GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC/MS Analysis of the Essential Oil and Lipophilic Extract
2.2. Cytotoxic Activity Using SRB Assay
2.3. Antioxidant Activity
2.4. Molecular Docking
3. Materials and Methods
3.1. Plant Material
3.2. The Essential Oil Isolation
3.3. Preparation of the Lipophilic Extract
3.4. Gas Chromatography–Mass Spectrometry (GC/MS)
3.5. Characterization of the Essential Oil and Lipophilic Extract Components
3.6. Assessment of Cytotoxic Activity Using SRB Assay
3.7. Assessment of Antioxidant Activity
3.7.1. DPPH Assay
3.7.2. FRAP Assay
3.8. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinghorn, A.D.; Pan, L.; Fletcher, J.N.; Chai, H. The Relevance of Higher Plants in Lead Compound Discovery Programs. J. Nat. Prod. 2011, 74, 1539–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aly, S.H.; Elissawy, A.M.; Fayez, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. Neuroprotective Effects of Sophora Secundiflora, Sophora Tomentosa Leaves and Formononetin on Scopolamine-Induced Dementia. Nat. Prod. Res. 2020, 35, 5848–5852. [Google Scholar] [CrossRef] [PubMed]
- El-Nashar, H.A.S.; Aly, S.H.; Ahmadi, A.; El-Shazly, M. The Impact of Polyphenolics in the Management of Breast Cancer: Mechanistic Aspects and Recent Patents. Recent Pat. Anticancer. Drug Discov. 2021, 17, 358–379. [Google Scholar] [CrossRef] [PubMed]
- Ads, E.N.; Hassan, S.I.; Rajendrasozhan, S.; Hetta, M.H.; Aly, S.H.; Ali, M.A. Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis. Molecules 2022, 27, 1805. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Allam, A.E.; Farag, S.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. New Quinolizidine Alkaloid and Insecticidal Activity of Sophora secundiflora and Sophora tomentosa against Culex pipiens (Diptera: Culicidae). Nat. Prod. Res. 2021, 36, 2722–2734. [Google Scholar] [CrossRef]
- Farnsworth, N.R.; Akerele, O.; Bingel, A.S. Medicinal Plants in Therapy. J. Ethnopharmacol. 1987, 19, 336. [Google Scholar] [CrossRef] [Green Version]
- Cragg, G.M.; Newman, D.J. Natural Products: A Continuing Source of Novel Drug Leads. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Saber, F.R.; Munekata, P.E.S.; Rizwan, K.; El-nashar, H.A.S.; Fahmy, N.M.; Aly, S.H.; El-shazly, M.; Bouyahya, A.; Lorenzo, J.M. Family Myrtaceae: The Treasure Hidden in the Complex/Diverse Composition. Crit. Rev. Food Sci. Nutr. 2023, 1–19. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Salah, D.; Alfuhaid, N.A.; Zyaan, O.H.; Mohamed, H.I.; Singab, A.N.B.; Farag, S.M. Phytochemical Investigation of Three Cystoseira Species and Their Larvicidal Activity Supported with In Silico Studies. Mar. Drugs 2023, 21, 117. [Google Scholar] [CrossRef]
- Abdel Razek, M.M.M.; Moussa, A.Y.; El-Shanawany, M.A.; Singab, A.N.B. A New Phenolic Alkaloid from Halocnemum Strobilaceum Endophytes: Antimicrobial, Antioxidant and Biofilm Inhibitory Activities. Chem. Biodivers. 2020, 17, e2000496. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Berhow, M.A. Glucosinolate Hydrolysis Products from Various Plant Sources: PH Effects, Isolation, and Purification. Ind. Crop. Prod. 2005, 21, 193–202. [Google Scholar] [CrossRef]
- Warwick, S.I.; Francis, A.; Gugel, R.K. Guide to Wild Germplasm of Brassica and Allied Crops (Tribe Brassiceae, Brassicaceae). Canada Agric. Agri-Food Canada 2009, 1, 19–36. [Google Scholar]
- Perfectti, F.; Gómez, J.M.; González-Megías, A.; Abdelaziz, M.; Lorite, J. Molecular Phylogeny and Evolutionary History of Moricandia DC (Brassicaceae). PeerJ 2017, 5, e3964. [Google Scholar] [CrossRef] [Green Version]
- Kilian, B.; Mammen, K.; Millet, E.; Sharma, R.; Graner, A.; Salamini, F.; Hammer, K.; Ozkan, H. Aegilops. In Wild Crop Relatives, Genomic and Breeding Resources Cereals; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–76. [Google Scholar] [CrossRef]
- Skandrani, I.; Bouhlel, I.; Limem, I.; Boubaker, J.; Bhouri, W.; Neffati, A.; Sghaier, M.B.; Kilani, S.; Ghedira, K.; Ghedira-Chekir, L. Moricandia Arvensis Extracts Protect against DNA Damage, Mutagenesis in Bacteria System and Scavenge the Superoxide Anion. Toxicol. Vitr. 2009, 23, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, E. Contribution à Une Étude Ethnobotanique de La Flore Tunisienne; Ministère de l’Enseignement Supériur et de la Recherche Scientifique: Tunis, Tunisia, 1983. [Google Scholar]
- Skandrani, I.; Ben Sghaier, M.; Neffati, A.; Boubaker, J.; Bouhlel, I.; Kilani, S.; Mahmoud, A.; Ghedira, K.; Chekir-Ghedira, L. Antigenotoxic and Free Radical Scavenging Activities of Extracts from Moricandia Arvensis. Drug Chem. Toxicol. 2007, 30, 361–382. [Google Scholar] [CrossRef] [PubMed]
- Skandrani, I.; Limem, I.; Neffati, A.; Boubaker, J.; Sghaier, M.B.; Bhouri, W.; Bouhlel, I.; Kilani, S.; Ghedira, K.; Chekir-Ghedira, L. Assessment of Phenolic Content, Free-Radical-Scavenging Capacity Genotoxic and Anti-Genotoxic Effect of Aqueous Extract Prepared from Moricandia Arvensis Leaves. Food Chem. Toxicol. 2010, 48, 710–715. [Google Scholar] [CrossRef]
- Arif, I.A.; Bakir, M.A.; Khan, H.A.; Al Farhan, A.H.; Al Homaidan, A.A.; Bahkali, A.H.; Al Sadoon, M.; Shobrak, M. Application of RAPD for Molecular Characterization of Plant Species of Medicinal Value from an Arid Environment. Genet. Mol. Res. 2010, 9, 2191–2198. [Google Scholar] [CrossRef]
- El-Mekkawy, S.; Shahat, A.A.; Alqahtani, A.S.; Alsaid, M.S.; Abdelfattah, M.A.O.; Ullah, R.; Emam, M.; Yasri, A.; Sobeh, M. A Polyphenols-Rich Extract from Moricandia Sinaica Boiss. Exhibits Analgesic, Anti-Inflammatory and Antipyretic Activities in Vivo. Molecules 2020, 25, 5049. [Google Scholar] [CrossRef]
- Radulović, N.S.; Dordević, N.D. Steroids from Poison Hemlock (Conium maculatum L.): A GC-MS Analysis. J. Serbian Chem. Soc. 2011, 76, 1471–1483. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. Phytochemical Investigation Using GC/MS Analysis and Evaluation of Antimicrobial and Cytotoxic Activities of the Lipoidal Matter of Leaves of Sophora Secundiflora and Sophora Tomentosa. Arch. Pharm. Sci. Ain Shams Univ. 2020, 4, 207–214. [Google Scholar] [CrossRef]
- Jamalova, D.N.; Gad, H.A.; Akramov, D.K.; Tojibaev, K.S.; Al Musayeib, N.M.; Ashour, M.L.; Mamadalieva, N.Z. Discrimination of the Essential Oils Obtained from Four Apiaceae Species Using Multivariate Analysis Based on the Chemical Compositions and Their Biological Activity. Plants 2021, 10, 1529. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayed, E.; Gad, H.A.; El-Kersh, D.M. Characterization of Four Piper Essential Oils (GC/MS and ATR-IR) Coupled to Chemometrics and Their Anti- Helicobacter Pylori Activity. ACS Omega 2021, 6, 25652–25663. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.H.; Eldahshan, O.A.; Al-rashood, S.T.; Binjubair, F.A.; El Hassab, M.A.; Eldehna, W.M.; Acqua, S.D.; Zengin, G. Chemical Constituents, Antioxidant, and Enzyme Inhibitory Activities Supported by In-Silico Study of n-Hexane Extract and Essential Oil of Guava Leaves. Molecules 2022, 27, 8979. [Google Scholar] [CrossRef] [PubMed]
- Zeraib, A.; Ramdani, M.; Lograda, T.; Chalard, P.; Figueredo, G. Chemical Composition and Antimicrobial Activity of Essential Oil of Moricandia Arvensis L. (DC.). Asian J. Plant Sci. 2011, 10, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Marrelli, M.; Morrone, F.; Gambacorta, L.; Argentieri, M.P.; Conforti, F.; Avato, P. Phytochemical and Biological Profile of Moricandia arvensis (L.) DC.: An Inhibitor of Pancreatic Lipase. Molecules 2018, 23, 2829. [Google Scholar] [CrossRef] [Green Version]
- El-Nashar, H.A.S.; Eldehna, W.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Aly, S.H. GC/MS Analysis of Essential Oil and Enzyme Inhibitory Activities of Syzygium Cumini ( Pamposia ) Grown in Docking Studies. Molecules 2021, 26, 6984. [Google Scholar] [CrossRef]
- Turgumbayeva, A.; Ustenova, G.; Datkhayev, U.; Rahimov, K.; Abramavicius, S.; Tunaityte, A.; Zhakipbekov, K.; Kozhanova, K.; Tulemissov, S.; Ustenova, O.; et al. Safflower (Carthamus tinctorius L.) a Potential Source of Drugs against Cryptococcal Infections, Malaria and Leishmaniasis. Phyton 2020, 89, 137–146. [Google Scholar] [CrossRef]
- Alamery, S.F.; Algaraawi, N.L. Phytochemical Profile and Antifungal Activity of Stems and Leaves Methanol Extract from the Juncus Maritimus Linn. Juncaceae Family against Some Dermatophytes Fungi. AIP Conf. Proc. 2020, 2290, 020034. [Google Scholar] [CrossRef]
- Gad, H.A.; Mukhammadiev, E.A.; Zengen, G.; Musayeib, N.M.A.; Hussain, H.; Ware, I.B.; Ashour, M.L.; Mamadalieva, N.Z. Chemometric Analysis Based on GC-MS Chemical Profiles of Three Stachys Species from Uzbekistan and Their Biological Activity. Plants 2022, 11, 1215. [Google Scholar] [CrossRef]
- Thippeswamy, G.; Sheela, M.L.; Salimath, B.P. Octacosanol Isolated from Tinospora Cordifolia Downregulates VEGF Gene Expression by Inhibiting Nuclear Translocation of NF-<kappa>B and Its DNA Binding Activity. Eur. J. Pharmacol. 2008, 588, 141–150. [Google Scholar] [CrossRef]
- Braham, H.; Mighri, Z.; Jannet, H.B.; Matthew, S.; Abreu, P.M. Antioxidant Phenolic Glycosides from Moricandia Arvensis. J. Nat. Prod. 2005, 68, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.A.; Ismail, E.H.; Abd El-Moaty, H.I.; Sabry, D.Y.; Khalil, M.M.H. Anti-Helicobacter Pylori, Anti-Diabetic and Cytotoxicity Activity of Biosynthesized Gold Nanoparticles Using Moricandia Nitens Water Extract. Egypt. J. Chem. 2018, 61, 691–703. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 9781932633214. [Google Scholar]
- Aly, S.H.; Elissawy, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. Variability of the Chemical Composition of the Essential Oils of Flowers and the Alkaloid Contents of Leaves of Sophora Secundiflora and Sophora Tomentosa. J. Essent. Oil-Bearing Plants 2020, 23, 442–452. [Google Scholar] [CrossRef]
- NIST The National Institute of Standards and Technology (NIST) Chemistry WebBook. NIST Standard Reference Database Number 69. Available online: http://Webbook.Nist.Gov/Chemistry/ (accessed on 5 July 2022).
- Aly, S.H.; El-hassab, M.A.; Elhady, S.S.; Gad, H.A. Comparative Metabolic Study of Tamarindus Indica L.’s Various Organs Based on GC/MS Analysis, In Silico and In Vitro Anti-Inflammatory and Wound Healing Activities. Plants 2022, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Boly, R.; Lamkami, T.; Lompo, M.; Dubois, J.; Guissou, I.P. DPPH Free Radical Scavenging Activity of Two Extracts From. Int. J. Toxicol. Pharmacol. Res. 2016, 8, 29–34. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hassab, M.A.; Fares, M.; Amin, M.K.A.; Al-rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Alkahtani, H.M.; Eldehna, W.M. Toward the Identification of Potential α-Ketoamide Covalent Inhibitors for SARS-CoV-2 Main Protease: Fragment-Based Drug Design and MM-PBSA Calculations. Processes 2021, 9, 1004. [Google Scholar] [CrossRef]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef]
- Lountos, G.T.; Jiang, R.; Wellborn, W.B.; Thaler, T.L.; Bommarius, A.S.; Orville, A.M. The Crystal Structure of NAD(P)H Oxidase from Lactobacillus Sanfranciscensis: Insights into the Conversion of O2 into Two Water Molecules by the Flavoenzyme. Biochemistry 2006, 45, 9648–9659. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin, Myricetin, and Staurosporine. Mol. Cell 2000, 6, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Forouhar, F.; Neely, H.; Seetharaman, J.; Mao, L.; Xiao, R.; Janjua, H.; Maglaqui, M.; Foote, E.L.; Lee, D.; Everett, J.K.; et al. Crystal Structure of Chromosome Partitioning Protein (ParA) in Complex with ADP from Synechocystis sp. Northeast Struct. Genom. Consort. 2008. [Google Scholar] [CrossRef]
No. | Rt(min) | Compound | RIExp. a | RILit b | Molecular Formula | Content (%) | |
---|---|---|---|---|---|---|---|
MSH | MSO | ||||||
1 | 3.44 | 1-Methyl-1,3-cyclohexadiene | 765 | 770 | C7H10 | - | 1.03 |
2 | 4.33 | 2-Hexanol | 800 | 801 | C6H14O | - | 0.95 |
3 | 4.98 | Ethylcyclohexane | 826 | 827 | C8H16 | - | 0.48 |
4 | 5.41 | 2-Hexen-1-al | 843 | 847 | C6H12O | - | 0.32 |
5 | 5.47 | 2-Hexenal, (E)- | 845 | 846 | C6H10O | - | 0.62 |
6 | 5.62 | 3(Z)-Hexen-1-ol | 851 | 851 | C6H12O | - | 2.09 |
7 | 6.20 | 2-Heptanone | 874 | 880 | C7H14O | - | 0.66 |
8 | 6.39 | Santene | 881 | 884 | C9H14 | - | 0.33 |
9 | 6.83 | Heptanal | 899 | 900 | C7H14O | - | 0.91 |
10 | 7.30 | Tricyclene | 915 | 914 | C10H16 | - | 1.79 |
11 | 8.12 | Camphene | 942 | 941 | C10H16 | - | 1.15 |
12 | 8.18 | ꞵ-Citronellene | 943 | 947 | C10H20O | - | 0.82 |
13 | 9.88 | Octanal | 1000 | 1002 | C8H16O | - | 1.66 |
14 | 13.00 | Linalool | 1099 | 1099 | C10H18O | - | 1.97 |
15 | 16.06 | α-Terpineol | 1199 | 1191 | C10H18O | - | 1.28 |
16 | 20.34 | δ-Terpinyl acetate | 1348 | 1340 | C12H20O2 | - | 1.09 |
17 | 24.96 | α-Cadinene | 1530 | 1538 | C15H24 | - | 0.49 |
18 | 27.54 | Caryophylla-4(12),8(13)-dien-5α-ol | 1642 | 1640 | C15H24O | - | 1.17 |
19 | 28.03 | ꞵ-Eudesmol | 1659 | 1654 | C15H24O | - | 1.16 |
20 | 31.84 | Decanoic acid butyl ester | 1820 | 1821 | C14H28O2 | - | 1.21 |
21 | 43.38 | Docosahexaenoic acid methyl ester | 2478 | 2470 | C23H34O2 | 0.5 | - |
22 | 43.66 | n-Pentacosane | 2496 | 2500 | C25H52 | 0.4 | 78.01 |
23 | 46.76 | n-Heptacosane | 2696 | 2700 | C27H56 | 2.33 | - |
24 | 47.71 | Lignoceric acid methyl ester | 2712 | 2732 | C25H50O2 | - | 0.80 |
25 | 48.22 | n-Octacosane | 2796 | 2800 | C28H58 | 0.89 | - |
26 | 49.69 | n-Nonacosane | 2900 | 2900 | C29H60 | 65.66 | - |
27 | 51.00 | n-Triacontane | 2996 | 3000 | C30H62 | 0.66 | - |
28 | 51.83 | 2-Methyltriacontane | 3058 | 3060 | C31H64 | 0.64 | - |
29 | 52.18 | 1-Octacosanol | 3084 | 3074 | C28H58O | 0.50 | - |
30 | 52.33 | n-Hentriacontane | 3096 | 3100 | C31H64 | 1.42 | - |
31 | 52.46 | Octacosanol | 3106 | 3110 | C28H58O | 12.67 | - |
32 | 53.03 | α-Tocopherol | 3150 | 3149 | C29H50O2 | 0.54 | - |
33 | 54.51 | 5α-Stigmast-22-en-3β-ol | 3257 | 3253 | C29H50O | 0.67 | - |
34 | 55.95 | γ-Sitosterol | 3350 | 3351 | C29H50O | 6.60 | - |
35 | 56.24 | α-Amyrin | 3367 | 3371 | C30H50O | 3.51 | - |
36 | 56.94 | β-Amyrin acetate | 3430 | 3437 | C32H52O2 | 0.81 | - |
Total Monoterpenes | - | 8.1 | |||||
Total Sesquiterpenes | - | 2.82 | |||||
Aliphatic hydrocarbons | 72.00 | 79.85 | |||||
Alcohols, Aldehydes and Ketones | 13.17 | 7.21 | |||||
Triterpenoids | 4.32 | - | |||||
Sterols | 7.27 | - | |||||
Fatty acids and their esters | 0.50 | 2.01 | |||||
Others | 0.54 | - | |||||
Total identified % | 97.80 | 99.90 |
Compound Name | Docking Scores kcal/mole | ||
---|---|---|---|
NADPH Oxidase 2CDU | Phosphoinositide-3 Kinase (PI3K) 1E90 | Protein Kinase B, AKT 3CWQ | |
n-Pentacosane | −10.83 | −13.91 | −11.9 |
Camphene | −6.61 | −7.22 | −6.96 |
ꞵ-Citronellene | −7.03 | −7.92 | −7.62 |
Linalool | −7.39 | −8.25 | −7.80 |
α-Terpineol | −9.20 | −8.19 | −8.32 |
n-Nonacosane | −8.96 | −8.83 | −7.56 |
α-Amyrin | −12.01 | −13.37 | −11.19 |
Octacosanol | −10.76 | −10.02 | −11.41 |
γ-Sitosterol | −12.65 | −12.44 | −12.05 |
α-Tocopherol | −13.12 | −14.15 | −13.19 |
ꞵ-Amyrin Acetate | −14.19 | −14.05 | −11.70 |
Compound Name | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
n-Pentacosane | C-17 | 6-ring Tyr-159 | (A) H-pi | 4.73 | −0.2 |
C-23 | 6-ring Tyr-159 | (A) H-pi | 4.21 | −0.5 | |
C-41 | 6-ring Phe-245 | (A) H-pi | 4.93 | −0.2 | |
Camphene | C-5 | SG Csx-42 | (A) H-donor | 4.16 | −0.2 |
ꞵ-Citronellene | C-21 | SG Cys-133 | (A) H-donor | 4.19 | −0.2 |
C-17 | 6-ring Phe-245 | (A) H-pi | 3.57 | −0.3 | |
Linalool | C-1 | SG Csx-42 | (A) H-donor | 3.96 | −0.2 |
O-19 | OD2 Asp-282 | (A) H-donor | 3.07 | −2.0 | |
C-9 | 6-ring Phe-245 | (A) H-pi | 4.80 | −0.3 | |
α-Terpineol | C-9 | SG Csx-42 | (A) H-donor | 4.14 | −0.3 |
O-28 | OD1 Asp-282 | (A) H-donor | 2.93 | −1.5 | |
n-Nonacosane | C-1 | SD Met-33 | (A) H-donor | 4.20 | −0.2 |
C-5 | SD Met-33 | (A) H-donor | 4.08 | −0.2 | |
C-8 | SD Met-33 | (A) H-donor | 4.13 | −0.2 | |
C-11 | SD Met-33 | (A) H-donor | 4.30 | −0.2 | |
C-41 | SG CSX-42 | (A) H-donor | 4.49 | −0.2 | |
C-68 | 6-ring Tyr-159 | (A) H-pi | 4.17 | −0.5 | |
C-74 | 6-ring Tyr-159 | (A) H-pi | 4.68 | −0.2 | |
α-Amyrin | C-46 | SG Csx-42 | (A) H-donor | 4.13 | −0.2 |
O-50 | O Thr-112 | (A) H-donor | 2.90 | −0.4 | |
Octacosanol | C-1 | SD Met-33 | (A) H-donor | 3.90 | −0.3 |
C-40 | SG Csx-42 | (A) H-donor | 3.93 | −0.2 | |
C-43 | SG Csx-42 | (A) H-donor | 3.90 | −0.2 | |
O-86 | N Val-81 | (A) H-acceptor | 3.11 | −2.3 | |
C-64 | 6-ring Tyr-159 | (A) H-pi | 4.04 | −0.3 | |
C-70 | 6-ring Tyr-159 | (A) H-pi | 4.38 | −0.2 | |
γ-Sitosterol | C-21 | SG Csx-42 | (A) H-donor | 4.46 | −0.2 |
C-29 | SG Csx-42 | (A) H-donor | 4.25 | −0.2 | |
C-31 | SG Csx-42 | (A) H-donor | 3.83 | −0.2 | |
C-34 | SG Csx-42 | (A) H-donor | 4.14 | −0.2 | |
O-74 | O Thr-112 | (A) H-donor | 2.97 | −0.2 | |
α-Tocopherol | C-44 | SG Csx-42 | (A) H-donor | 3.99 | −0.2 |
C-9 | 6-ring Tyr-159 | (A) H-pi | 4.21 | −0.2 | |
6-ring | CE2 Tyr-188 | (A) pi-H | 3.63 | −0.2 | |
6-ring | OH Tyr-188 | (A) pi-H | 3.59 | −0.3 | |
6-ring | CD Pro-298 | (A) pi-H | 4.51 | −0.4 | |
ꞵ-Amyrin Acetate | C-24 | SG Csx-42 | (A) H -donor | 4.19 | −0.2 |
C-61 | SG Csx-42 | (A) H -donor | 4.17 | −0.2 | |
O-81 | CA Gly-158 | (A) H-acceptor | 3.30 | −0.4 |
Compound Name | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
n-Pentacosane | C 35 | SD Met-953 | (A) H-donor | 3.59 | −0.2 |
Camphene | No binding | ||||
ꞵ-Citronellene | C-7 | SD Met-953 | (A) H-donor | 3.73 | −0.2 |
C-12 | SD Met-953 | (A) H-donor | 3.81 | 0.2 | |
C-17 | SD Met-953 | (A) H-donor | 4.03 | −0.2 | |
Linalool | C-12 | SD Met-953 | (A) H-donor | 3.93 | −0.3 |
O-19 | O Glu-880 | (A) H-donor | 2.84 | −1.6 | |
O-19 | CD1 Ile-831 | (A) H-acceptor | 3.55 | −0.2 | |
O-19 | CG2 Ile-879 | (A) H-acceptor | 3.49 | −0.2 | |
O-19 | CD1 Ile-881 | (A) H-acceptor | 3.71 | −0.2 | |
α-Terpineol | O-28 | OD1 Asp-964 | (A) H-donor | 3.18 | −0.5 |
O-28 | OD2 Asp-964 | (A) H-donor | 3.00 | −0.3 | |
O-28 | NZ Lys-833 | (A) H-acceptor | 2.72 | −7.0 | |
C-12 | 6-ring Tyr-867 | (A) H-pi | 4.59 | −0.2 | |
n-Nonacosane | C-41 | SD Met-953 | (A) H-donor | 3.87 | −0.2 |
C-44 | SD Met-953 | (A) H-donor | 3.80 | −0.2 | |
C-47 | SD Met-953 | (A) H-donor | 3.95 | −0.2 | |
α-Amyrin | C-15 | SD Met-804 | (A) H-donor | 4.33 | −0.2 |
C-50 | O Val-882 | (A) H-donor | 2.56 | −2.2 | |
C-50 | CB Ala-885 | (A) H-acceptor | 3.20 | −0.4 | |
Octacosanol | O-86 | OG Ser-806 | (A) H-donor | 2.86 | −0.8 |
O-86 | NZ Lys-807 | (A) H-acceptor | 3.10 | −7.5 | |
γ-Sitosterol | C-16 | SD Met-804 | (A) H-donor | 4.19 | −0.2 |
C-21 | SD Met-804 | (A) H-donor | 4.17 | −0.2 | |
C-64 | SD Met-953 | (A) H-donor | 4.20 | −0.2 | |
α-Tocopherol | O-19 | OD2 Asp-950 | (A) H-donor | 2.76 | −3.7 |
C-47 | SD Met-804 | (A) H-donor | 3.99 | −0.2 | |
ꞵ-Amyrin Acetate | C-82 | SD Met-804 | (A) H-donor | 3.90 | −0.2 |
C-85 | SD Met-804 | (A) H-donor | 3.76 | −0.2 | |
C-41 | CD1 Ile-879 | (A) H-acceptor | 3.84 | −0.2 | |
C-81 | CD Lys-833 | (A) H-acceptor | 3.26 | −0.8 | |
C-81 | NZ Lys-833 | (A) H-acceptor | 3.61 | −2.5 | |
C-81 | CB Asp-836 | (A) H-acceptor | 3.10 | −0.2 |
Compound Name | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
Co Crys. Ligand | N22 26 | OG1 THR291 | (A) H-donor | 3.16 | −1.2 |
N8 15 | N ALA 230 | (A) H-acceptor | 2.99 | −5.4 | |
n-Pentacosane | C 68 | 6-ring PHE 161 | (A) H-pi | 5.07 | −0.2 |
Camphene | C 13 | 5-ring HIS 194 | (A) H-pi | 4.48 | −0.2 |
C 20 | 6-ring PHE 161 | (A) H-pi | 4.23 | −0.3 | |
ꞵ-Citronellene | No binding | ||||
Linalool | O 19 | OE1 GLU198 | (A) H-donor | 2.82 | −1.6 |
O 19 | NZ LYS 179 | (A) H-acceptor | 3.08 | −0.6 | |
α-Terpineol | O 28 | OG1 THR 195 | (A) H-donor | 2.94 | −0.2 |
C 9 | 6-ring PHE 161 | (A) H-pi | 4.96 | −0.3 | |
n-Nonacosane | No binding | ||||
α-Amyrin | C 9 | SD MET 281 | (A) H-donor | 4.09 | −0.2 |
Octacosanol | O 86 | O SER 240 | (A) H-donor | 2.91 | −1.6 |
C 79 | 6-ring PHE 161 | (A) H-pi | 5.00 | −0.2 | |
C 79 | 5-ring HIS 194 | (A) H-pi | 4.62 | −0.2 | |
γ-Sitosterol | C 6 | SD MET 281 | (A) H-donor | 4.02 | −0.3 |
O 74 | OE1 GLU 234 | (A) H-donor | 3.17 | −0.3 | |
C 60 | 5-ring HIS 194 | (A) H-pi | 4.37 | −0.4 | |
α-Tocopherol | O 19 | OE1 GLU 441 | (A) H-donor | 3.08 | −2.4 |
C 32 | OE2 GLU 234 | (A) H-donor | 3.86 | −0.2 | |
C 50 | SD MET 281 | (A) H-donor | 3.90 | −0.2 | |
C 78 | SD MET 227 | (A) H-donor | 3.90 | −0.2 | |
6-ring | CZ PHE 442 | (A) pi-H | 3.83 | −0.7 | |
ꞵ-Amyrin Acetate | C 4 | OD2 ASP 439 | (A) H-donor | 3.57 | −0.4 |
C 77 | O TYR 437 | (A) H-donor | 3.32 | −0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, S.H.; Kandil, N.H.; Hemdan, R.M.; Kotb, S.S.; Zaki, S.S.; Abdelaziz, O.M.; AbdelRazek, M.M.M.; Almahli, H.; El Hassab, M.A.; Al-Rashood, S.T.; et al. GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities. Molecules 2023, 28, 2193. https://doi.org/10.3390/molecules28052193
Aly SH, Kandil NH, Hemdan RM, Kotb SS, Zaki SS, Abdelaziz OM, AbdelRazek MMM, Almahli H, El Hassab MA, Al-Rashood ST, et al. GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities. Molecules. 2023; 28(5):2193. https://doi.org/10.3390/molecules28052193
Chicago/Turabian StyleAly, Shaza H., Nariman H. Kandil, Roqaya M. Hemdan, Sara S. Kotb, Sara S. Zaki, Omnia M. Abdelaziz, Mohamed M. M. AbdelRazek, Hadia Almahli, Mahmoud A. El Hassab, Sara T. Al-Rashood, and et al. 2023. "GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities" Molecules 28, no. 5: 2193. https://doi.org/10.3390/molecules28052193
APA StyleAly, S. H., Kandil, N. H., Hemdan, R. M., Kotb, S. S., Zaki, S. S., Abdelaziz, O. M., AbdelRazek, M. M. M., Almahli, H., El Hassab, M. A., Al-Rashood, S. T., Binjubair, F. A., & Eldehna, W. M. (2023). GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities. Molecules, 28(5), 2193. https://doi.org/10.3390/molecules28052193