A Review on the Effect of Calcium Sequestering Salts on Casein Micelles: From Model Milk Protein Systems to Processed Cheese
Abstract
:1. Introduction
2. Different Types of Calcium Sequestering Salts
3. Effects of Calcium Sequestering Salts on the Properties of Casein Micelles
3.1. Solubilization of Individual Caseins from Casein Micelles
3.2. Calcium Chelation Ability of Calcium Sequestring Salts
3.2.1. Effect of Calcium Sequestering Salt Concentration on Calcium Chelation Ability in Casein Micelle Suspensions
3.2.2. Effect of pH on Calcium Chelation Ability
3.2.3. Effect of Heat Treatment on Calcium Chelation Ability
3.3. Casein Dispersion
3.4. Formation of Complexes between Calcium Sequestering Salts and Calcium
3.5. Casein Hydration
4. Effect of Calcium Sequestering Salt on the Properties of Processed Cheese
4.1. Emulsion Droplet Size
4.2. Textural Properties
4.2.1. Effect of Calcium Sequestering Salt Type on Textural Attributes of Processed Cheese
4.2.2. Effect of Calcium Sequestering Salt Concentration on Textural Attributes of Processed Cheese
4.3. Viscoelastic Properties
4.4. Melting Properties
4.5. pH
4.6. Color
4.7. Sensory Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pitkowski, A.; Nicolai, T.; Durand, D. Scattering and Turbidity Study of the Dissociation of Casein by Calcium Chelation. Biomacromolecules 2008, 9, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Panouillé, M.; Nicolai, T.; Durand, D. Heat Induced Aggregation and Gelation of Casein Submicelles. Int. Dairy J. 2004, 14, 297–303. [Google Scholar] [CrossRef]
- Mizuno, R.; Lucey, J. Properties of Milk Protein Gels Formed by Phosphates. J. Dairy Sci. 2007, 90, 4524–4531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walstra, P.; Jenness, R. Dairy Chemistry & Physics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Smiddy, M.; Martin, J.-E.; Kelly, A.; De Kruif, C.; Huppertz, T. Stability of Casein Micelles Cross-Linked by Transglutaminase. J. Dairy Sci. 2006, 89, 1906–1914. [Google Scholar] [CrossRef] [Green Version]
- Udabage, P.; McKinnon, I.R.; Augustin, M.-A. Mineral and Casein Equilibria in Milk: Effects of Added Salts and Calcium-Chelating Agents. J. Dairy Res. 2000, 67, 361–370. [Google Scholar] [CrossRef]
- Weiserová, E.; Doudová, L.; Galiová, L.; Žák, L.; Michálek, J.; Janiš, R.; Buňka, F. The Effect of Combinations of Sodium Phosphates in Binary Mixtures on Selected Texture Parameters of Processed Cheese Spreads. Int. Dairy J. 2011, 21, 979–986. [Google Scholar] [CrossRef]
- Shirashoji, N.; Jaeggi, J.; Lucey, J. Effect of Sodium Hexametaphosphate Concentration and Cooking Time on the Physicochemical Properties of Pasteurized Process Cheese. J. Dairy Sci. 2010, 93, 2827–2837. [Google Scholar] [CrossRef] [Green Version]
- Guinee, T.; Carić, M.; Kalab, M. Pasteurized Processed Cheese and Substitute/Imitation Cheese Products. In Cheese: Chemistry, Physics and Microbiology; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; Elsevier Academic Press: London, UK, 2004; Volume 2, pp. 349–394. [Google Scholar]
- Nagyová, G.; Buňka, F.; Salek, R.-N.; Černíková, M.; Mančík, P.; Grůber, T.; Kuchař, D. Use of Sodium Polyphosphates with Different Linear Lengths in the Production of Spreadable Processed Cheese. J. Dairy Sci. 2014, 97, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Title 21—Food and Drugs, Chapter I, Subchapter B—Food for Human Consumption, Department of Health and Human Services, Part 133—Cheese and Related Cheese Products, Subpart B—Requirements for Specific Standardized Cheese and Related Products; Code of Federal Regulation 21CFR133.169; Office of the Federal Register: College Park, MD, USA, 2020.
- McIntyre, I.; O’Sullivan, M.; O’Riordan, D. Effects of Calcium Chelators on Calcium Distribution and Protein Solubility in Rennet Casein Dispersions. Food Chem. 2016, 197, 233–239. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H. Effect of Emulsifying Salts on the Physicochemical Properties of Processed Cheese Made from Mozzarella. J. Dairy Sci. 2012, 95, 4823–4830. [Google Scholar] [CrossRef]
- de Kort, E.; Minor, M.; Snoeren, T.; van Hooijdonk, T.; van der Linden, E. Effect of Calcium Chelators on Physical Changes in Casein Micelles in Concentrated Micellar Casein Solutions. Int. Dairy J. 2011, 21, 907–913. [Google Scholar] [CrossRef]
- Kaliappan, S.; Lucey, J. Influence of Mixtures of Calcium-Chelating Salts on the Physicochemical Properties of Casein Micelles. J. Dairy Sci. 2011, 94, 4255–4263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaucher, I.; Piot, M.; Beaucher, E.; Gaucheron, F. Physico-Chemical Characterization of Phosphate-Added Skim Milk. Int. Dairy J. 2007, 17, 1375–1383. [Google Scholar] [CrossRef]
- Ennis, M.P.; O’Sullivan, M.M.; Mulvihill, D.M. The Hydration Behaviour of Rennet Caseins in Calcium Chelating Salt Solution as Determined Using a Rheological Approach. Food Hydrocoll. 1998, 12, 451–457. [Google Scholar] [CrossRef]
- de Kort, E.; Minor, M.; Snoeren, T.; van Hooijdonk, T.; van der Linden, E. Effect of Calcium Chelators on Heat Coagulation and Heat-Induced Changes of Concentrated Micellar Casein Solutions: The Role of Calcium-Ion Activity and Micellar Integrity. Int. Dairy J. 2012, 26, 112–119. [Google Scholar] [CrossRef]
- Garcia, A.; Alting, A.; Huppertz, T. Effect of Sodium Hexametaphosphate on Heat-Induced Changes in Micellar Casein Isolate Solutions. Int. Dairy J. 2023, 140, 105583. [Google Scholar] [CrossRef]
- Buňka, F.; Černíková, M.; Salek, R.N. Functionality of Salts Used in Processed Cheese Manufacture. In Processed Cheese Science and Technology, 3rd ed.; Woodhead Publishing, Elsevier: Sawston, Cambridge, UK, 2022; pp. 147–176. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L. Processed Cheese and Substitute/Imitation Cheese Products. In Fundamentals of Cheese Science, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 589–627. [Google Scholar]
- Lucey, J.; Maurer-Rothmann, A.; Kaliappan, S. Functionality of Ingredients: Emulsifying Salts. In Processed Cheese and Analogues, 1st ed.; Tamime, A.Y., Ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 110–132. [Google Scholar]
- Yamauchi, K.; Yoneda, Y.; Koga, Y.; Tsugo, T. Exchangeability of Colloidal Calcium in Milk with Soluble Calcium. Agric. Biol. Chem. 1969, 33, 907–914. [Google Scholar] [CrossRef]
- Lin, S.; Leong, S.; Dewan, R.; Bloomfield, V.; Morr, C. Effect of Calcium Ion on the Structure of Native Bovine Casein Micelles. Biochemistry 1972, 11, 1818–1821. [Google Scholar] [CrossRef]
- Aoki, T.; Kako, Y.; Imamura, T. Separation of Casein Aggregates Cross-Linked by Colloidal Calcium Phosphate from Bovine Casein Micelles by High Performance Gel Chromatography in the Presence of Urea. J. Dairy Res. 1986, 53, 53–59. [Google Scholar] [CrossRef]
- Downey, W.; Murphy, R. The Temperature-Dependent Dissociation of β-Casein from Bovine Casein Micelles and Complexes. J. Dairy Res. 1970, 37, 361–372. [Google Scholar] [CrossRef]
- McCarthy, N.A.; Power, O.; Wijayanti, H.B.; Kelly, P.M.; Mao, L.; Fenelon, M.A. Effects of Calcium Chelating Agents on the Solubility of Milk Protein Concentrate. Int. J. Dairy Technol. 2017, 70, 415–423. [Google Scholar] [CrossRef]
- De Kort, E.; Minor, M.; Snoeren, T.; Van Hooijdonk, T.; Van Der Linden, E. Calcium-Binding Capacity of Organic and Inorganic Ortho-and Polyphosphates. Dairy Sci. Technol. 2009, 89, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, R.; Lucey, J. Effects of Emulsifying Salts on the Turbidity and Calcium-Phosphate–Protein Interactions in Casein Micelles. J. Dairy Sci. 2005, 88, 3070–3078. [Google Scholar] [CrossRef] [Green Version]
- Culler, M.; Saricay, Y.; Harte, F. The Effect of Emulsifying Salts on the Turbidity of a Diluted Milk System with Varying PH and Protein Concentration. J. Dairy Sci. 2017, 100, 4241–4252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walstra, P. On the Stability of Casein Micelles. J. Dairy Sci. 1990, 73, 1965–1979. [Google Scholar] [CrossRef]
- Walstra, P.; Wouters, J.T.; Geurts, T.J. Dairy Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Martin, C.; Evans, W. Phytic Acid-Metal Ion Interactions. II. The Effect of PH on Ca (II) Binding. J. Inorg. Biochem. 1986, 27, 17–30. [Google Scholar] [CrossRef]
- De Jager, H.-J.; Heyns, A.M. Kinetics of Acid-Catalyzed Hydrolysis of a Polyphosphate in Water. J. Phys. Chem. A 1998, 102, 2838–2841. [Google Scholar] [CrossRef]
- McBeath, T.M.; Lombi, E.; McLaughlin, M.J.; Bünemann, E.K. Polyphosphate-fertilizer Solution Stability with Time, Temperature, and PH. J. Plant Nutr. Soil Sci. 2007, 170, 387–391. [Google Scholar] [CrossRef]
- Rulliere, C.; Perenes, L.; Senocq, D.; Dodi, A.; Marchesseau, S. Heat Treatment Effect on Polyphosphate Chain Length in Aqueous and Calcium Solutions. Food Chem. 2012, 134, 712–716. [Google Scholar] [CrossRef]
- Barth, A.; Tormena, C.; Viotto, W. PH Influences Hydrolysis of Sodium Polyphosphate in Dairy Matrices and the Structure of Processed Cheese. J. Dairy Sci. 2017, 100, 8735–8743. [Google Scholar] [CrossRef] [Green Version]
- Cavalier-Salou, C.; Cheftel, J. Emulsifying Salts Influence on Characteristics of Cheese Analogs from Calcium Caseinate. J. Food Sci. 1991, 56, 1542–1547. [Google Scholar] [CrossRef]
- Thomas, M.; Newell, G.; Abad, G.; Turner, A. Effect of Emulsifying Salts on Objective and Subjective Properties of Processed Cheese. J. Food Sci. 1980, 45, 458–459. [Google Scholar] [CrossRef]
- Rollema, H.S.; Brinkhuis, J.A. A 1H-NMR Study of Bovine Casein Micelles; Influence of PH, Temperature and Calcium Ions on Micellar Structure. J. Dairy Res. 1989, 56, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Smiddy, M.A.; de Kruif, C.G. Biocompatible Micro-Gel Particles from Cross-Linked Casein Micelles. Biomacromolecules 2007, 8, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Shirashoji, N.; Aoyagi, H.; Jaeggi, J.; Lucey, J. Effect of Tetrasodium Pyrophosphate Concentration and Cooking Time on the Physicochemical Properties of Process Cheese. J. Dairy Sci. 2016, 99, 6983–6994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucey, J.; Johnson, M.; Horne, D. Invited Review: Perspectives on the Basis of the Rheology and Texture Properties of Cheese. J. Dairy Sci. 2003, 86, 2725–2743. [Google Scholar] [CrossRef] [Green Version]
- Furia, T. Sequestrants in Food: Handbook of Food Additives, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1972. [Google Scholar]
- Lee, S.K.; Anema, S.; Klostermeyer, H. The Influence of Moisture Content on the Rheological Properties of Processed Cheese Spreads. Int. J. Food Sci. Technol. 2004, 39, 763–771. [Google Scholar] [CrossRef]
- Schuck, P.; Briard, V.; Mejean, S.; Piot, M.; Famelart, M.-H.; Maubois, J. Dehydration by Desorption and by Spray Drying of Dairy Proteins: Influence of the Mineral Environment. Dry Technol. 1999, 17, 1347–1357. [Google Scholar] [CrossRef]
- El-Bakry, M.; Duggan, E.; O’riordan, E.; O’sullivan, M. Effect of Cation, Sodium or Potassium, on Casein Hydration and Fat Emulsification during Imitation Cheese Manufacture and Post-Manufacture Functionality. LWT—Food Sci. Technol. 2011, 44, 2012–2018. [Google Scholar] [CrossRef]
- Guinee, T.; O’Kennedy, B. Reducing the Level of Added Disodium Phosphate Alters the Chemical and Physical Properties of Processed Cheese. Dairy Sci. Technol. 2012, 92, 469–486. [Google Scholar] [CrossRef]
- Lee, S.K.; Buwalda, R.; Euston, S.R.; Foegeding, E.; McKenna, A. Changes in the Rheology and Microstructure of Processed Cheese during Cooking. LWT—Food Sci. Technol. 2003, 36, 339–345. [Google Scholar] [CrossRef]
- Awad, R.; Abdel-Hamid, L.; El-Shabrawy, S.; Singh, R. Texture and Microstructure of Block Type Processed Cheese with Formulated Emulsifying Salt Mixtures. LWT—Food Sci. Technol. 2002, 35, 54–61. [Google Scholar] [CrossRef]
- Shirashoji, N.; Jaeggi, J.; Lucey, J. Effect of Trisodium Citrate Concentration and Cooking Time on the Physicochemical Properties of Pasteurized Process Cheese. J. Dairy Sci. 2006, 89, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sádlíková, I.; Buňka, F.; Budinský, P.; Barbora, V.; Pavlínek, V.; Hoza, I. The Effect of Selected Phosphate Emulsifying Salts on Viscoelastic Properties of Processed Cheese. LWT—Food Sci. Technol. 2010, 43, 1220–1225. [Google Scholar] [CrossRef]
- Dimitreli, G.; Thomareis, A.S. Instrumental Textural and Viscoelastic Properties of Processed Cheese as Affected by Emulsifying Salts and in Relation to Its Apparent Viscosity. Int. J. Food Prop. 2009, 12, 261–275. [Google Scholar] [CrossRef]
- Carić, M.; Kaláb, M. Processed Cheese Products. In Cheese: Chemistry, Physics and Microbiology; Springer: Berlin/Heidelberg, Germany, 1999; pp. 467–505. [Google Scholar]
- El-Bakry, M.; Duggan, E.; O’Riordan, E.; O’Sullivan, M. Effect of Chelating Salt Type on Casein Hydration and Fat Emulsification during Manufacture and Post-Manufacture Functionality of Imitation Cheese. J. Food Eng. 2011, 102, 145–153. [Google Scholar] [CrossRef]
- Buňka, F.; Doudová, L.; Weiserová, E.; Kuchař, D.; Michálek, J.; Slavíková, Š.; Kráčmar, S. The Effect of Different Ternary Mixtures of Sodium Phosphates on Hardness of Processed Cheese Spreads. Int. J. Food Sci. Technol. 2012, 47, 2063–2071. [Google Scholar] [CrossRef]
- Lee, S.K.; Anema, S.G. The Effect of the PH at Cooking on the Properties of Processed Cheese Spreads Containing Whey Proteins. Food Chem. 2009, 115, 1373–1380. [Google Scholar] [CrossRef]
- Savello, P.; Ernstrom, C.; Kalab, M. Microstructure and Meltability of Model Process Cheese Made with Rennet and Acid Casein. J. Dairy Sci. 1989, 72, 1–11. [Google Scholar] [CrossRef]
- Cunha, C.R.; Viotto, W.H. Casein Peptization, Functional Properties, and Sensory Acceptance of Processed Cheese Spreads Made with Different Emulsifying Salts. J. Food Sci. 2010, 75, C113–C120. [Google Scholar] [CrossRef]
- Awad, R.; Abdel-Hamid, L.; El-Shabrawy, S.; Singh, R. Physical and Sensory Properties of Block Processed Cheese with Formulated Emulsifying Salt Mixtures. Int. J. Food Prop. 2004, 7, 429–448. [Google Scholar] [CrossRef]
- Gupta, S.; Karahadian, C.; Lindsay, R. Effect of Emulsifier Salts on Textural and Flavor Properties of Processed Cheeses. J. Dairy. Sci. 1984, 67, 764–778. [Google Scholar] [CrossRef]
- Nogueira, E.B.; Costa-Lima, B.R.; Torres, F.; Regazone, A.V.; Melo, L.; Franco, R.M.; Cortez, M.A.S. Effect of Potassium-based Emulsifying Salts on the Sensory and Physicochemical Parameters of Low-Sodium Spreadable Processed Cheese. Int. J. Dairy Technol. 2018, 71, 717–722. [Google Scholar] [CrossRef]
- Chavhan, G.B.; Kanawjia, S.; Khetra, Y.; Puri, R. Effect of Potassium-Based Emulsifying Salts on Sensory, Textural, and Functional Attributes of Low-Sodium Processed Mozzarella Cheese. Dairy Sci. Technol. 2015, 95, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, K.; Nishiya, T.; Ido, K.; Kawanishi, G. Effects of Heat Treatment on the Meltability of Processed Cheese. Nippon Shokuhin Kogyo Gakkaishi 1991, 38, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Klostermeyer, H. The Effect of PH on the Rheological Properties of Reduced-Fat Model Processed Cheese Spreads. LWT—Food Sci. Technol. 2001, 34, 288–292. [Google Scholar] [CrossRef]
- Jelena, M.; Zorana, M. Flavors, Colors, and Preservatives Used in Processed Cheese. In Processed Cheese Science and Technology; Woodhead Publishing, Elsevier: Sawston, Cambridge, UK, 2022; pp. 125–147. [Google Scholar]
Group | Permitted Calcium Sequestering Salts | Chemical Formula | Molecular Weight (g/mol) |
---|---|---|---|
Citrate | Sodium citrate | C6H5Na3O7 | 258.07 |
Potassium citrate | C6H5K3O7 | 306.39 | |
Calcium citrate | C12H10Ca3O14 | 498.40 | |
Orthophosphate | Monosodium phosphate | NaH2PO4 | 119.97 |
Disodium phosphate | Na2HPO4 | 141.96 | |
Trisodium phosphate | Na3PO4 | 163.94 | |
Pyrophosphate | Tetrasodium pyrophosphate | Na4P2O7 | 265.90 |
Sodium acid pyrophosphate | Na2H2P2O7 | 221.94 | |
Polyphosphate | Sodium hexametaphosphate | Na6O18P6 | 611.77 |
Aluminum phosphate | Sodium aluminum phosphate | AlNaO4P+ | 144.94 |
Potassium based CSS | Dipotassium phosphate | K2HPO4 | 174.18 |
Sodium potassium tartrate | C4H4KNaO6 | 210.16 | |
Tartrate | Sodium tartrate | C4H4Na2O6 | 194.05 |
Properties | Effect of Calcium Sequestering Salts (CSS) | Increasing CSS Level | Reference |
---|---|---|---|
Solubilization of individual casein fractions |
| ↑ | [14,16] |
Calcium chelation ability | Long-chain phosphates > tri-polyphosphates > pyrophosphate (triphosphates and di-phosphates) > citrate > orthophosphate | ↑ | [8,10] |
Casein dispersion | Disodium uridine phosphate < disodium phosphate < trisodium citrate < sodium phytate < sodium hexametaphosphate | ↑ | [14,18] |
Emulsion droplet size | Tripolyphoshates > pyrophosphates > polyphosphates > citrates ≈ orthophosphates ≈ sodium aluminium phosphates | - | [9,38,39] |
Casein hydration |
| ↑ | [38,39] |
Complex between CSS and Ca |
| - | [1,12] |
Properties | Effect of Calcium Sequestering Salts | Reference |
---|---|---|
Hardness | Strong effect of concentration and type of CSS- lot of contradictory reports | [51,52,53] |
Viscoelastic | Less rigid structure (lower G′) of orthophosphate < polyphosphate < diphosphate < triphosphate. | [51,52] |
Melting ability |
| [9,58] |
Color |
| [59,60] |
pH |
| [52,56] |
Sensory |
| [61,62,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshwal, G.K.; Gómez-Mascaraque, L.G.; Fenelon, M.; Huppertz, T. A Review on the Effect of Calcium Sequestering Salts on Casein Micelles: From Model Milk Protein Systems to Processed Cheese. Molecules 2023, 28, 2085. https://doi.org/10.3390/molecules28052085
Deshwal GK, Gómez-Mascaraque LG, Fenelon M, Huppertz T. A Review on the Effect of Calcium Sequestering Salts on Casein Micelles: From Model Milk Protein Systems to Processed Cheese. Molecules. 2023; 28(5):2085. https://doi.org/10.3390/molecules28052085
Chicago/Turabian StyleDeshwal, Gaurav Kr, Laura G. Gómez-Mascaraque, Mark Fenelon, and Thom Huppertz. 2023. "A Review on the Effect of Calcium Sequestering Salts on Casein Micelles: From Model Milk Protein Systems to Processed Cheese" Molecules 28, no. 5: 2085. https://doi.org/10.3390/molecules28052085
APA StyleDeshwal, G. K., Gómez-Mascaraque, L. G., Fenelon, M., & Huppertz, T. (2023). A Review on the Effect of Calcium Sequestering Salts on Casein Micelles: From Model Milk Protein Systems to Processed Cheese. Molecules, 28(5), 2085. https://doi.org/10.3390/molecules28052085