 | 5.8 |
Buffer volume (mL) | 0.5–5 | 1.5 | 2.0 |
Al2O3NPs and Al(NO3)3 volume | 0.5–5 | 1.5 | 2.0 |
Surfactant type | SDS, CPC, and CMC | SDS | SDS |
Surfactant volume (mL) | 0.5–3 | 1.0 | 2.0 |
Time (min) | 1–10 | 2 | 2 |
Parameter | AMH-Al2O3NPs-SDS | AMH-Al(NO3)3-SDS |
---|---|---|
Concentration range, ng mL−1 | 0.1–200 | 1.0–100 |
Slope | 3.2086 | 2.8189 |
Intercept | 274.31 | 187.41 |
Correlation coefficient (r) | 0.9995 | 0.9990 |
Standard deviation of intercept (Sa) | 3.113812 | 4.673863 |
Standard deviation of slope (Sb) | 0.033849 | 0.088873 |
LOD, (ng mL−1) | 0.04 | 0.7 |
LOQ, (ng mL−1) | 0.1 | 1.0 |
Samples | Accuracy (n = 9) | Intraday (n = 3) | Interday (n = 3) | Repeatability (RSD %, n = 6) | Robustness | Ruggedness |
---|---|---|---|---|---|---|
AMH-Al2O3NPs-SDS | 99.21 ± 0.74 | 0.20% | 0.27% | 0.53% | 99.62 ± 0.46 | 99.54 ± 0.62 |
Al(NO3)3-SDS | 99.67 ± 0.34 | 0.44% | 0.29% | 0.82% | 99.24 ± 0.83 | 99.26 ± 0.87 |
Interference | Tolerable Value | |
---|---|---|
AMH-Al2O3NPs-SDS | AMH-Al(NO3)3-SDS | |
Glycerol | 250 | 320 |
Benzoic acid | 360 | 405 |
Vanilla aroma | 400 | 390 |
Hydroxyethyl cellulose | 520 | 480 |
Lactose | 190 | 240 |
Glucose | 210 | 310 |
Glycine | 640 | 570 |
Histidine | 160 | 250 |
L-valine | 240 | 390 |
Leucine | 270 | 430 |
Sample | Taken (ng mL−1) | Found Range (ng mL−1) | % Recovery | Mean ± SD | n | Variance | % SE | % RSD |
---|---|---|---|---|---|---|---|---|
AMH-Al2O3NPs-SDS | 0.1–200 | 0.1–199.85 | 98.99–100.00 | 99.81 ± 0.41 | 6 | 0.17 | 0.16 | 0.41 |
AMH-Al(NO3)3-SDS | 1.0–100 | 1.0–100 | 97.00–99.98 | 99.39 ± 1.17 | 6 | 1.37 | 0.47 | 1.17 |
Sample | Taken (ng mL−1) | Found (ng mL−1) | % Recovery | Mean ± SD | n | Var. | % SE | % RSD | Ref. Method [10] | t-Test (2.228) * | F-Test (5.05) * |
---|---|---|---|---|---|---|---|---|---|---|---|
AMH-Al2O3NPs-SDS | 0.1–200 | 0.1–200 | 0.098–200.2 | 99.81 ± 0.41 | 6 | 0.17 | 0.16 | 0.41 | 99.57 ± 0.52 | 0.909 | 1.59 |
AMH-Al(NO3)3-SDS | 1.0–100 | 0.95–99.99 | 98.78–99.83 | 99.45 ± 0.50 | 6 | 0.25 | 0.10 | 0.50 | 0.516 | 1.08 |
Analytical Technique | Reagent | Linearity | LOD | Reference |
---|---|---|---|---|
Spectrophotometry | AMH, based on first-order derivative | 7.5–45 μg mL−1 | [34] | |
Chemiluminescence | AMH, redox reaction of Ce(IV)-sodium sulfite in H2SO4 | 7.0 × 10−8–1 × 10−6 g mL−1 | 3 × 10−8 g mL−1 | [35] |
Electrochemical | AMH, electrodeposited ZnONPs on carboxylated CNTs modified glassy carbon electrode | 1–120 μmol L−1 | 0.02 μmol L−1 | [36] |
Chromatography | AMH, RP-HPLC method, buffer (pH 3.5) and acetonitrile (40:60% v/v) | 7.5–45 μg mL−1 | [37] | |
Proposed method | Spectrofluorometric measurement in the presence of Al2O3NPs and Al(NO3)3 | 0.1–200 ng mL−1 | AMH-Al2O3NPs | |
1–100 ng mL−1 | AMH-Al(NO3)3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Humud, N.S.; Al-Tamimi, S.A.; Al-Mohaimeed, A.M.; El-Tohamy, M.F. Comparative Study for Spectrofluorimetric Determination of Ambroxol Hydrochloride Using Aluminum Metal Transfer Chelation Complex and Biogenic Synthesis of Aluminum Oxide Nanoparticles Using Lavandula spica Flowers Extract. Molecules 2023, 28, 2210. https://doi.org/10.3390/molecules28052210
Al-Humud NS, Al-Tamimi SA, Al-Mohaimeed AM, El-Tohamy MF. Comparative Study for Spectrofluorimetric Determination of Ambroxol Hydrochloride Using Aluminum Metal Transfer Chelation Complex and Biogenic Synthesis of Aluminum Oxide Nanoparticles Using Lavandula spica Flowers Extract. Molecules. 2023; 28(5):2210. https://doi.org/10.3390/molecules28052210
Chicago/Turabian StyleAl-Humud, Najla S., Salma A. Al-Tamimi, Amal M. Al-Mohaimeed, and Maha F. El-Tohamy. 2023. "Comparative Study for Spectrofluorimetric Determination of Ambroxol Hydrochloride Using Aluminum Metal Transfer Chelation Complex and Biogenic Synthesis of Aluminum Oxide Nanoparticles Using Lavandula spica Flowers Extract" Molecules 28, no. 5: 2210. https://doi.org/10.3390/molecules28052210
APA StyleAl-Humud, N. S., Al-Tamimi, S. A., Al-Mohaimeed, A. M., & El-Tohamy, M. F. (2023). Comparative Study for Spectrofluorimetric Determination of Ambroxol Hydrochloride Using Aluminum Metal Transfer Chelation Complex and Biogenic Synthesis of Aluminum Oxide Nanoparticles Using Lavandula spica Flowers Extract. Molecules, 28(5), 2210. https://doi.org/10.3390/molecules28052210