Reversible Luminescent Switching Induced by Heat/Water Treatment in a Zero-Dimensional Hybrid Antimony(Ⅲ) Chloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Photophysical Properties
2.3. Theortical Calculations
2.4. Powder X-ray Diffraction and Thermogravimetric Analysis
2.5. Luminescent Water-Sensing
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Morad, V.; Shynkarenko, Y.; Yakunin, S.; Brumberg, A.; Schaller, R.D.; Kovalenko, M.V. Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation. J. Am. Chem. Soc. 2019, 141, 9764–9768. [Google Scholar] [CrossRef] [PubMed]
- Saparov, B.; Mitzi, D.B. Organic-inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596. [Google Scholar] [CrossRef]
- Mao, L.; Stoumpos, C.C.; Kanatzidis, M.G. Two-dimensional hybrid halide perovskites: Principles and promises. J. Am. Chem. Soc. 2019, 141, 1171–1190. [Google Scholar] [CrossRef]
- Li, X.; Hoffman, J.M.; Kanatzidis, M.G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 2021, 121, 2230–2291. [Google Scholar] [CrossRef]
- Jin, J.C.; Shen, N.N.; Wang, Z.P.; Peng, Y.C.; Huang, X.Y. Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coord. Chem. Rev. 2021, 448, 41. [Google Scholar] [CrossRef]
- Li, M.; Xia, Z. Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 2021, 50, 2626–2662. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007. [Google Scholar] [CrossRef]
- Li, J.L.; Sang, Y.F.; Xu, L.J.; Lu, H.Y.; Wang, J.Y.; Chen, Z.N. Highly efficient light-emitting diodes based on an organic antimony(III) halide hybrid. Angew. Chem. Int. Ed. 2022, 61, e202113450. [Google Scholar] [CrossRef]
- Li, D.Y.; Sun, Y.M.; Wang, X.Y.; Wang, N.N.; Zhang, X.Y.; Yue, C.Y.; Lei, X.W. Zero-dimensional hybrid indium halides with efficient and tunable white-light emissions. J. Phys. Chem. Lett. 2022, 13, 6635–6643. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.C.; Peng, Y.H.; Xu, Y.T.; Han, K.; Zhang, A.R.; Yang, X.B.; Xia, Z.G. Bright green emission from self-trapped excitons triggered by Sb3+ doping in Rb4CdCl6. Chem. Mater. 2022, 34, 5717–5725. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Han, M.F.; Zhao, X.J.; Ma, Y.Y.; Jing, C.Q.; Pan, H.M.; Li, D.Y.; Yue, C.Y.; Lei, X.W. Structural dimensionality modulation toward enhanced photoluminescence efficiencies of hybrid lead-free antimony halides. Adv. Opt. Mater. 2021, 9, 2100556. [Google Scholar] [CrossRef]
- Liu, H.; Shonde, T.B.; Gonzalez, F.; Olasupo, O.J.; Lee, S.; Luong, D.; Lin, X.; Vellore Winfred, J.S.R.; Lochner, E.; Fatima, I.; et al. Efficient red light emitting diodes based on a zero-dimensional organic antimony halide hybrid. Adv. Mater. 2022, 2209417. [Google Scholar] [CrossRef]
- Su, B.; Han, K.; Xia, Z. Mn2+-doped Cs2ZnBr4 scintillator for X-ray imaging. J. Mater. Chem. C 2023. [Google Scholar] [CrossRef]
- Peng, Y.C.; Zhou, S.H.; Jin, J.C.; Gu, Q.; Zhuang, T.H.; Gong, L.K.; Wang, Z.P.; Du, K.Z.; Huang, X.Y. Nearly one-fold enhancement in photoluminescence quantum yield for isostructural zero-dimensional hybrid antimony(III) bromides by supramolecular interaction adjustments. Dalton Trans. 2022, 51, 4919–4926. [Google Scholar] [CrossRef]
- He, Q.Q.; Zhou, C.K.; Xu, L.J.; Lee, S.J.; Lin, X.S.; Neu, J.; Worku, M.; Chaaban, M.; Ma, B.W. Highly stable organic antimony halide crystals for X-ray scintillation. ACS Mater. Lett. 2020, 2, 633–638. [Google Scholar] [CrossRef]
- Wu, L.-K.; Sun, H.-Y.; Li, L.-H.; Li, R.-F.; Ye, H.-Y.; Li, J.-R. Te4+-doping rubidium scandium halide perovskite single crystals enabling optical thermometry. J. Phys. Chem. C 2022, 126, 21689–21698. [Google Scholar] [CrossRef]
- Morad, V.; Yakunin, S.; Benin, B.M.; Shynkarenko, Y.; Grotevent, M.J.; Shorubalko, I.; Boehme, S.C.; Kovalenko, M.V. Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography. Adv. Mater. 2021, 33, e2007355. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, T.; Mondal, D.; Teng, S.; Zhang, Y.; Huang, K.; Wang, D.; Yang, W.; Mahadevan, P.; Zhao, Y.S.; et al. Light-emitting metal-organic halide 1D and 2D structures: Near-unity quantum efficiency, low-loss optical waveguide and highly polarized emission. Angew. Chem. Int. Ed. 2021, 60, 13548–13553. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Shi, H.S.; Zeng, L.R.; Ge, H.; Hou, Y.H.; Wu, X.M.; Yue, C.Y.; Lei, X.W. Highly emissive zero-dimensional antimony halide for anti-counterfeiting and confidential information encryption-decryption. Chem. Eng. J. 2022, 431, 134336. [Google Scholar] [CrossRef]
- Luo, Z.S.; Liu, Y.J.; Liu, Y.L.; Li, C.; Li, Y.W.; Li, Q.; Wei, Y.; Zhang, L.M.; Xu, B.; Chang, X.Y.; et al. Integrated afterglow and self-trapped exciton emissions in hybrid metal halides for anti-counterfeiting applications. Adv. Mater. 2022, 34, 2200607. [Google Scholar] [CrossRef]
- Li, D.Y.; Song, J.H.; Xu, Z.Y.; Gao, Y.J.; Yin, X.; Hou, Y.H.; Feng, L.J.; Yue, C.Y.; Fei, H.H.; Lei, X.W. Reversible triple-mode switching in photoluminescence from 0D hybrid antimony halides. Chem. Mater. 2022, 34, 6985–6995. [Google Scholar] [CrossRef]
- Fan, L.B.; Liu, K.; He, S.H.; Zhao, F.Y.; Zhao, J.; Wang, Y.G.; Liu, Q.L. Reversible mechanically induced on-off photoluminescence in hybrid metal halides. Adv. Funct. Mater. 2022, 32, 2110771. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, Y.; Jin, J.; Gong, L.; Peng, Y.; Song, Y.; Shen, N.; Wang, Z.; Du, K.; Huang, X. Crystalline-phase-recognition-induced domino phase transition and luminescence switching for advanced information encryption. Angew. Chem. Int. Ed. 2021, 60, 23373–23379. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, J.; Molokeev, M.S.; Jiang, X.; Lin, Z.; Zhao, J.; Xia, Z. Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone. Inorg. Chem. 2019, 58, 13464–13470. [Google Scholar] [CrossRef]
- Gao, W.; Leng, M.; Hu, Z.; Li, J.; Li, D.; Liu, H.; Gao, L.; Niu, G.; Tang, J. Reversible luminescent humidity chromism of organic-inorganic hybrid PEA2MnBr4 single crystals. Dalton Trans. 2020, 49, 5662–5668. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Song, J.H.; Cheng, Y.; Wu, X.M.; Wang, Y.Y.; Sun, C.J.; Yue, C.Y.; Lei, X.W. Ultra-sensitive, selective and repeatable fluorescence sensor for methanol based on a highly emissive 0D hybrid lead-free perovskite. Angew. Chem. Int. Ed. 2022, 61, e202206437. [Google Scholar] [CrossRef]
- Luo, J.B.; Wei, J.H.; Zhang, Z.Z.; Kuang, D.B. Water-molecule-induced emission transformation of zero-dimension antimony-based metal halide. Inorg. Chem. 2022, 61, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.C.; Jin, J.C.; Gu, Q.; Dong, Y.; Zhang, Z.Z.; Zhuang, T.H.; Gong, L.K.; Ma, W.; Wang, Z.P.; Du, K.Z.; et al. Selective luminescence response of a zero-dimensional hybrid antimony(III) halide to solvent molecules: Size-effect and supramolecular interactions. Inorg. Chem. 2021, 60, 17837–17845. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.C.; Zhang, Z.Z.; Lin, Y.P.; Jin, J.C.; Zhuang, T.H.; Gong, L.K.; Wang, Z.P.; Du, K.Z.; Huang, X.Y. A deep-red-emission antimony(III) chloride with dual-cations: Extremely large stokes shift due to high SbCl6 distortion. Chem. Commun. 2021, 57, 13784–13787. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.J.; Romolini, G.; Huang, H.W.; Jin, H.D.; Saha, R.A.; Ghosh, B.; De Ras, M.; Wang, C.H.; Steele, J.A.; Debroye, E.; et al. Ultrasensitive turn-on luminescence humidity sensor based on a perovskite/zeolite composite. J. Mater. Chem. C 2022, 10, 12191–12196. [Google Scholar] [CrossRef]
- Jiang, C.; Zhong, N.; Luo, C.; Lin, H.; Zhang, Y.; Peng, H.; Duan, C.G. (Diisopropylammonium)2MnBr4: A multifunctional ferroelectric with efficient green-emission and excellent gas sensing properties. Chem. Commun. 2017, 53, 5954–5957. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y. Luminescent coordination compound nanospheres for water determination. Small 2007, 3, 1218–1221. [Google Scholar] [CrossRef]
- Gao, Y.; Jing, P.; Yan, N.; Hilbers, M.; Zhang, H.; Rothenberg, G.; Tanase, S. Dual-mode humidity detection using a lanthanide-based metal-organic framework: Towards multifunctional humidity sensors. Chem. Commun. 2017, 53, 4465–4468. [Google Scholar] [CrossRef]
- Kruse, P. Review on water quality sensors. J. Phys. D Appl. Phys. 2018, 51, 203002. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.Y.; Feng, P.F.; Song, N.; Zhao, G.D.; Liu, Q.Y.; Liu, L.L.; Tang, M.; Tang, Y. Dual-functional ratiometric fluorescent sensor based on mixed-lanthanide metal-organic frameworks for the detection of trace water and temperature. Inorg. Chem. Front. 2022, 9, 1406–1415. [Google Scholar] [CrossRef]
- Fan, L.; Bao, Y. Review of fiber optic sensors for corrosion monitoring in reinforced concrete. Cem. Concr. Compos. 2021, 120, 104029. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X. Luminescent organic-inorganic hybrid metal halides: An emerging class of stimuli-responsive materials. Chem. Eur. J. 2022, 28, e202200609. [Google Scholar] [CrossRef]
- Fauzi, F.; Rianjanu, A.; Santoso, I.; Triyana, K. Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials—A mini review. Sens. Actuators A Phys. 2021, 330, 112837. [Google Scholar] [CrossRef]
- Najeeb, M.A.; Ahmad, Z.; Shakoor, R.A. Organic thin-film capacitive and resistive humidity sensors: A Focus Review. Adv. Mater. Interfaces 2018, 5, 1800969. [Google Scholar] [CrossRef]
- Rao, X.; Zhao, L.; Xu, L.; Wang, Y.; Liu, K.; Wang, Y.; Chen, G.Y.; Liu, T.; Wang, Y. Review of optical humidity sensors. Sensors 2021, 21, 8049. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Z.; Tao, L.; Shen, N.; Hu, B.; Gong, L.; Li, J.; Chen, X.; Huang, X. Hybrid chloroantimonates(III): Thermally induced triple-mode reversible luminescent switching and laser-printable rewritable luminescent paper. Angew. Chem. Int. Ed. 2019, 58, 9974–9978. [Google Scholar] [CrossRef] [PubMed]
- Cariati, F.; Panzanelli, A.; Antolini, L.; Menabue, L.; Pellacani, G.C.; Marcotrigiano, G. Low-frequency vibrational-spectra of some 4-benzylpiperidinium and N-benzylpiperazinium pentahalogenoantimonates(III) and pentahalogenobismuthates(III)—partial crystal-structure determination of 4-benzylpiperidinium pentachloroantimonate(III). J. Chem. Soc. -Dalton Trans. 1981, 4, 909–913. [Google Scholar] [CrossRef]
- Chaabouni, S.; Savariault, J.M.; Ben Salah, A. Crystal structure of di(N-benzyl piperidinium) pentachloroantimonate(III) dihydrate. J. Chem. Crystallogr. 2004, 34, 223–227. [Google Scholar] [CrossRef]
- Vogler, A.; Nikol, H. The structures of s2-metal complexes in the ground and sp excited states. Inorg. Chem. 1993, 14, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, Y.; Liang, P.; Zhou, T.; Wang, L.; Xie, R.-J. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem. Mater. 2019, 31, 9363–9371. [Google Scholar] [CrossRef]
- Peng, Y.-C.; Zhou, S.-H.; Jin, J.-C.; Zhuang, T.-H.; Gong, L.-K.; Lin, H.-W.; Wang, Z.-P.; Du, K.-Z.; Huang, X.-Y. [PPh3h]2[SbCl5]: A zero-dimensional hybrid metal halide with a supramolecular framework and stable dual-band emission. J. Phys. Chem. C 2022, 126, 17381–17389. [Google Scholar] [CrossRef]
- Boens, N.; Ameloot, M.; Yamazaki, I.; Deschryver, F.C. On the use and the performance of the delta-function convolution method for the estimation of fluorescence decay parameters. Chem. Phys. 1988, 121, 73–86. [Google Scholar] [CrossRef]
- Zatryb, G.; Klak, M.M. On the choice of proper average lifetime formula for an ensemble of emitters showing non-single exponential photoluminescence decay. J. Phys. -Condes. Matter 2020, 32, 415902. [Google Scholar] [CrossRef]
- Stadler, W.; Hofmann, D.M.; Alt, H.C.; Muschik, T.; Meyer, B.K. Optical investigations of defects in Cd1−xZnxTe. Phys. Rev. B 1995, 51, 10619–10630. [Google Scholar] [CrossRef] [PubMed]
- Lao, X.; Yang, Z.; Su, Z.; Bao, Y.; Zhang, J.; Wang, X.; Cui, X.; Wang, M.; Yao, X.; Xu, S. Anomalous temperature-dependent exciton–phonon coupling in cesium lead bromide perovskite nanosheets. J. Phys. Chem. C 2019, 123, 5128–5135. [Google Scholar] [CrossRef]
- Lee, J.; Koteles, E.S.; Vassell, M.O. Luminescence linewidths of excitons in gaas quantum-wells below 150-K. Phys. Rev. B 1986, 33, 5512–5516. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Shi, H.; Ming, W.; Zhou, C.; Ma, B.; Saparov, B.; Ma, Y.-Z.; Chen, S.; Du, M.-H. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. J. Mater. Chem. C 2018, 6, 6398–6405. [Google Scholar] [CrossRef]
- Liu, S.; Yang, B.; Chen, J.; Wei, D.; Zheng, D.; Kong, Q.; Deng, W.; Han, K. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals. Angew. Chem. Int. Ed. 2020, 59, 21925–21929. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with shelxl. Acta Crystallogr. Sect. C -Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendlandt, W.M.; Hecht, H.G. Reflectance Spectroscopy; Interscience: New York, NY, USA, 1966. [Google Scholar]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 1993, 47, 558–561. [Google Scholar] [CrossRef]
Sb(1)-Cl(4) | 2.3823(11) | Sb(1)-Cl(5) | 2.6675(13) |
Sb(1)-Cl(2) | 2.4585(12) | Sb(1)-Cl(1) | 2.8865(13) |
Sb(1)-Cl(3) | 2.5478(14) | ||
Cl(4)-Sb(1)-Cl(2) | 88.39(4) | Cl(2)-Sb(1)-Cl(5) | 90.78(5) |
Cl(4)-Sb(1)-Cl(3) | 88.05(4) | Cl(4)-Sb(1)-Cl(1) | 83.65(4) |
Cl(2)-Sb(1)-Cl(3) | 91.60(5) | Cl(3)-Sb(1)-Cl(1) | 88.93(5) |
Cl(4)-Sb(1)-Cl(5) | 84.20(4) | Cl(5)-Sb(1)-Cl(1) | 87.63(4) |
D-H···A | d(D-H) | d(H···A) | d(D···A) | <(DHA) |
N(1)-H(1B)···Cl(1) | 0.89 | 2.38 | 3.184(4) | 151.0 |
N(1)-H(1B)···Cl(4) | 0.89 | 2.67 | 3.210(4) | 120.1 |
N(1)-H(1A)···O(1) | 0.89 | 1.98 | 2.843(5) | 163.8 |
N(2)-H(2)···Cl(5)#1 | 0.98 | 2.14 | 3.106(4) | 166.9 |
C(1)-H(1C)···Cl(5)#1 | 0.97 | 2.90 | 3.632(5) | 133.0 |
C(2)-H(2A)···Cl(5)#2 | 0.97 | 2.88 | 3.463(5) | 119.6 |
C(2)-H(2B)···Cl(4)#2 | 0.97 | 2.98 | 3.748(4) | 136.6 |
C(4)-H(4B)···Cl(3)#3 | 0.97 | 2.79 | 3.703(5) | 158.0 |
C(4)-H(4B)···Cl(4)#3 | 0.97 | 2.91 | 3.594(5) | 128.0 |
C(4)-H(4A)···Cl(2)#2 | 0.97 | 2.83 | 3.690(5) | 148.3 |
C(4)-H(4A)···Cl(5)#2 | 0.97 | 2.81 | 3.463(4) | 125.2 |
O(1)-H(1E)···Cl(3)#3 | 0.818(10) | 2.67(3) | 3.408(4) | 152(6) |
O(1)-H(1F)···Cl(1)#4 | 0.820(10) | 2.393(12) | 3.210(4) | 175(6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.-C.; Lin, H.-W.; Zhou, S.-H.; Jin, J.-C.; Zhuang, T.-H.; Ablez, A.; Wang, Z.-P.; Du, K.-Z.; Huang, X.-Y. Reversible Luminescent Switching Induced by Heat/Water Treatment in a Zero-Dimensional Hybrid Antimony(Ⅲ) Chloride. Molecules 2023, 28, 1978. https://doi.org/10.3390/molecules28041978
Peng Y-C, Lin H-W, Zhou S-H, Jin J-C, Zhuang T-H, Ablez A, Wang Z-P, Du K-Z, Huang X-Y. Reversible Luminescent Switching Induced by Heat/Water Treatment in a Zero-Dimensional Hybrid Antimony(Ⅲ) Chloride. Molecules. 2023; 28(4):1978. https://doi.org/10.3390/molecules28041978
Chicago/Turabian StylePeng, Ying-Chen, Hao-Wei Lin, Sheng-Hua Zhou, Jian-Ce Jin, Ting-Hui Zhuang, Abdusalam Ablez, Ze-Ping Wang, Ke-Zhao Du, and Xiao-Ying Huang. 2023. "Reversible Luminescent Switching Induced by Heat/Water Treatment in a Zero-Dimensional Hybrid Antimony(Ⅲ) Chloride" Molecules 28, no. 4: 1978. https://doi.org/10.3390/molecules28041978