A Novel Approach in Skin Care: By-Product Extracts as Natural UV Filters and an Alternative to Synthetic Ones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Phenolic Extracts
2.2. Evaluation of the Stability of the Sunscreens
2.3. Determination of the Antioxidant Properties of the Formulations
2.4. Sun Protection Factor of the Sunscreens
3. Materials and Methods
3.1. Samples and Reagents
3.2. Methods
3.2.1. Extraction of Bioactive Compounds
3.2.2. Phenolic Compound Quantification
3.2.3. Characterization of the Phenolic Extracts
3.2.4. Antibacterial Activity
3.2.5. Formulation Production
3.2.6. Antioxidant Capacity of Sunscreens
3.2.7. Antibacterial Capacity of Sunscreens
3.2.8. Sun Protection Factor
3.2.9. Sunscreen Formulation Stability Tests
Determination of Formulation pH
Accelerated Thermal Stability: Temperature Variation Test
Accelerated Physical Stability: Centrifugation Test
Oxidative Stability: Peroxide Value
3.2.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Ascorbic Acid |
AOx | Antioxidant |
OP | Onion Peel |
PC | Phenolic Compound |
PFP | Passion Fruit Peel |
PV | Peroxide Value |
SPF | Sun Protection Factor |
TPC | Total Phenolic Content |
UV | Ultraviolet |
References
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Goyal, A.; Sharma, A.; Kaur, J.; Kumari, S.; Garg, M.; Sindhu, R.K.; Rahman, M.H.; Akhtar, M.F.; Tagde, P.; Najda, A.; et al. Bioactive-Based Cosmeceuticals: An Update on Emerging Trends. Molecules 2022, 27, 828. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhães, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the Use of Antioxidants in Anti-Ageing Cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Datta, H.S.; Paramesh, R. Trends in Aging and Skin Care: Ayurvedic Concepts. J. Ayurveda Integr. Med. 2010, 1, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Addor, F.A.S.; Barcaui, C.B.; Gomes, E.E.; Lupi, O.; Marçon, C.R.; Miot, H.A. Sunscreen Lotions in the Dermatological Prescription: Review of Concepts and Controversies. An. Bras. Dermatol. 2022, 97, 204–222. [Google Scholar] [CrossRef]
- Gilaberte, Y.; González, S. ACTAS Dermo-Sifiliográficas Update on Photoprotection. Actas Dermo-Sifiliográficas 2010, 101, 659–672. [Google Scholar] [CrossRef]
- Food and Drug Administration. Food and Drug Administration (US)-CDER Sun Protection Factor. Available online: https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/sun-protection-factor-spf (accessed on 17 February 2023).
- Acker, S.; Hloucha, M.; Osterwalder, U. The Easy Way to Make a Sunscreen. Int. J. Appl. Sci. 2014, 140, 24–30. [Google Scholar]
- Ngoc, L.T.N.; Van Tran, V.; Moon, J.Y.; Chae, M.; Park, D.; Lee, Y.C. Recent Trends of Sunscreen Cosmetic. Cosmetics 2019, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Ginzburg, A.L.; Blackburn, R.S.; Santillan, C.; Truong, L.; Tanguay, R.L.; Hutchison, J.E. Zinc Oxide-Induced Changes to Sunscreen Ingredient Efficacy and Toxicity under UV Irradiation. Photochem. Photobiol. Sci. 2021, 20, 1273–1285. [Google Scholar] [CrossRef]
- Korać, R.R.; Khambholja, K.M. Potential of Herbs in Skin Protection from Ultraviolet Radiation. Pharmacogn. Rev. 2011, 5, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Ramos, S.; Homem, V.; Alves, A.; Santos, L. A Review of Organic UV-Filters in Wastewater Treatment Plants. Environ. Int. 2016, 86, 24–44. [Google Scholar] [CrossRef] [PubMed]
- Pathak, M.A. Sunscreens: Topical and Systemic Approaches for Protection of Human Skin against Harmful Effects of Solar Radiation. J. Am. Acad. Dermatol. 1982, 7, 285–312. [Google Scholar] [CrossRef] [PubMed]
- Donglikar, M.M.; Deore, S.L. Sunscreens: A Review. Pharmacogn. J. 2016, 8, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.L.; Lim, H.W. A Review of Inorganic UV Filters Zinc Oxide and Titanium Dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef] [Green Version]
- Romanhole, R.C.; Fava, A.L.M.; Tundisi, L.L.; de Macedo, L.M.; dos Santos, É.M.; Ataide, J.A.; Mazzola, P.G. Unplanned Absorption of Sunscreen Ingredients: Impact of Formulation and Evaluation Methods. Int. J. Pharm. 2020, 591, 120013. [Google Scholar] [CrossRef]
- Klimová, Z.; Hojerová, J.; Pažoureková, S. Current Problems in the Use of Organic UV Filters to Protect Skin from Excessive Sun Exposure. Acta Chim. Slovaca 2013, 6, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Adler, B.L.; DeLeo, V.A. Sunscreen Safety: A Review of Recent Studies on Humans and the Environment. Curr. Dermatol. Rep. 2020, 9, 1–9. [Google Scholar] [CrossRef]
- Bilal, M.; Mehmood, S.; Iqbal, H.M.N. The Beast of Beauty: Environmental and Health Concerns of Toxic Components in Cosmetics. Cosmetics 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Manaia, E.B.; Kaminski, R.C.K.; Corrêa, M.A.; Chiavacci, L.A. Inorganic UV Filters. Braz. J. Pharm. Sci. 2013, 49, 201–209. [Google Scholar] [CrossRef]
- Fernandes, I.d.A.A.; Maciel, G.M.; Ribeiro, V.R.; Rossetto, R.; Pedro, A.C.; Haminiuk, C.W.I. The Role of Bacterial Cellulose Loaded with Plant Phenolics in Prevention of UV-Induced Skin Damage. Carbohydr. Polym. Technol. Appl. 2021, 2, 100122. [Google Scholar] [CrossRef]
- Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic Compounds in Agri-Food by-Products, Their Bioavailability and Health Effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, B.; Heleno, S.; Oliveira, M.; Barros, L.; Ferreira, I. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2020, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; Tomar, M.; et al. Onion (Allium Cepa L.) Peels: A Review on Bioactive Compounds and Biomedical Activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.M.A.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.D.; Rocha, S.M. Purple Passion Fruit (Passiflora Edulis f. Edulis): A Comprehensive Review on the Nutritional Value, Phytochemical Profile and Associated Health Effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.M.; Santos, L. Incorporation of Phenolic Extracts from Different By-Products in Yoghurts to Create Fortified and Sustainable Foods. Food Biosci. 2023, 51, 102293. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic Compounds, Antioxidant, and Antibacterial Properties of Pomace Extracts from Four Virginia-Grown Grape Varieties. Food Sci. Nutr. 2016, 4, 125–133. [Google Scholar] [CrossRef]
- Luchian, C.E.; Cotea, V.V.; Vlase, L.; Toiu, A.M.; Colibaba, L.C.; Răschip, I.E.; Nadăş, G.; Gheldiu, A.M.; Tuchiluş, C.; Rotaru, L. Antioxidant and Antimicrobial Effects of Grape Pomace Extracts. BIO Web Conf. 2019, 15, 04006. [Google Scholar] [CrossRef]
- De Oliveira, L.D.L.; De Carvalho, M.V.; Melo, L. Health Promoting and Sensory Properties of Phenolic Compounds in Food. Rev. Ceres. 2014, 61, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.k. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Joram Mendoza, D.; Mouterde, L.M.M.; Browne, C.; Singh Raghuwanshi, V.; Simon, G.P.; Garnier, G.; Allais, F. Grafting Nature-Inspired and Bio-Based Phenolic Esters onto Cellulose Nanocrystals Gives Biomaterials with Photostable Anti-UV Properties. ChemSusChem 2020, 13, 6552–6561. [Google Scholar] [CrossRef]
- Vicentini, F.T.M.C.; Georgetti, S.R.; Jabor, J.R.; Caris, J.A.; Bentley, M.V.L.B.; Fonseca, M.J.V. Photostability of Quercetin under Exposure to UV Irradiation. Lat. Am. J. Pharm. 2007, 26, 119–124. [Google Scholar]
- Ferreira, S.M.; Santos, L. A Potential Valorization Strategy of Wine Industry By-Products and Their Application in Cosmetics—Case Study: Grape Pomace and Grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef]
- Kim, S.H.; Jung, E.Y.; Kang, D.H.; Chang, U.J.; Hong, Y.H.; Suh, H.J. Physical Stability, Antioxidative Properties, and Photoprotective Effects of a Functionalized Formulation Containing Black Garlic Extract. J. Photochem. Photobiol. B Biol. 2012, 117, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.M.; Falé, Z.; Santos, L. Sustainability in Skin Care: Incorporation of Avocado Peel Extracts in Topical Formulations. Molecules 2022, 27, 1782. [Google Scholar] [CrossRef] [PubMed]
- Paulo, F.; Tavares, L.; Santos, L. Olive Mill Pomace Extract Loaded Ethylcellulose Microparticles as a Delivery System to Improve Olive Oils Oxidative Stability. Resources 2023, 12, 6. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Lognay, G.; Drira, N.E.; Attia, H. Quality Characteristics and Oxidative Stability of Date Seed Oil During Storage. Food Sci. Technol. Int. 2004, 10, 333–338. [Google Scholar] [CrossRef]
- Rodrigues, F.; Gaspar, C.; Palmeira-De-Oliveira, A.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Application of Coffee Silverskin in Cosmetic Formulations: Physical/Antioxidant Stability Studies and Cytotoxicity Effects. Drug Dev. Ind. Pharm. 2016, 42, 99–106. [Google Scholar] [CrossRef]
- Balboa, E.M.; Soto, M.L.; Nogueira, D.R.; González-López, N.; Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Domínguez, H. Potential of Antioxidant Extracts Produced by Aqueous Processing of Renewable Resources for the Formulation of Cosmetics. Ind. Crops Prod. 2014, 58, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Radice, M.; Manfredini, S.; Ziosi, P.; Dissette, V.; Buso, P.; Fallacara, A.; Vertuani, S. Herbal Extracts, Lichens and Biomolecules as Natural Photo-Protection Alternatives to Synthetic UV Filters. A Systematic Review. Fitoterapia 2016, 114, 144–162. [Google Scholar] [CrossRef]
- Silva, A.M.T.; Nouli, E.; Xekoukoulotakis, N.P.; Mantzavinos, D. Effect of Key Operating Parameters on Phenols Degradation during H2O2-Assisted TiO2 Photocatalytic Treatment of Simulated and Actual Olive Mill Wastewaters. Appl. Catal. B Environ. 2007, 73, 11–22. [Google Scholar] [CrossRef]
- Bobo-García, G.; Davidov-Pardo, G.; Arroqui, C.; Vírseda, P.; Marín-Arroyo, M.R.; Navarro, M. Intra-Laboratory Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Polyphenolic Extracts, and Comparison with Conventional Spectrophotometric Methods. J. Sci. Food Agric. 2015, 95, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
OP | PFP | |||
---|---|---|---|---|
Antibacterial Capacity (dhalo, mm) | C = 500 mg/mL | E. coli | N. D. | N. D. |
S. aureus | 16.7 ± 0.5 a | 10.3 ± 0.9 b | ||
S. epidermidis | 18.3 ± 0.5 a | 8.5 ± 0.5 b | ||
C = 250 mg/mL | E. coli | N. D. | N. D. | |
S. aureus | 7.0 ± 1.4 | N. D. | ||
S. epidermidis | 11.7 ± 0.8 | N. D. | ||
TPC (mgGAE/g) | 377.4 ± 16.4 a | 124.2 ± 9.3 b | ||
DPPH | IC50 (mg/mL) | 15.9 ± 0.4 a | 112.2 ± 2.5 b | |
TE (mgTE/g) | 308.9 ± 2.8 a | 38.5 ± 3.1 b | ||
ABTS (TEAC) (mgTE/g) | 413.4 ± 22.5 a | 39.0 ± 1.4 b |
Compound | Calibration Curve | R2 | Linearity | Concentration (mg/gextract) | |
---|---|---|---|---|---|
OP | PFP | ||||
Gallic Acid | A = 1.21 × 105 C + 1.33 × 106 | 0.9978 | 100 | 1.33 ± 0.50 a | 1.46 ± 0.18 a |
Kaempferol | A = 7.34 × 105 C + 2.41 × 105 | 0.9993 | 80 | 1.43 ± 0.05 a | 0.62 ± 0.07 b |
Quercetin | A = 7.37 × 105 C − 2.68 × 105 | 0.9994 | 80 | 26.44 ± 1.02 a | 2.08 ± 0.09 b |
Resveratrol | A = 1.42 × 106 C + 2.79 × 105 | 0.9999 | 80 | 4.79 ± 0.70 a | 0.28 ± 0.01 b |
Sample | Concentration (mg/mL) | Abs for the Main Peaks | SPF | |
---|---|---|---|---|
Oxybenzone | 0.01 | 0.743 | 0.489 | 3.3 ± 0.5 a |
OP | 0.2 | 0.608 | 0.401 | 8.8 ± 0.3 b |
PFP | 0.2 | 0.351 | 0.253 | 3.3 ± 0.7 a |
Sample | S. aureus | S. epidermidis | E. coli | |||
---|---|---|---|---|---|---|
t0 | t2 | t0 | t2 | t0 | t2 | |
NC | 12.7 ± 0.5 a,A | 12.3 ± 3.3 a,A | 11.0 ± 1.4 a,A | 13.0 ± 1.6 a,b,A | <5.0 | <5.0 |
PC-AOx | 11.7 ± 1.7 a,A | 10.7 ± 1.7 a,A | 15.0 ± 0.0 b,c,A | 11.0 ± 0.0 a,B | <5.0 | <5.0 |
PC-UV | 14.3 ± 0.5 a,A | 11.7 ± 0.9 a,A | 15.3 ± 1.2 d,A | 15.0 ± 0.8 a,A | <5.0 | <5.0 |
OP-AOx | 11.0 ± 0.0 a,A | 9.3 ± 0.9 a,A | 12.0 ± 0.8 a,b,A | 11.7 ± 0.5 a,A | <5.0 | <5.0 |
PFP-AOx | 11.3 ± 1.2 a,A | 11.0 ± 1.6 a,A | 13.7 ± 0.5 a,A | 11.0 ± 0.5 a,B | <5.0 | <5.0 |
MIX-AOx | 11.0 ±1.6 a,A | 8.7 ± 0.5 a,A | 15.7 ± 2.1 c,A | 11.7 ± 1.9 a,B | <5.0 | <5.0 |
OP-UV | 10.0 ± 0.8 a,A | 9.7 ± 1.2 a,A | 13.7 ± 0.9 a,d,A | 13.7 ± 0.9 b,A | <5.0 | <5.0 |
PFP-UV | 10.0 ± 0.8 a,A | 8.7 ± 0.5 a,A | 12.0 ± 0.8 a,d,A | 11.3 ± 0.5 b,A | <5.0 | <5.0 |
MIX-UV | 13.0 ± 1.6 a,A | 12.0 ± 0.8 a,A | 12.7 ± 0.5 a,d,A | 15.5 ± 0.4 a,A | <5.0 | <5.0 |
Sample | Abs for the Main Peaks | SPF | |
---|---|---|---|
NC | 0.018 | 0.016 | 0.34 |
PC-UV | 0.608 | 0.401 | 10.10 |
OP-UV | 0.175 | 0.144 | 3.19 |
PFP-UV | 0.023 | 0.021 | 0.44 |
MIX-UV | 0.351 | 0.253 | 6.05 |
Sample | BHT | Oxybenzone | OP | PFP |
---|---|---|---|---|
(%) | ||||
NC | - | |||
PC-AOx | 0.5 | - | - | - |
OP-AOx | - | - | 0.5 | - |
PFP-AOx | - | - | - | 0.5 |
MIX-AOx | 0.2 | - | 0.2 | 0.2 |
PC-UV | - | 5.0 | - | - |
OP-UV | - | - | 5.0 | - |
PFP-UV | - | - | - | 5.0 |
MIX-UV | - | 1.6 | 1.6 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, S.M.; Gomes, S.M.; Santos, L. A Novel Approach in Skin Care: By-Product Extracts as Natural UV Filters and an Alternative to Synthetic Ones. Molecules 2023, 28, 2037. https://doi.org/10.3390/molecules28052037
Ferreira SM, Gomes SM, Santos L. A Novel Approach in Skin Care: By-Product Extracts as Natural UV Filters and an Alternative to Synthetic Ones. Molecules. 2023; 28(5):2037. https://doi.org/10.3390/molecules28052037
Chicago/Turabian StyleFerreira, Sara M., Sandra M. Gomes, and Lúcia Santos. 2023. "A Novel Approach in Skin Care: By-Product Extracts as Natural UV Filters and an Alternative to Synthetic Ones" Molecules 28, no. 5: 2037. https://doi.org/10.3390/molecules28052037
APA StyleFerreira, S. M., Gomes, S. M., & Santos, L. (2023). A Novel Approach in Skin Care: By-Product Extracts as Natural UV Filters and an Alternative to Synthetic Ones. Molecules, 28(5), 2037. https://doi.org/10.3390/molecules28052037