Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size Analysis of Jute MCC
2.2. FTIR Analysis of Jute MCC Membrane
2.3. XRD Analysis of Jute MCC Membrane
2.4. SEM Analysis of Jute MCC Membrane
2.5. Thermal Stability Analysis of Jute MCC Membrane
2.6. Analysis of Mechanical Properties of Jute MCC Membrane
2.7. Contact Angle Analysis of Jute MCC Membrane
2.8. Separation Performance of Jute MCC Membrane
3. Materials and Methods
3.1. Preparation of Jute MCC
3.2. Preparation of Jute MCC Membrane
3.3. Characterization
3.3.1. XRD Analysis
3.3.2. SEM Analysis
3.3.3. Thermal Gravimetric Analysis
3.3.4. Mechanical Performance Test
3.3.5. Separation Performance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Nawaz, H.; Zhang, X.; Chen, S.; You, T.T.; Xu, F. Recent studies on cellulose- based fluorescent smart materials and their ap-plications: A comprehensive review. Carbohydr. Polym. 2021, 267, 118135. [Google Scholar] [CrossRef] [PubMed]
- Ram, F.; Shanmuganathan, K. Advanced applications of cellulose in mechanical energy harvesting and sensing. Trends Carbohydr. Res. 2021, 13, 84–99. [Google Scholar]
- Kim, J.Y.; Lee, H.W.; Lee, S.M.; Jae, J.; Park, Y.K. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresour. Technol. 2019, 279, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Pires, R.A.; Mano, J.F.; and Reis, R.L. Bionanocomposites from lignocellulosic resources: Properties, applica-tions and future trends for their use in the biomedical field. Prog. Polym. Sci. 2013, 38, 1415–1441. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef]
- Lam, N.T.; Chollakup, R.; Smitthipong, W.; Nimchua, T.; Sukyai, P. Utilizing cellulose from sugarcane bagasse mixed with poly (vinyl alcohol) for tissue engineering scaffold fabrication. Ind. Crops Prod. 2017, 100, 183–197. [Google Scholar] [CrossRef]
- D’Acierno, F.; Ohashi, R.; Hamad, W.Y.; Michal, C.A.; MacLachlan, M.J. Thermal annealing of iridescent cellulose nanocrystal films. Carbohydr. Polym. 2021, 272, 118468. [Google Scholar] [CrossRef]
- Jahan, Z.; Niazi, M.B.K.; Hagg, M.B.; Gregersen, O.W. Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure. J. Membr. Sci. 2018, 554, 275–281. [Google Scholar] [CrossRef]
- Pinem, M.P.; Wardhono, E.Y.; Nadaud, F.; Clausse, D.; Saleh, K.; Guenin, E. Nanofluid to nanocomposite film: Chitosan and cellulose-based edible packaging. Nanomaterials 2020, 10, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Xiao, W.; Tao, T.; Yang, J.W.; Li, H.X.; Chen, Q.F.; Huang, L.L.; Ni, Y.H.; Chen, L.H.; Ouyang, X.H. Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device. Carbohydr. Polym. 2021, 260, 117820. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Huang, Y.A.; Peng, N.; Chang, C.Y. Antibacterial nanocellulose membranes coated with silver nanoparticles for oil/water emulsions separation. Carbohydr. Polym. 2022, 278, 660. [Google Scholar] [CrossRef]
- Huang, Y.N.; Yang, P.; Yang, F.C.; Chang, C.Y. Self-supported nanoporous lysozyme/ nanocellulose membranes for multifunc-tional wastewater purification. J. Membr. Sci. 2021, 635, 119537. [Google Scholar] [CrossRef]
- Li, D.; Huang, X.Y.; Huang, Y.N.; Yuan, J.; Huang, D.; Cheng, G.J.; Zhang, L.N.; Chang, C.Y. Additive printed all-cellulose membranes with hierarchical structure for highly efficient separation of oil/water nanoemulsions. ACS Appl. Mater. Interfaces 2019, 11, 44375–44382. [Google Scholar] [CrossRef] [PubMed]
- Ao, C.H.; Zhao, J.Q.; Li, Q.Y.; Zhang, J.; Huang, B.X.; Wang, Q.H.; Gai, J.G.; Chen, Z.M.; Zhang, W.; Lu, C.H. Biodegradable all-cellulose composite membranes for simultaneous oil/water separation and dye removal from water. Carbohydr. Polym. 2020, 250, 116872. [Google Scholar] [CrossRef]
- Awang, N.A.; Salleh, W.N.W.; Ismail, A.F.; Yusof, N.; Aziz, F.; Jaafar, J. Adsorption behavior of chromium (VI) onto re-generated cellulose membrane. Ind. Eng. Chem. Res. 2019, 58, 720–728. [Google Scholar] [CrossRef]
- Wu, W.; Zhuang, Z.; Jing, Y.; Dai, H. Research progress of microcrystalline cellulose. Mod. Chem. Industry. 2013, 33, 45–48. [Google Scholar]
- Sun, X.W.; Lu, C.H.; Liu, Y.; Zhang, W.; Zhang, X.X. Melt-processed poly (vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr. Polym. 2014, 101, 642–649. [Google Scholar] [CrossRef]
- Hussin, M.H.; Pohan, N.A.; Garba, Z.N.; Kassim, M.J.; Rahim, A.A.; Brosse, N.; Yemloul, M.; Fazita, M.R.N.; Haafiz, M.K.M. Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int. J. Biol. Macromol. 2016, 92, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chang, P.R.; Yu, J. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr. Polym. 2008, 72, 369–375. [Google Scholar] [CrossRef]
- Diarsa, M.; Gupte, A. Preparation, characterization and its potential applications in Isoniazid drug delivery of porous micro-crystalline cellulose from banana pseudostem fibers. 3 Biotech 2021, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Zhang, Y.; Li, J.B.; Zhang, B.K. Research on the preparation and desiliconization process of wheat straw mi-crocrystalline cellulose. J. Biobased Mater. Bioenergy 2011, 5, 203–208. [Google Scholar] [CrossRef]
- Miao, C.; Hamad, W.Y. Cellulose reinforced polymer composites and nanocomposites: A critical review. Cellulose 2013, 20, 2221–2262. [Google Scholar] [CrossRef]
- Eartrakulpaiboon, S.; Tonanon, N. Preparation of microcrystalline cellulose from dissolving cellulose by cryo-crushing and acid hydrolysis. In Proceedings of the International Conference on Science and Technology (TICST), Pathum Thani, Thailand, 4–6 November 2015. [Google Scholar] [CrossRef]
- Jin, H.; Cui, S.; Zhang, Y. Research progress in the dissolution mechanism of cellulose in aqueous NMMO solution. Polym. Bull. 2021, 5, 29–37. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Holbrey, J.D.; Spear, S.K.; Rogers, R.D. Ionic liquids for the dissolution and regeneration of cellulose. In Proceedings of the 13th International Symposium on Molten Salts, Philadelphia, Pennsylvania, 12–17 May 2002. [Google Scholar] [CrossRef]
- Raus, V.; Sturcova, A.; Dybal, J.; Slouf, M.; Vackova, T.; Salek, P.; Kobera, L.; Vlcek, P. Activation of cellulose by 1, 4-dioxane for dissolution in N, N-dimethylacetamide/LiCl. Cellulose 2012, 19, 1893–1906. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci. 2005, 5, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Remsing, R.C.; Swatloski, R.P.; Rogers, R.D.; Moyna, G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methy limidazolium chloride: A 13C and 35/37Cl NMR relaxation study on model systems. Chem. Commun. 2006, 12, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Yu, G.M.; Fu, Y.F.; Yin, C.Y. The preparation and study of regenerated cellulose fibers by cellulose carbamate pathway. Int. J. Biol. Macromol. 2018, 107, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Sagnite, V.C.; Alberto, T. Extraction and characterization of cellulose nanofibers from Rose stems (Rosa spp.). Carbohydr. Polym. 2019, 220, 53–59. [Google Scholar] [CrossRef]
- Feng, J.; You, L.H. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 2015, 122, 60–68. [Google Scholar] [CrossRef]
- Haafiz, M.K.M.; Eichhorn, S.J.; Hassan, A.; Jawaid, M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr. Polym. 2013, 93, 628–634. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, Z.Z.; Lin, X.R.; Ren, Z.Y.; Li, B.; Zhang, Y.Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr. Polym. 2018, 184, 164–170. [Google Scholar] [CrossRef]
- Meenatchi, B.; Renuga, V.; Manikandan, A. Cellulose dissolution and regeneration using various imidazolium based protic ionic liquids. J. Mol. Liq. 2017, 238, 582–588. [Google Scholar] [CrossRef]
- Mao, Z.M.; Cao, Y.M.; Jie, X.M.; Kang, G.D.; Zhou, M.Q.; Yuan, Q. Dehydration of isopropanol–water mixtures using a novel cellulose membrane prepared from cellulose/N-methylmorpholine-N-oxide/H2O solution. Sep. Purif. Technol. 2010, 72, 28–33. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Xu, M. Novel regenerated cellulose films prepared by coagulating with water: Structure and properties. Carbohydr. Polym. 2012, 87, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wei, T.; Qian, C.Y.; Liang, Z.Y. Preparation of microcrystalline cellulose from rabdosia rubescens residue and study on its membrane properties. Sci. Rep. 2021, 11, 18956. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Salleh, W.N.W.; Jaafar, J.; Ismail, A.F.; Mutalib, M.A.; Jamil, S.M. Feasibility of recycled newspaper as cellulose source for regenerated cellulose membrane fabrication. J. Appl. Polym. Sci. 2015, 132, 42684. [Google Scholar] [CrossRef]
- Shan, S.G.; Jian, Q.W.; Zheng, W.J. Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr. Polym. 2012, 87, 1020–1025. [Google Scholar] [CrossRef]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- He, J.X.; Cui, S.Z.; Wang, S.Y. Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J. Appl. Polym. Sci. 2008, 107, 1029–1038. [Google Scholar] [CrossRef]
Category | D10 (μm) | D50 (μm) | D90 (μm) | Dav (μm) |
---|---|---|---|---|
Prepared jute MCC | 8.47 | 18.53 | 31.08 | 19.16 |
Standard MCC | 6.15 | 14.66 | 25.83 | 15.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Li, X.; Li, M.; Hong, Y. Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane. Molecules 2023, 28, 1783. https://doi.org/10.3390/molecules28041783
Liang Z, Li X, Li M, Hong Y. Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane. Molecules. 2023; 28(4):1783. https://doi.org/10.3390/molecules28041783
Chicago/Turabian StyleLiang, Zhengyong, Xing Li, Meng Li, and Yulu Hong. 2023. "Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane" Molecules 28, no. 4: 1783. https://doi.org/10.3390/molecules28041783
APA StyleLiang, Z., Li, X., Li, M., & Hong, Y. (2023). Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane. Molecules, 28(4), 1783. https://doi.org/10.3390/molecules28041783