The Nanostructure of Alkyl-Sulfonate Ionic Liquids: Two 1-Alkyl-3-methylimidazolium Alkyl-Sulfonate Homologous Series
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of [CnC1im][C8SO3] and [C8C1im][CmSO3]
2.2. Total Structure Factors
2.3. Pair Distribution Functions
2.4. Aggregation Analysis
3. Computational Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shimizu, K.; Tariq, M.; Freitas, A.A.; Pádua, A.A.H.; Canongia Lopes, J.N. Self-Organization in Ionic Liquids: From Bulk to Interfaces and Films. J. Braz. Chem. Soc. 2016, 27, 349–362. [Google Scholar] [CrossRef]
- Ruivo, D.; Canongia Lopes, J.N.; Deive, F.J.; Esperança, J.M.S.S.; Rebelo, L.P.N.; Rodriguez, A.; Shimizu, K. Molecular dynamics studies on the structure and interactions of ionic liquids containing amino-acid anions. Phys. Chem. Chem. Phys. 2018, 20, 23864–23872. [Google Scholar] [CrossRef]
- Freire, M.G.; Neves, C.M.S.S.; Carvalho, P.J.; Gardas, R.L.; Fernandes, A.M.; Marrucho, I.M.; Santos, L.N.B.F.; Coutinho, J.A.P. Mutual Solubilities of Water and Hydrophobic Ionic Liquids. J. Phys. Chem. B 2007, 111, 13082–13089. [Google Scholar] [CrossRef] [Green Version]
- Freire, M.G.; Carvalho, P.J.; Gardas, R.L.; Marrucho, I.M.; Santos, L.N.B.F.; Coutinho, J.A.P. Mutual Solubilities of Water and the [Cnmim][Tf2N] Hydrophobic Ionic Liquids. J. Phys. Chem. B 2008, 112, 1604–1610. [Google Scholar] [CrossRef]
- Santiago, R.S.; Aznar, M. Liquid-liquid equilibrium in ternary ionic liquid systems by UNIFAC: New volume, surface area and interaction parameters. Part II. Fluid Ph. Equilibria 2011, 303, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Seoane, R.G.; González, E.J.; González, B. 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids as solvents in the separations of azeotropic mixtures. J. Chem. Thermodyn. 2012, 53, 152–157. [Google Scholar] [CrossRef]
- Canongia Lopes, J.N.; Pádua, A.A.H. Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflimide Anions. J. Phys. Chem. B 2004, 108, 16893–16898. [Google Scholar] [CrossRef]
- Park, S.; Kazlauskas, R. Biocatalysis in ionic liquids—Advantages beyond green technology. Curr. Opin. Biotechnol. 2003, 14, 432–437. [Google Scholar] [CrossRef]
- Nordness, O.; Brennecke, J.F. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chem. Rev. 2020, 120, 12873–12902. [Google Scholar] [CrossRef]
- Soares, B.G.; Nascimento, M.R.S.; Sena, A.S.; Indrusiak, T.; Souto, L.F.C.; Pontes, K. Polyaniline co-doped with dodecyl benzene sulfonic acid and zwitterionic-based ionic liquids prepared by inverse emulsion polymerization. Synth. Met. 2020, 226, 116435. [Google Scholar] [CrossRef]
- Jesus, F.; Passos, H.; Ferreira, A.M.; Kuroda, K.; Pereira, J.L.; Gonçalves, F.J.M.; Coutinho, J.A.P.; Ventura, S.P.M. Zwitterionic compounds are less ecotoxic than their analogous ionic liquids. Green Chem. 2021, 23, 3683. [Google Scholar] [CrossRef]
- Han, I.K.; Han, J.; Kim, Y.S. Liquid-to-Solid Phase Transitions of Imidazolium-Based Zwitterionic Polymers Induced by Hofmeister Anions. Asian J. Chem. 2021, 16, 1897–1900. [Google Scholar] [CrossRef]
- Keita, H. Synthesis and thermal characterization of solid state organic electrolytes for their potential lithium-ion battery applications. Mater. Lett. X 2021, 12, 100093. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Nguyen, T.L.; Le, M.L.P.; Mai, T.P.; Kim, H.S. A zwitterionic salt with one sulfonate and two ether functional groups as an additive for lithium-ion battery electrolyte. Electrochem. Commun. 2022, 137, 107269. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Yuan, L.; Liu, Y.; Zheng, Y. Ameliorative antibacterial, anti-inflammatory, and osteogenic activity of sulfonate-bearing polyetherketone toward orthopedic and dental implants. Mater. Lett. 2021, 305, 130774. [Google Scholar] [CrossRef]
- Racovita, S.; Trofin, M.A.; Loghin, D.F.; Zaharia, M.M.; Bucatariu, F.; Mihai, M.; Vasiliu, S. Polybetaines in Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 9321. [Google Scholar] [CrossRef] [PubMed]
- Thaher, Y.A. Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers. Colloids Surf. 2021, 614, 126210. [Google Scholar] [CrossRef]
- Dimassi, S.; Tabary, N.; Chai, F.; Blanchemain, N.; Martel, B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr. Polym. 2018, 202, 382–396. [Google Scholar] [CrossRef]
- Meder, F.; Daberkow, T.; Treccani, L.; Wilhelm, M.; Schowalter, M.; Rosenauer, A.; Mädler, L.; Rezwan, K. Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups. Acta Biomater. 2011, 8, 1221–1229. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Lu, H.; Wang, N.; Wang, B.; Huang, Z. Using a switchable water to improve sustainable extraction for oil sands by-low concentration surfactant solution. J. Clean. Prod. 2021, 292, 126045. [Google Scholar] [CrossRef]
- Ou, J.; Kong, Z.; Yang, R.; Dai, Z. Synthesis of a lignin-based alcohol ether carboxylate surfactant and its application as cotton fiber detergent. J. Dispers. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Ma, X.; Liu, B.; Ma, T.; Zou, H.K.; Chu, G.W.; Sun, B.C.; Zhang, L.; Luo, Y.; Chen, J.F. Characterization of petroleum sulfonate synthesized via gas-phase SO3 sulfonation in rotating packed bed and its application in enhanced oil recovery. Chem. Eng. Sci. 2021, 230, 116216. [Google Scholar] [CrossRef]
- Colombano, S.; Davarzani, H.; van Hullebusch, E.D.; Huguenot, D.; Guyonnet, D.; Deparis, J.; Lion, F.; Ignatiadis, I. Comparison of thermal and chemical enhanced recovery of DNAPL in saturated porous media: 2D tank pumping experiments and two-phase flow modelling. Sci. Total Environ. 2021, 760, 143958. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Q.; Li, X.; Ye, J.; Chen, J. Adsorption of Cu(II) by phosphogypsum modified with sodium dodecyl benzene sulfonate. J. Hazard. Mater. 2020, 387, 121808. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Baowei, Z.; Haiyan, L. Micellar and Interfacial Behavior of Mixed Systems Containing Anionic-nonionic Gemini Surfactant. IOP Conf. Ser. Mater. Sci. Eng. 2020, 729, 12071. [Google Scholar] [CrossRef]
- Chen, H.; Gizzatov, A.; Abdel-Fattah, A.I. Molecular Assembly of Surfactant Mixtures in Oil-Swollen Micelles: Implications for High Salinity Colloidal Stability. J. Phys. Chem. B 2020, 124, 568–576. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Liu, J.; Chen, J.; Jin, X.; Dai, C. Synthesis and Performance Evaluation of Polyhydroxy Benzene Sulfonate Oil Displacement Agent Based on Enhanced Interfacial Wettability Control. Acta Chim. Sin. 2022, 80, 63–68. [Google Scholar] [CrossRef]
- Imani, K.B.C.; Jo, A.; Choi, G.M.; Kim, B.; Chung, J.W.; Lee, H.S.; Yoon, J. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform. Macromol. Rapid Commun. 2021, 43, 2100579. [Google Scholar] [CrossRef]
- Abbaspour, M.; Akbarzadeh, H.; Yousefi, P.; Razmkhah, M. Investigation of solvation of iron nanoclusters in ionic liquid 1-butyl-1,1,1-trimethylammonium methane sulfonate using molecular dynamics simulations: Effect of cluster size at different temperatures. J. Colloid Interface Sci. 2017, 504, 171–177. [Google Scholar] [CrossRef]
- Mendonça, A.C.F.; Malfreyt, P.; Pádua, A.A.H. Interactions and Ordering of Ionic Liquids at a Metal Surface. J. Chem. Theory Comput. 2012, 8, 3348–3555. [Google Scholar] [CrossRef]
- Tarannum, A.; Muvva, C.; Mehta, A.; Rao, J.R.; Fathima, N.N. Role of Preferential Ions of Ammonium Ionic Liquid in Destabilization of Collagen. J. Phys. Chem. B 2016, 120, 6515–6524. [Google Scholar] [CrossRef]
- Heimer, N.E.; Wilkes, J.S.; Wahlbeck, P.G.; Carper, W.R. 13C NMR Relaxation Rates in the Ionic Liquid 1-Ethyl-3-methylimidazolium Butanesulfonate. J. Phys. Chem. A 2006, 110, 868–874. [Google Scholar] [CrossRef]
- Marques, H.; Velho, P.; Gómez, e.; Velho, E.A. Determining the dissociation extent of ionic liquids in water the PDH + UNIQUAC model. J. Mol. Liq. 2022, 348, 118403. [Google Scholar] [CrossRef]
- Shimizu, K.; Bernardes, C.E.S.; Canongia Lopes, J.N. Structure and Aggregation in the 1-Alkyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Homologous Series. J. Phys. Chem. B 2014, 118, 567–576. [Google Scholar] [CrossRef]
- Cruz, T.F.C.; Shimizu, K.; Esperança, J.M.S.S.; André, V.; Duarte, M.T.; Rebelo, L.P.N.; Gomes, P.T.; Canongia Lopes, J.N. Ionic Liquids in Wonderland: From Electrostatics to Coordination Chemistry. J. Phys. Chem. C 2019, 123, 5804–5811. [Google Scholar] [CrossRef]
- Cruz, T.F.C.; Shimizu, K.; Esperança, J.M.S.S.; Rebelo, L.P.N.; Gomes, P.T.; Canongia Lopes, J.N. ILs through the looking glass: Electrostatics and structure probed using charge-inverted ionic liquid pairs. Faraday Discuss. 2018, 206, 203. [Google Scholar] [CrossRef]
- Rodrigues, R.F.; Freitas, A.A.; Canongia Lopes, J.N.; Shimizu, K. Ionic Liquids and Water: Hydrophobicity vs. Hydrophilicity. Molecules 2021, 26, 7159. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.J.L.; Soromenho, M.R.C.; Shimizu, K.; Marrucho, I.M.; Esperança, J.M.S.S.; Canongia Lopes, J.N.; Rebelo, L.P.N. Density, Thermal Expansion and Viscosity of Cholinium-Derived Ionic Liquids. Chem. Phys. Chem. 2012, 13, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bañuelos, J.L.; Guo, J.; Anovitz, L.; Rother, G.; Shaw, R.W.; Hillesheim, P.C.; Dai, S.; Baker, G.A.; Cummings, P.T. Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: A Combined Atomistic Simulation and Small-Angle X-ray Scattering Study. J. Phys. Chem. Lett. 2012, 3, 125–130. [Google Scholar] [CrossRef]
- Freitas, A.A.; Shimizu, K.; Canongia Lopes, J.N. Complex Structure of Ionic Liquids. Molecular Dynamics Studies with Different Cation–Anion Combinations. J. Chem. Eng. Data 2014, 59, 3120–3129. [Google Scholar] [CrossRef]
- Annapureddy, H.V.R.; Kashyap, H.K.; Biase, P.M.; Margulis, C.J. What is the Origin of the Prepeak in the X-ray Scattering of Imidazolium-Based Room-Temperature Ionic Liquids? J. Phys. Chem. B 2010, 114, 16838–16846. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, H.K.; Santos, C.S.; Annapureddy, H.V.R.; Murthy, N.S.; Margulis, C.J.; Castner, E.W., Jr. Temperature-dependent structure of ionic liquids: X-ray scattering and simulations. Faraday Discuss. 2012, 154, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, H.K.; Hettige, J.J.; Annapureddya, H.V.R.; Margulis, C.J. SAXS anti-peaks reveal the length-scales of dual positive–negative and polar–apolar ordering in room-temperature ionic liquids. Chem. Commun. 2012, 48, 5103–5105. [Google Scholar] [CrossRef] [PubMed]
- Russina, O.; Lo Celso, F.; Plechkova, N.; Jafta, C.J.; Appetecchi, G.B.; Triolo, A. Mesoscopic organization in ionic liquids. Top. Curr. Chem. (Z) 2017, 375, 58. [Google Scholar] [CrossRef] [PubMed]
- Russina, O.; Lo Celso, F.; Plechkova, N.V.; Triolo, A. Emerging Evidences of Mesoscopic-Scale Complexity in Neat Ionic Liquids and Their Mixtures. J. Phys. Chem. Lett. 2017, 8, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Esperança, J.M.S.S.; Tariq, M.; Pereiro, A.B.; Araújo, J.M.M.; Seddon, K.R.; Rebelo, L.P.N. Anomalous and Not-So-Common Behavior in Common Ionic Liquids and Ionic Liquid-Containing Systems. Front. Chem. 2019, 7, 450. [Google Scholar] [CrossRef] [Green Version]
- Akkerman, H.B.; Mannsfeld, S.C.B.; Kaushik, A.P.; Verploegen, E.; Burnier, L.; Zoombelt, A.P.; Saathoff, J.D.; Hong, S.; Evrenk, S.A.-; Liu, X.; et al. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure. J. Am. Chem. Soc. 2013, 135, 11006–11014. [Google Scholar] [CrossRef] [Green Version]
- Adamová, G.; Canongia Lopes, J.N.; Rebelo, L.P.N.; Santos, L.M.N.B.; Seddon, K.R.; Shimizu, K. The alternation effect in ionic liquid homologous series. Phys. Chem. Chem. Phys. 2014, 16, 4033–4038. [Google Scholar] [CrossRef]
- Pradeilles, J.A.; Zhong, S.; Baglyas, M.; Tarczay, G.; Butts, C.P.; Myers, E.L.; Aggarwal, V.K. Odd–even alternations in helical propensity of a homologous series of hydrocarbons. Nat. Chem. 2020, 12, 475–480. [Google Scholar] [CrossRef]
- Russina, O.; Triolo, A.; Gontrani, L.; Caminiti, R.; Xiao, D.; Hines, L.G., Jr.; Bartsch, R.A.; Quitevis, E.L.; Plechkova, N.; Seddon, K.R. Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: Structural and dynamic evidence of nanoscale segregation. J. Phys. Condens. Matter 2009, 21, 424121. [Google Scholar] [CrossRef]
- Pádua, A.A.H.; Costa Gomes, M.F.; Canongia Lopes, J.N. Molecular Solutes in Ionic Liquids: A Structural Perspective. Acc. Chem. Res. 2007, 40, 1087–1096. [Google Scholar] [CrossRef]
- Červinka, C.; Pádua, A.A.H.; Fulem, M. Thermodynamic Properties of Selected Homologous Series of Ionic Liquids Calculated Using Molecular Dynamics. J. Phys. Chem. B 2016, 120, 2362–2371. [Google Scholar] [CrossRef]
- Rocha, M.A.A.; Lima, C.F.R.A.C.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.; Marrucho, I.M.; Esperança, J.M.S.S.; Rebelo, L.P.N.; Shimizu, K.; Canongia Lopes, J.N.; et al. High-Accuracy Vapor Pressure Data of the Extended [CnC1im][Ntf2] Ionic Liquid Series: Trend Changes and Structural Shifts. J. Phys. Chem. B 2011, 115, 10919–10926. [Google Scholar] [CrossRef] [PubMed]
- Verevkin, S.P.; Zaitsau, D.H.; Emel’yanenko, V.N.; Yermalayeu, A.V.; Schick, C.; Liu, H.; Maginn, E.J.; Bulut, S.; Krossing, I.; Kalb, R. Making Sense of Enthalpy of Vaporization Trends for Ionic Liquids: New Experimental and Simulation Data Show a Simple Linear Relationship and Help Reconcile Previous Data. J. Phys. Chem. B 2013, 117, 6473–6486. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Voth, G.A. Tail Aggregation and Domain Diffusion in Ionic Liquids. J. Phys. Chem. B 2006, 110, 18601–18608. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef] [Green Version]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.; Forester, T.R. The DL_POLY Package of Molecular Simulation Routines, V.2.2; The Council for The Central Laboratory of Research Councils; Daresbury Laboratory: Warrington, UK, 2006. [Google Scholar]
- Canongia Lopes, J.N.; Deschamps, J.; Pádua, A.A.H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. J. Phys. Chem. B 2004, 108, 2038–2047. [Google Scholar] [CrossRef]
- Canongia Lopes, J.N.; Pádua, A.A.H.; Shimizu, K. Molecular Force Field for Ionic Liquids IV: Trialkylimidazolium and Alkoxycarbonyl-Imidazolium Cations, Alkylsulfonate and Alkylsulfate Anions. J. Phys. Chem. B 2008, 112, 5039–5046. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Padua, A.; Goloviznina, K.; Gong, Z. Agiliopadua/Fftool: XML Force Field Files, v1.2.1; Zenodo: Geneve, Switzerland, 2021. [Google Scholar] [CrossRef]
- Brehm, M.; Kirchner, B. TRAVIS—A free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories. J. Chem. Inf. Model. 2011, 51, 2007–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brehm, M.; Thomas, M.; Gehrke, S.; Kirchner, B. TRAVIS—A Free Analyzer for Trajectories from Molecular Simulation. J. Chem. Phys. 2020, 152, 164105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardes, C.E.S.; Shimizu, K.; Ferreira, A.I.M.C.L.; Santos, L.M.N.B.F.; Canongia Lopes, J.N. Structure and Aggregation in the 1,3-Dialkyl-imidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquid Family: 2. From Single to Double Long Alkyl Side Chains. J. Phys. Chem. B 2014, 118, 6885–6895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical Properties of Ionic Liquids: Database and Evaluation. J. Phys. Chem. Ref. Data 2006, 35, 1475–1517. [Google Scholar] [CrossRef]
- Sowmiah, S.; Srinivasadesikan, V.; Tseng, M.-C.; Chu, Y.-H. On the Chemical Stabilities of Ionic Liquids. Molecules 2009, 14, 3780–3813. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, L.G.; Espel, J.R.; Onink, F.; Meindersma, G.W.; de Haan, A.B. Density, Viscosity, and Surface Tension of Synthesis Grade Imidazolium, Pyridinium, and Pyrrolidinium Based Room Temperature Ionic Liquids. J. Chem. Eng. Data 2009, 54, 2803–2812. [Google Scholar] [CrossRef]
- Hao, X.-L.; Guo, H.-Y.; Cao, B.; Mo, G.; Li, Z.-H.; Yu, Z.-W. The Distinct Effects of Two Imidazolium-Based Ionic Liquids, [C4mim][OAc] and [C6mim][OAc], on the Phase Behaviours of DPPC. Phys. Chem. Chem. Phys. 2021, 23, 17888–17893. [Google Scholar] [CrossRef]
- Leitch, A.C.; Abdelghany, T.M.; Probert, P.M.; Dunn, M.P.; Meyer, S.K.; Palmer, J.M.; Cooke, M.P.; Blake, L.I.; Morse, K.; Rosenmai, A.K.; et al. The Toxicity of the Methylimidazolium Ionic Liquids, with a Focus on M8OI and Hepatic Effects. Food Chem. Toxicol. 2020, 136, 111069. [Google Scholar] [CrossRef]
- Neuwald, I.; Muschket, M.; Zahn, D.; Berger, U.; Seiwert, B.; Meier, T.; Kuckelkorn, J.; Strobel, C.; Knepper, T.P.; Reemtsma, T. Filling the Knowledge Gap: A Suspect Screening Study For 1310 Potentially Persistent and Mobile Chemicals With SFC- And HILIC-HRMS in Two German River Systems. Water Res. 2021, 204, 117645. [Google Scholar] [CrossRef]
- Maculewicz, J.; Swiacka, K.; Stepnowski, P.; Dołzonek, J.; Białk-Bielinska, A. Ionic Liquids as Potentially Hazardous Pollutants: Evidences of Their Presence in the Environment and Recent Analytical Developments. J. Hazard. Mater. 2022, 437, 129353. [Google Scholar] [CrossRef]
IL System | lbox/nm | dGCM/g.cm−3 | dMD/g.cm−3 | Δd/% |
---|---|---|---|---|
[C4C1im][C8SO3] | 8.92 | 0.9584 | 0.9323 | 2.72 |
[C5C1im][C8SO3] | 9.08 | 0.9479 | 0.9226 | 2.66 |
[C6C1im][C8SO3] | 9.23 | 0.9384 | 0.9150 | 2.50 |
[C7C1im][C8SO3] | 9.37 | 0.9299 | 0.9073 | 2.42 |
[C8C1im][C4SO3] | 8.94 | 0.9584 | 0.9309 | 2.86 |
[C8C1im][C5SO3] | 9.08 | 0.9479 | 0.9231 | 2.62 |
[C8C1im][C6SO3] | 9.21 | 0.9384 | 0.9149 | 2.50 |
[C8C1im][C7SO3] | 9.36 | 0.9299 | 0.9082 | 2.33 |
[C8C1im][C8SO3] | 9.54 | 0.9220 | 0.8909 | 3.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, H.; Canongia Lopes, J.N.; de Freitas, A.A.; Shimizu, K. The Nanostructure of Alkyl-Sulfonate Ionic Liquids: Two 1-Alkyl-3-methylimidazolium Alkyl-Sulfonate Homologous Series. Molecules 2023, 28, 2094. https://doi.org/10.3390/molecules28052094
Marques H, Canongia Lopes JN, de Freitas AA, Shimizu K. The Nanostructure of Alkyl-Sulfonate Ionic Liquids: Two 1-Alkyl-3-methylimidazolium Alkyl-Sulfonate Homologous Series. Molecules. 2023; 28(5):2094. https://doi.org/10.3390/molecules28052094
Chicago/Turabian StyleMarques, Hugo, José Nuno Canongia Lopes, Adilson Alves de Freitas, and Karina Shimizu. 2023. "The Nanostructure of Alkyl-Sulfonate Ionic Liquids: Two 1-Alkyl-3-methylimidazolium Alkyl-Sulfonate Homologous Series" Molecules 28, no. 5: 2094. https://doi.org/10.3390/molecules28052094
APA StyleMarques, H., Canongia Lopes, J. N., de Freitas, A. A., & Shimizu, K. (2023). The Nanostructure of Alkyl-Sulfonate Ionic Liquids: Two 1-Alkyl-3-methylimidazolium Alkyl-Sulfonate Homologous Series. Molecules, 28(5), 2094. https://doi.org/10.3390/molecules28052094