Influence of Natural Aging on the Moisture Sorption Behaviour of Wooden Structural Components
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology of the Aged Wooden Beam
2.2. Moisture Sorption Behaviour
2.3. Chemical Changes
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Wood Identification
3.2.2. DVS Measurements
3.2.3. Sorption Isotherm Analysis
3.2.4. FT-IR and SD-IR Spectroscopy
3.2.5. 2D COS-IR Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Han, L.; Wang, K.; Wang, W.; Guo, J.; Zhou, H. Nanomechanical and topochemical changes in elm wood from ancient timber constructions in relation to natural aging. Materials 2019, 12, 786. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Zhou, H.; Jiang, X.; Lu, Y.; Wang, W.; Yin, Y. Wood used in ancient timber architecture in Shanxi Province, China. IAWA J. 2017, 38, 182–200. [Google Scholar] [CrossRef]
- Roca, P.; Lourenc̦o, P.B.; Gaetani, A. Historic Construction and Conservation: Materials, Systems and Damage; Routledge: New York, NY, USA, 2019. [Google Scholar]
- Guo, J.; Zhou, H.; Stevanic, J.S.; Dong, M.; Yu, M.; Salmén, L.; Yin, Y. Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. Wood Sci. Technol. 2017, 52, 131–147. [Google Scholar] [CrossRef]
- Feilden, B. Conservation of Historic Buildings; Routledge: New York, NY, USA, 2007. [Google Scholar]
- Asteris, P.G.; Plevris, V. Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures; IGI Global: Hershey, PA, USA, 2015; Volume 2. [Google Scholar]
- Aboulnaga, M.; Elsharkawy, M. Timber as a sustainable building material from old to contemporary experiences: Review and assessment of global and egypt’s examples. Importance Wood Timber Sustain. Build. 2022, 89–129. [Google Scholar]
- Jokilehto, J. A History of Architectural Conservation; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Aras, F. Timber-framed buildings and structural restoration of a historic timber pavilion in Turkey. Int. J. Archit. Herit. 2013, 7, 403–415. [Google Scholar] [CrossRef]
- Teaca, C.A.; Roşu, D.; Mustaţă, F.; Rusu, T.; Roşu, L.; Roşca, I.; Varganici, C.-D. Natural bio-based products for wood coating and protection against degradation: A Review. BioResources 2019, 14, 4873–4901. [Google Scholar] [CrossRef]
- Walsh-Korb, Z.; Avérous, L. Recent developments in the conservation of materials properties of historical wood. Prog. Mater. Sci. 2019, 102, 167–221. [Google Scholar] [CrossRef]
- Günaydin, M.; Demirkir, C.; Altunişik, A.C.; Gezer, E.D.; Genç, A.F.; Okur, F.Y. Diagnosis and monitoring of historical timber velipaşa han building prior to restoration. Int. J. Archit. Herit. 2023, 17, 285–309. [Google Scholar] [CrossRef]
- Tannert, T.; Anthony, R.W.; Kasal, B.; Kloiber, M.; Piazza, M.; Riggio, M.; Rinn, F.; Widmann, R.; Yamaguchi, N. In situ assessment of structural timber using semi-destructive techniques. Mater. Struct. 2014, 47, 767–785. [Google Scholar] [CrossRef]
- Jokilehto, J. Conservation concepts. Conserv. Ruins 2012, 3–9. [Google Scholar]
- Mehta, P.K.; Burrows, R.W. Building durable structures in the 21st century. Concr. Int. 2001, 23, 57–63. [Google Scholar]
- Valluzzi, M.R.; Modena, C.; de Felice, G. Current practice and open issues in strengthening historical buildings with composites. Mater. Struct. 2014, 47, 1971–1985. [Google Scholar] [CrossRef]
- Gjelstrup Björdal, C. Microbial degradation of waterlogged archaeological wood. J. Cult. Herit. 2012, 13, S118–S122. [Google Scholar] [CrossRef]
- García-Iruela, A.; García Esteban, L.; García Fernández, F.; de Palacios, P.; Rodriguez-Navarro, A.B.; Sánchez, L.G.; Hosseinpourpia, R. Effect of degradation on wood hygroscopicity: The case of a 400-year-old coffin. Forests 2020, 11, 712. [Google Scholar] [CrossRef]
- Kránitz, K.; Sonderegger, W.; Bues, C.-T.; Niemz, P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2015, 50, 7–22. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X.; Liu, H. A review of the long-term effects of humidity on the mechanical properties of wood and wood-based products. Eur. J. Wood Wood Prod. 2021, 79, 245–259. [Google Scholar] [CrossRef]
- Marcu, F.; Hodor, N.; Indrie, L.; Dejeu, P.; Ilieș, M.; Albu, A.; Sandor, M.; Sicora, C.; Costea, M.; Ilieș, D.C. Microbiological, health and comfort aspects of indoor air quality in a Romanian historical wooden church. Int. J. Environ. Res. Public Health 2021, 18, 9908. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Norton, A.J.; Newman, G. The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 2010, 44, 497–514. [Google Scholar] [CrossRef]
- Guo, J.; Xiao, L.; Han, L.; Wu, H.; Yang, T.; Wu, S.; Yin, Y.; Donaldson, L.A. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old. IAWA J. 2019, 40, 820–844. [Google Scholar] [CrossRef]
- Han, L.Y.; Guo, J.; Wang, K.; Gronquist, P.; Li, R.; Tian, X.L.; Yin, Y.F. Hygroscopicity of waterlogged archaeological wood from xiaobaijiao no.1 shipwreck related to its deterioration state. Polymers 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Nopens, M.; Riegler, M.; Hansmann, C.; Krause, A. Simultaneous change of wood mass and dimension caused by moisture dynamics. Sci. Rep. 2019, 9, 10309. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, A.; Hames, B.; Ruiz, R.O.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2004, 1, 1–16. [Google Scholar]
- Han, L.; Tian, X.; Keplinger, T.; Zhou, H.; Li, R.; Svedstrom, K.; Burgert, I.; Yin, Y.; Guo, J. Even visually intact cell walls in waterlogged archaeological wood are chemically deteriorated and mechanically fragile: A case of a 170 year-old shipwreck. Molecules 2020, 25, 1113. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Celino, A.; Goncalves, O.; Jacquemin, F.; Freour, S. Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy. Carbohydr. Polym. 2014, 101, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, S.; Yin, L.; Cao, H.; Xi, G.; Zhang, Z.; Liu, J.; Luo, R.; Han, L.; Yin, Y.; et al. Non-destructive preservation state estimation of waterlogged archaeological wooden artifacts. Spectrochim. Acta Part A Mol. Biomol. Spectroscopy. 2023, 285, 121840. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Zborowska, M.; Prądzyński, W. Near infrared spectroscopy as a tool for archaeological wood characterization. J. Archaeol. Sci. 2010, 37, 2093–2101. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Gierlinger, N.; Thygesen, L.G. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by confocal Raman imaging and ATR-FTIR spectroscopy. Holzforschung 2015, 69, 103–112. [Google Scholar] [CrossRef]
- Capuani, S.; Stagno, V.; Missori, M.; Sadori, L.; Longo, S. High-resolution multiparametric MRI of contemporary and waterlogged archaeological wood. Magn. Reson. Chem. 2020, 58, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, T.Y.; Wen, J.L.; Zhao, Y.L.; Qiu, J.; Sun, R.C. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood. Int. J. Biol. Macromol. 2018, 109, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.B.; Lucejko, J.J.; Modugno, F.; Bjordal, C. Correlation between bacterial decay and chemical changes in waterlogged archaeological wood analysed by light microscopy and Py-GC/MS. Holzforschung 2021, 75, 635–645. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.J.; Zborowska, M.; Modugno, F.; Prądzyński, W.; Colombini, M.P. Archaeological wood degradation at the site of Biskupin (Poland): Wet chemical analysis and evaluation of specific Py-GC/MS profiles. J. Anal. Appl. Pyrolysis 2015, 115, 7–15. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, M.; Liu, J.; Luo, R.; Yan, T.; Yang, T.; Jiang, X.; Dong, M.; Yin, Y. Evaluation of the deterioration state of archaeological wooden artifacts: A nondestructive protocol based on direct analysis in real time-mass spectrometry (DART-MS) coupled to chemometrics. Anal. Chem. 2020, 92, 9908–9915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, G.; Guo, J.; Wiedenhoeft, A.C.; Liu, C.C.; Yin, Y. Timber species identification from chemical fingerprints using direct analysis in real time (DART) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS): Comparison of wood samples subjected to different treatments. Holzforschung 2019, 73, 975–985. [Google Scholar] [CrossRef]
- Martin, B.; Colin, J.; Lu, P.; Mounkaila, M.; Casalinho, J.; Perré, P.; Rémond, R. Monitoring imbibition dynamics at tissue level in Norway spruce using X-ray imaging. Holzforschung 2021, 75, 1081–1096. [Google Scholar] [CrossRef]
- Viljanen, M.; Ahvenainen, P.; Penttilä, P.; Help, H.; Svedström, K. Ultrastructural X-ray scattering studies of tropical and temperate hardwoods used as tonewoods. IAWA J. 2020, 41, 301–319. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Huang, A.-M.; Zhang, S.-F.; Zhou, Q.; Zhang, Q.-H. Identification of three Diospysros species using FT-IR and 2DCOS-IR. J. Mol. Struct. 2020, 1220, 128709. [Google Scholar] [CrossRef]
- Han, L.; Han, X.; Liang, G.; Tian, X.; Ma, F.; Sun, S.; Yin, Y.; Xi, G.; Guo, H. Even samples from the same waterlogged wood are hygroscopically and chemically different by simultaneous DVS and 2D COS-IR spectroscopy. Forests 2023, 14, 15. [Google Scholar] [CrossRef]
- Noda, I. Two-dimensional infrared spectroscopy. J. Am. Chem. Soc. 1989, 111, 8116–8118. [Google Scholar] [CrossRef]
- Park, Y.; Jin, S.; Noda, I.; Jung, Y.M. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 284, 121636. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Popescu, M.-C.; Vasile, C. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchem. J. 2010, 95, 377–387. [Google Scholar] [CrossRef]
- Ma, F.; Huang, A.-m. Rapid identification and quantification three chicken-wing woods of Millettia leucantha, Millettia laurentii and Cassia siamea by FT-IR and 2DCOS-IR. J. Mol. Struct. 2018, 1166, 164–168. [Google Scholar] [CrossRef]
- Richter, H.G.; Grosser, D.; Heinz, I.; Gasson, P. IAWA list of microscopic features for softwood identification. Iawa J. 2004, 25, 379–384. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Majka, J.; Babiński, L.; Olek, W. Sorption isotherms of waterlogged subfossil Scots pine wood impregnated with a lactitol and trehalose mixture. Holzforschung 2017, 71, 813–819. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Hill, C.A.; Kennedy, C. Variation in the sorption properties of historic parchment evaluated by dynamic water vapour sorption. J. Cult. Herit. 2016, 17, 87–94. [Google Scholar] [CrossRef]
- Yang, T.; Cao, J.; Mei, C.; Ma, E. Effects of chlorite delignification on dynamic mechanical performances and dynamic sorption behavior of wood. Cellulose 2021, 28, 9461–9474. [Google Scholar] [CrossRef]
- Fredriksson, M.; Thybring, E.E. Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 2018, 25, 4477–4485. [Google Scholar] [CrossRef] [Green Version]
- Olek, W.; Majka, J.; Stempin, A.; Sikora, M.; Zborowska, M. Hygroscopic properties of PEG treated archaeological wood from the rampart of the 10th century stronghold as exposed in the Archaeological Reserve Genius loci in Poznań (Poland). J. Cult. Herit. 2016, 18, 299–305. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Yu, Y.; Wang, H. Investigating the water vapor sorption behavior of bamboo with two sorption models. J. Mater. Sci. 2018, 53, 8241–8249. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, Q.; Fei, B. Different characteristics in the hygroscopicity of the graded hierarchical bamboo structure. Ind. Crops Prod. 2022, 176, 114333. [Google Scholar] [CrossRef]
- Esteban, L.G.; Simón, C.; Fernández, F.G.; de Palacios, P.; Martín-Sampedro, R.; Eugenio, M.E.; Hosseinpourpia, R. Juvenile and mature wood of Abies pinsapo Boissier: Sorption and thermodynamic properties. Wood Sci. Technol. 2015, 49, 725–738. [Google Scholar] [CrossRef]
- Lewicki, P.P. The applicability of the GAB model to food water sorption isotherms. Int. J. Food Sci. Technol. 1997, 32, 553–557. [Google Scholar] [CrossRef]
- De Oliveira, G.H.H.; Corrêa, P.C.; de Oliveira, A.P.L.R.; Reis, R.C.d.; Devilla, I.A. Application of GAB model for water desorption isotherms and thermodynamic analysis of sugar beet seeds. J. Food Process Eng. 2017, 40, e12278. [Google Scholar] [CrossRef]
- Maskan, M.; Göǧüş, F. The fitting of various models to water sorption isotherms of pistachio nut paste. J. Food Eng. 1997, 33, 227–237. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, G.; Ma, X.-X.; Chen, M.-L.; Fang, C.-H.; Fei, B.-H. The effect of graded fibrous structure of bamboo (Phyllostachys edulis) on its water vapor sorption isotherms. Ind. Crops Prod. 2020, 151. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Li, R.; Guo, J.; Macchioni, N.; Pizzo, B.; Xi, G.; Tian, X.; Chen, J.; Sun, J.; Jiang, X.; Cao, J.; et al. Characterisation of waterlogged archaeological wood from Nanhai No. 1 shipwreck by multidisciplinary diagnostic methods. J. Cult. Herit. 2022, 56, 25–35. [Google Scholar] [CrossRef]
- Traore, M.; Kaal, J.; Martinez Cortizas, A. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 153, 63–70. [Google Scholar] [CrossRef]
- Noda, I. Two-dimensional infrared (2D IR) spectroscopy: Theory and applications. Appl. Spectrosc. 1990, 44, 550–561. [Google Scholar] [CrossRef]
- Zhang, F.-D.; Xu, C.-H.; Li, M.-Y.; Chen, X.-D.; Zhou, Q.; Huang, A.-M. Identification of Dalbergia cochinchinensis (CITES Appendix II) from other three Dalbergia species using FT-IR and 2D correlation IR spectroscopy. Wood Sci. Technol. 2016, 50, 693–704. [Google Scholar] [CrossRef]
- Noda, I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 1993, 47, 1329–1336. [Google Scholar] [CrossRef]
- Li, M.-Y.; Cheng, S.-C.; Li, D.; Wang, S.-N.; Huang, A.-M.; Sun, S.-Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015, 26, 221–225. [Google Scholar] [CrossRef]
- Jin, Z.; Cui, W.; Zhang, F.; Wang, F.; Cheng, S.; Fu, Y.; Huang, A. Rapid identification for the Pterocarpus bracelet by three-step infrared spectrum method. Molecules 2022, 27, 4793. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.-C.; Froidevaux, J.; Navi, P.; Popescu, C.-M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2013, 1033, 176–186. [Google Scholar] [CrossRef]
- Schilling, J.S.; Jellison, J. Extraction and translocation of calcium from gypsum during wood biodegradation by oxalate-producing fungi. Int. Biodeterior. Biodegrad. 2007, 60, 8–15. [Google Scholar] [CrossRef]
- Guggiari, M.; Bloque, R.; Aragno, M.; Verrecchia, E.; Job, D.; Junier, P. Experimental calcium-oxalate crystal production and dissolution by selected wood-rot fungi. Int. Biodeterior. Biodegrad. 2011, 65, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Savković, Ž.; Stupar, M.; Unković, N.; Knežević, A.; Vukojević, J.; Grbić, M.L. Fungal deterioration of cultural heritage objects. In Biodegradation Technology of Organic and Inorganic Pollutants; IntechOpen: London, UK, 2021. [Google Scholar]
- Carll, C.G.; Highley, T.L. Decay of wood and wood-based products above ground in buildings. J. Test. Evaluation. 1999, 27, 150–158. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. Wood Microbiology: Decay and Its Prevention; Academic press: Cambridge, MA, USA, 2012. [Google Scholar]
- Morris, H.; Smith, K.T.; Robinson, S.C.; Göttelmann, M.; Fink, S.; Schwarze, F.W. The dark side of fungal competition and resource capture in wood: Zone line spalting from science to application. Mater. Des. 2021, 201, 109480. [Google Scholar] [CrossRef]
- Chen, C.-M.; Wangaard, F.F. Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci. Technol. 1968, 2, 177–187. [Google Scholar] [CrossRef]
- Wu, M.; Han, X.; Qin, Z.; Zhang, Z.; Xi, G.; Han, L. A quasi-nondestructive evaluation method for physical-mechanical properties of fragile archaeological wood with TMA: A case study of an 800-year-old shipwreck. Forests 2022, 13, 38. [Google Scholar] [CrossRef]
Sample | Sorption Phase | GAB Model | H-H Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mm | CGAB | KGAB | R2 | w | k1 | k2 | Mh | Ms | ||
RS | Adsorption | 4.82 | 9.44 | 0.80 | 0.999 | 379.36 | 9.08 | 0.81 | 4.15 | 16.01 |
Desorption | 9.38 | 5.34 | 0.62 | 0.999 | 195.19 | 4.45 | 0.63 | 6.71 | 13.81 | |
AIS | Adsorption | 4.57 | 14.34 | 0.83 | 0.995 | 397.80 | 14.78 | 0.83 | 4.16 | 17.55 |
Desorption | 7.61 | 12.88 | 0.70 | 1 | 235.81 | 11.73 | 0.70 | 6.77 | 15.51 | |
AOS | Adsorption | 4.50 | 25.18 | 0.85 | 0.997 | 404.88 | 33.32 | 0.86 | 4.28 | 20.05 |
Desorption | 7.29 | 23.82 | 0.74 | 0.991 | 251.76 | 25.91 | 0.75 | 5.69 | 18.05 |
Peak Position/cm−1 | Vibration Mode | Peak Assignment | ||
---|---|---|---|---|
RS | AIS | AOS | ||
1738 | 1736 | - | C=O stretching of acetyl and carbonyl groups | hemicelluloses |
1661 | 1661 | 1661 | the relative concentration of aromatic skeletal vibrations, together with C=O stretch | lignin |
1639 | 1626 | 1634 | Deformational mode | H2O |
- | - | 1622 | C=O-O stretching | calcium oxalate |
1590 | 1593 | 1588 | C=C stretch of substituted aromatic ring | Lignin (in SD-IR) |
1510 | 1510 | 1510 | C=C stretch of substituted aromatic ring | lignin |
1453 | 1458 | - | CH3 asymmetric stretch, CH2 scissoring | lignin/carbohydrates |
1425 | 1423 | 1415 | CH2 scissoring | cellulose |
1373 | 1375 | 1384 | CH deformation, CH3 symmetric deformation in | cellulose/hemicelluloses |
1318 | 1318 | 1323 | C-O-H stretch, the wagging (out of the plane) of the CH2 groups | calcium oxalate/crystalline cellulose |
1266 | 1268 | 1267 | Aromatic C-O stretching vibrations of methoxyl and phenyl propane units in guaiacol rings | lignin |
1232 | 1226 | 1226 | mainly assigned to the C-O stretching in the O=C-O group of side chains | hemicellulose |
1158 | 1154 | 1152 | Asymmetric bridge C-O-C stretch mode | cellulose/hemicelluloses |
1109 | 1110 | 1115 | C-OH in plane deformation | cellulose/hemicelluloses |
1060 | 1049 | 1063 | C-O stretching mainly from C (3)-O (3)H | cellulose I |
1033 | 1033 | 1033 | C-O and C-C stretch of > CH-OH and –CH2OH groups | cellulose |
982 | 982 | 980 | C-O and C-C stretch of > CH-OH and -CH2OH groups | Cellulose (in 2D COS-IR) |
897 | 897 | 897 | the β-(1→4)-glycosidic linkage | cellulose |
Sample | Correlation Coefficients |
---|---|
RS | 1.0000 |
AIS | 0.9248 |
AOS | 0.6214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Xi, G.; Dai, W.; Zhou, Q.; Sun, S.; Han, X.; Guo, H. Influence of Natural Aging on the Moisture Sorption Behaviour of Wooden Structural Components. Molecules 2023, 28, 1946. https://doi.org/10.3390/molecules28041946
Han L, Xi G, Dai W, Zhou Q, Sun S, Han X, Guo H. Influence of Natural Aging on the Moisture Sorption Behaviour of Wooden Structural Components. Molecules. 2023; 28(4):1946. https://doi.org/10.3390/molecules28041946
Chicago/Turabian StyleHan, Liuyang, Guanglan Xi, Wei Dai, Qun Zhou, Suqin Sun, Xiangna Han, and Hong Guo. 2023. "Influence of Natural Aging on the Moisture Sorption Behaviour of Wooden Structural Components" Molecules 28, no. 4: 1946. https://doi.org/10.3390/molecules28041946
APA StyleHan, L., Xi, G., Dai, W., Zhou, Q., Sun, S., Han, X., & Guo, H. (2023). Influence of Natural Aging on the Moisture Sorption Behaviour of Wooden Structural Components. Molecules, 28(4), 1946. https://doi.org/10.3390/molecules28041946