Reduction of Nitrite in Canned Pork through the Application of Black Currant (Ribes nigrum L.) Leaves Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Black Currant Leaf Extract
2.1.1. Chemical Analysis and Antioxidant Capacity
2.1.2. Antimicrobial Activity of Black Currant Leaf Extract
2.2. Characterization of Canned Pork Containing Black Currant Leaf Extract
2.2.1. Color Parameters and Nitrosohemochrome
2.2.2. Antioxidant Abilities
Antiradical Activity and FRAP
Secondary Lipid Oxidation Products
2.2.3. Consumer Safety
3. Materials and Methods
3.1. Black Currant Leaf Extract Preparation
3.2. Chemical Analysis and Antioxidant Capacity of Black Currant Leaf Extract
3.2.1. Total Phenolic Content
3.2.2. Total Flavonoids
3.2.3. Dihydroxycinnamic Acids
3.2.4. HPLC Analysis
3.2.5. Vitamin C Content
3.2.6. Antioxidant Capacity
3.3. Antimicrobial Activity of Black Currant Leaf Extract
3.4. Canned Meat Preparation
3.5. Canned Meat Analysis
3.5.1. Color Parameters (CIE L*a*b*) and No-Mb
3.5.2. Antioxidant Properties
Antiradical Properties and FRAP
- Sample Preparation
- ABTS•+ and DPPH
- FRAP
Secondary Lipid Oxidation Products
3.6. Consumer Safety
3.6.1. N-Nitrosoamines (NAs) Content
3.6.2. Number of Selected Microorganisms
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelmand, A.; Granatoe, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silvac, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannesd, S.C.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Munekata, P.E.; Pateiro, M.; Maggiolino, A.; Bohrer, B.; Lorenzo, J.M. Red beetroot. A potential source of natural additives for the meat industry. Appl. Sci. 2020, 10, 8340. [Google Scholar] [CrossRef]
- Munekata, P.E.; Gullón, B.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Natural antioxidants from seeds and their application in meat products. Antioxidants 2020, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.; Zhang, W.; Lorenzo, J.M. Tomato as potential source of natural additives for meat industry. A review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Kovačević, D.B.; Pateiro, M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Domínguez, R.; Carballo, J. Control of Lipid Oxidation in Muscle Food by Active Packaging Technology. In Natural Antioxidants: Applications in Foods of Animal Origin; Banerjee, R., Verma, A.K., Siddiqui, M.W., Eds.; Apple Academic Press: Cambridge, MA, USA, 2017; pp. 343–382. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315365916-10/potential-applications-natural-antioxidants-meat-meat-productsCHAPTERBOOK (accessed on 15 February 2021).
- Alahakoon, A.U.; Jayasenab, D.D.; Ramachandrac, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Rivera, N.; Bunning, M.M. Uncured-Labeled Meat Products Produced Using Plant-Derived Nitrates and Nitrites: Chemistry, Safety, and Regulatory Considerations. J. Agric. Food Che. 2019, 67, 8074–8084. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.; Pateiro, M.; Domínguez, R.; Pollonio, M.A.; Sepúlveda, N.; Andres, S.C.; Lorenzo, J.M. Beta vulgaris as a Natural Nitrate Source for Meat Products: A Review. Foods 2021, 10, 2094. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion. Re-Evaluation of Potassium Nitrite (E 249) and Sodium Nitrite (E 250); EFSA: Parma, Italy, 2017. [Google Scholar]
- FECIS. Food Chain Evaluation Consortium. Study on the Monitoring of the Implementation of Directive 2006/52/EC as Regards the Use of Nitrites by Industry in Different Categories of Meat Products: Final Report. 2016. Available online: http://www.fecic.es/img/galeria/file/BUTLLETi%20INTERNACIONAL/ARXIUS%20BUTLLETI%20INTERNACIONAL/setmana%205/05.pdf (accessed on 15 February 2021).
- Ozaki, M.M.; Dos Santos, M.; Ribeiro, W.O.; de Azambuja Ferreira, N.C.; Picone, C.S.F.; Domínguez, R.; Pollonio, M.A.R. Radish powder and oregano essential oil as nitrite substitutes in fermented cooked sausages. Food Res. Int. 2021, 140, 109855. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.; Pateiro, M.; Domínguez, R.; Santos, E.M.; Lorenzo, J.M. Cruciferous vegetables as sources of nitrate in meat products. Curr. Opin. Food Sci. 2021, 38, 1–7. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohineja, S. Application of plant extracts to improve the shelf-life. nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Khaleghi, A.; Kasaai, R.; Khosravi-Darani, K.; Rezaei, K. Combined Use of Black Barberry (Berberis crataegina L.) Extract and Nitrite in Cooked Beef Sausages during the Refrigerated Storage. J. Agr. Sci. Technol. 2016, 18, 601–614. [Google Scholar]
- Aliyari, P.; Kazaj, F.B.; Barzegar, M.; Gavlighi, H.A. Production of Functional Sausage Using Pomegranate Peel and Pistachio Green Hull Extracts as Natural Preservatives. J. Agr. Sci. Technol. 2020, 22, 159–172. [Google Scholar]
- Aquilania, C.; Sirtoria, F.; Floresb, M.; Bozzia, R.; Lebretc, B.; Pugliese, C. Effect of natural antioxidants from grape seed and chestnut in combination with hydroxytyrosol. as sodium nitrite substitutes in Cinta Senese dry-fermented sausages. Meat Sci. 2018, 145, 389–398. [Google Scholar] [CrossRef]
- Seo, J.-K.; Parvin, R.; Yim, D.-G.; Zahid, A.; Yang, H.-S. Effects on quality properties of cooked pork sausages with Caesalpinia sappan L. extract during cold storage. J. Food Sci. Technol. 2019, 56, 4946–4955. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Tomović, V.; Kocić-Tanackov, S.; Đurović, S.; Zeković, Z.; Belović, M.; Torbica, A.; Jokanović, M.; Urumović, N.; et al. Tomato pomace extract and organic peppermint essential oil as effective sodium nitrite replacement in cooked pork sausages. Food Chem. 2020, 330, 127202. [Google Scholar] [CrossRef] [PubMed]
- Manihuruka, F.M.; Suryatib, T.; Arief, I.I. Effectiveness of the red dragon fruit (Hylocereus polyrhizus) peel extract as the colorant, antioxidant, and antimicrobial on beef sausage. Media Peternak 2017, 40, 47–54. [Google Scholar] [CrossRef]
- Mäkinen, S.; Hellström, J.; Mäki, M.; Korpinen, R.; Mattila, P.H. Bilberry and sea buckthorn leaves and their suB50ritical water extracts prevent lipid oxidation in meat products. Foods 2020, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, B.; Rakonjac, V.; Akšić, F.M.; Katarina Šavikin Vulić, T. Pomological and biochemical characterization of European currant berry (Ribes sp.) cultivars. Sci. Hortic. 2014, 165, 156–162. [Google Scholar] [CrossRef]
- Paunović, S.M.; Mašković, P.; Nikolić, M.; Miletić, R. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Sci. Hortic. 2017, 222, 69–75. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content. and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef]
- Ferlemi, A.-V.; Lamari, F.N. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef]
- Raudsepp, P.; Koskar, J.; Anton, D.; Meremäe, K.; Kapp, K.; Laurson, P.; Believe, U.; Kaldmäe, H.; Roasto, M.; Püssa, T. Antibacterial and antioxidative properties of different parts of garden rhubarb, blackcurrant, chokeberry and blue honeysuckle. J. Sci. Food Agric. 2019, 99, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Ferysiuk, K.; Wójciak, K.M. The possibility of reduction of synthetic preservative E 250 in canned pork. Foods 2020, 9, 1–20. [Google Scholar] [CrossRef]
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. Available online: https://eur-lex.europa.eu/eli/reg/2008/1333/2016-05-25 (accessed on 15 February 2021).
- EUCAST. Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Agar Dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suman, S.P.; Joseph, P. Myoglobin Chemistry and Meat Color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
- Amaral, A.B.; da Solva, M.V.; da Silva Lannes, S.C. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38 (Suppl. S1), 1–15. [Google Scholar] [CrossRef]
- Bae, S.M.; Choi, J.H.; Jeong, J.Y. Effects of radish powder concentration and incubation time on the physicochemical characteristics of alternatively cured pork products. J. Anim. Sci. Technol. 2020, 62, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xiong, Y.L. Stabilization of cooked cured beef color by radical-scavenging pea protein and its hydrolysate. LWT-Food Sci. Technol. 2015, 61, 352–358. [Google Scholar] [CrossRef]
- Anese, M.; Manzocco, L.; Nicoli, M.C.; Lerici, C.R. Antioxidant properties of tomato juice as affected by heating. J. Sci. Food Agric. 1999, 79, 750–754. [Google Scholar] [CrossRef]
- Wolosiak, R.; Druzynska, B.; Piecyk, M.; Worobiej, E.; Majewska, E.; Lewicki, P.P. Influence of industrial sterilisation, freezing and steam cooking on antioxidant properties of green peas and string beans. Int. J. Food Sci. Technol. 2011, 46, 93–100. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Daferera, D.; Polissiou, M.; Sokmen, A. Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. J. Food Eng. 2005, 66, 447–454. [Google Scholar] [CrossRef]
- Guillen-Sans, R.; Guzman-Chozas, M. The thiobarbituric acid (TBA) reaction in foods: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 315–350. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M.; Kęska, P. Effect of willow herb (Epilobium angustifolium L.) extract addition to canned meat with reduced amount of nitrite on the antioxidant and other activities of peptides. Food Funct. 2022, 13, 3526–3539. [Google Scholar] [CrossRef]
- Mira, L.; Tereza Fernandez, M.; Santos, M.; Rocha, R.; Helena Florêncio, M.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism for their antioxidant activity. Free. Radic. Res. 2002, 36, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Domínguez, R.; Bermúdez, R.; Munekata, P.E.; Zhang, W.; Gagaoua, M.; Lorenzo, J.M. Antioxidant active packaging systems to extend the shelf life of sliced cooked ham. Curr. Res. Food Sci. 2019, 1, 24–30. [Google Scholar] [CrossRef]
- de Carvalho, F.A.L.; Munekata, P.E.; Pateiro, M.; Campagnol, P.C.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Effect of replacing backfat with vegetable oils during the shelf-life of cooked lamb sausages. LWT 2020, 122, 109052. [Google Scholar] [CrossRef]
- Bonifacie, A.; Promeyrat, A.; Nassy, G.; Gatellier, P.; Santé-Lhoutellier, V.; Théron, L. Chemical reactivity of nitrite and ascorbate in a cured and cooked meat model implication in nitrosation, nitrosylation and oxidation. Food Chem. 2021, 348, 129073. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I.T. The cancer risk related to meat and meat products. Br. Med. Bull. 2017, 121, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Seo, J.; Lee, J.; Kwon, H. Distribution of Seven N-Nitrosamines in Food. Toxicol. Res. 2015, 31, 279–288. [Google Scholar] [CrossRef] [PubMed]
- De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. [Google Scholar] [CrossRef]
- Özbay, S.; Şireli, U.T. Volatile N-nitrosamines in processed meat products and salami from Turkey. Food Addit. Contam. Part B 2021, 14, 110–114. [Google Scholar] [CrossRef]
- Majou, D.; Christieans, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M.; Kulik, B.; Waraczewski, R. Określenie wpływu rodzaju wody na potencjał antyoksydacyjny naparów z wybranych roślin ziołowych. Rośliny- przegląd wybranych zagadnień. Wydawnictwo Naukowe TYGIEL sp. Z o. o. Lublin 2016, 175–184. (In Polish) [Google Scholar]
- Staszowska-Karkut, M.; Materska, M.; Chilczuk, B.; Pabich, M.; Sachadyn-Król, M. Wpływ rodzaju rozpuszczalnika na aktywność przeciwrodnikową ekstraktów ziołowych. Żywność dla przyszłości, XLIII Sesja Naukowa Nauk o Żywności i Biotechnologii. Wrocław 2017, 221–228. (In Polish) [Google Scholar]
- Chilczuk, B.; Materska, M.; Staszowska-Karkut, M.; Kulik, B.; Stępnikowska, A. Porównanie metod ekstrakcyjnych przy przygotowywaniu preparatów roślinnych o korzystnych właściwościach prozdrowotnych. Żywność–tradycja i nowoczesność-Prozdrowotne właściwości żywności, aspekty żywieniowe i technologiczne. Red. M. Karwowska, I. Jackowska. Lublin 2018, 17–28. (In Polish) [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult 1965, 16, 144–158. [Google Scholar]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Wu, X.; Diao, Y.; Sun, C.; Yang, J.; Wang, Y.; Sun, S. Fluorimetric determination of ascorbic acid with o-phenylenediamine. Talanta 2003, 59, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Bio. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Hunt, R.W.G. A model of colour vision for predicting colour appearance in various viewing conditions. Color Res. Appl. 1987, 12, 297–314. [Google Scholar] [CrossRef]
- Hornsey, H.C. The colour of cooked cured pork. I.—Estimation of the Nitric oxide Haem Pigment. J. Sci. Food Agric. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- Jung, S.; Choe, J.C.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on the product of browning reaction prepared from glucose amine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Fan, X.J.; Liua, S.; Lia, H.H.; Hea, J.; Fenga, J.T.; Hanga, X.; Yana, H. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage. Meat Sci. 2019, 147, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef]
- PN-EN ISO 7937; Horizontal Method for the Determination of Clostridium Perfringens. Polish Committee for Standardization: Warsaw, Poland, 2005.
- PN-EN ISO 11290-2; Food Chain Microbiology—Horizontal Method for Determining the Presence of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR—Part 2: Detection Method. Polish Committee for Standardization: Warsaw, Poland, 2017.
- PN-EN ISO 6579-1; Food Chain Microbiology—Horizontal Method for the Detection, Determination and Serotyping of Salmonella—Part 1: Detection. Polish Committee for Standardization: Warsaw, Poland, 2017.
Analyzed Parameters | Content |
---|---|
Extraction yield (%) | 18.05 ± 0.15 |
Vitamin C (mg L-ascorbic acid/100 g) | 3.11 ± 0.03 |
DPPH (EC50, μg/mL) | 32.5 ± 0.21 |
ABTS (EC50, μg/mL) | 11.1 ± 0.06 |
Total phenolic content (mg gallic acid/g) | 100.5 ± 9.1 |
Flavonoid content (mg quercetin/g) | 10.02 ± 0.1 |
Dihydroxycinnamic acid content (mg chlorogenic acid/g) | 53.54 ± 2.85 |
Main phenolic compounds (HPLC) (mg/g): | |
1. Caffeoyl malic acid | 0.335 ± 0.005 |
2. Chlorogenic acid | 5.273 ± 0.015 |
3. Caffeic acid | 3.391 ± 0.021 |
4. Coumaric acid | 0.264 ± 0.004 |
5. Ferulic acid | 0.297 ± 0.025 |
6. Rutin | 0.006 ± 0.001 |
7. Quercetin 3-O-glucoside | 0.009 ± 0.001 |
8. Luteolin-7-O-rhamnoside | 0.024 ± 0.002 |
9. Apigenin-7-O-glucoside | 0.017 ± 0.001 |
10. Luteolin-7-O-glucoside | 0.018 ± 0.001 |
Bacterial Strain | MIC | Bacterial Strain | MIC |
---|---|---|---|
Bacillus cereus ATCC 11778 | 5 | Listeria monocytogenes ATCC 15313 | - |
Bacillus subtilis ATCC 6633 | 5 | L. monocytogenes ATCC 19111 | 5 |
Clostridium sporogenes ATCC 11437 | - | L. monocytogenes ATCC 7644 | 5 |
Enterococcus faecalis ATCC 51229 | - | L. monocytogenes IFM 1011 | 5 |
Escherichia coli ATCC 10536 | - | Salmonella enterica ATCC 29631 | 5 |
E. coli ATCC 25922 | - | Salmonella Hofit IFM 2318 | - |
Starter culture for meat fermentation M892 | - | Staphylococcus aureus 4.4 | 2.5 |
Lactobacillus plantarum 299v | - | S. aureus 4538 | 1.5 |
Lacticaseibacillus rhamnosus ŁOCK 0900 | - | S. aureus ATCC 25923 | 2.5 |
Listeria innocua ATCC 33090 | - | S. aureus ATCC 6535 | 5.0 |
Parameter | Sample | Storage Time (Days) | |||
---|---|---|---|---|---|
1 | 60 | 90 | 180 | ||
L* | C | 63.50 ± 3.01 Aa | 62.35 ± 2.98 Aa | 62.15 ± 1.60 Aa | 62.80 ± 2.58 Aa |
B50 | 63.55 ± 3.29 Aa | 62.23 ± 3.02 Aa | 62.12 ± 1.64 Aa | 62.89 ± 2.63 Aa | |
B100 | 62.37 ± 2.94 Aa | 64.02 ± 2.57 Aa | 62.34 ± 2.48 Aa | 78.84 ± 2.91 Bb | |
B150 | 62.01 ± 3.06 Aa | 63.91 ± 3.30 Aa | 66.01 ± 2.36 Ba | 63.32 ± 2.24 Aa | |
a* | C | 9.68 ± 1.15 Ba | 10.59 ± 1.05 Bb | 10.71 ± 0.50 ABb | 9.90 ± 1.15 Ba |
B50 | 9.72 ± 1.17 Ba | 10.68 ± 1.04 Bb | 10.78 ± 0.55 ABb | 9.95 ± 1.00 Ba | |
B100 | 10.13 ± 1.17 Aa | 10.01 ± 0.93 Aa | 10.73 ± 1.21 Aa | 12.38 ± 0.97 Ab | |
B150 | 10.29 ± 0,97 Ab | 10.11 ± 1.07 Bb | 9.45 ± 0.91 Bab | 9.83 ± 0.77 Ba | |
b* | C | 7.60 ± 0.70 Ab | 8.10 ± 0.57 Aab | 8.79 ± 0.62 Aa | 8.77 ± 0.73 Bb |
B50 | 7.59 ± 0.68 Ab | 8.17 ± 0.65 Ab | 8.86 ± 0.44 Aa | 8.77 ± 0.84 Ba | |
B100 | 8.36 ± 0.65 Ab | 8.70 ± 0.56 Ab | 9.23 ± 0.64 Ab | 13.23 ± 0.54 Aa | |
B150 | 8.17 ± 0.76 Aa | 8.31 ± 0.58 Aa | 8.69 ± 0.58 Bab | 8.87 ± 0.73 Bb | |
Nitrosohemochrome | C | 21.95 ± 0.77 Ba | 24.37 ± 1.76 Ba | 21.98 ± 1.49 Ba | 22.51 ± 2.39 Aa |
B50 | 22.73 ± 0.97 Ba | 25.59 ± 1.83 Ba | 22.51 ± 1.43 Ba | 22.48 ± 2.72 Aa | |
B100 | 20.26 ± 1.37 Aa | 29.16 ± 1.62 Cc | 19.40 ± 1.55 Aa | 22.67 ± 1.26 Ab | |
B150 | 27.84 ± 2.4 Cb | 23.54 ± 1.72 Aa | 24.24 ± 1.38 Cb | 22.00 ± 2.85 Aa |
Parameter | Sample | Storage Time (Days) | |||
---|---|---|---|---|---|
1 | 60 | 90 | 180 | ||
ABTS•+ [mgTROLOX/mL] | C | 3.90 ± 0.42 Aa | 3.20 ± 0.29 Bb | 2.71 ± 0.31 Bc | 3.65 ± 0.20 ABa |
B50 | 3.95 ± 0.61 Aa | 3.22 ± 0.35 Bb | 2.67 ± 0.21 Bc | 3.71 ± 0.22 ABa | |
B100 | 2.37 ± 0.54 Bc | 4.42 ± 0.44 Aa | 4.02 ± 0.39 Aa | 3.61 ± 0.43 Bab | |
B150 | 3.49 ± 0.31 Ab | 3.91 ± 0.63 Aab | 3.76 ± 0.23 Aab | 4.04 ± 0.26 ABa | |
DPPH [mgTROLOX/mL] | C | 0.019 ± 0.001 Aa | 0.015 ± 0.001 Bb | 0.015 ± 0.001 Bb | 0.013 ± 0.001 Bc |
B50 | 0.018 ± 0.001 Aa | 0.015 ± 0.001 Bb | 0.015 ± 0.001 Bb | 0.013 ± 0.001 Bc | |
B100 | 0.018 ± 0.001 Ab | 0.02 ± 0.000 Aa | 0.015 ± 0.001 Bc | 0.014 ± 0.002 Ad | |
B150 | 0.018 ± 0.001 Ab | 0.02 ± 0.001 Aa | 0.017 ± 0.001 Ab | 0.013 ± 0.001 Bc | |
FRAP [A700 nm] | C | 1.67 ± 0.08 Ba | 1.40 ± 0.04 Bc | 1.49 ± 0.10 Cb | 1.70 ± 0.04 Ba |
B50 | 1.68 ± 0.09 Ba | 1.38 ± 0.05 Bc | 1.52 ± 0.11 Cb | 1.74 ± 0.04 Ba | |
B100 | 1.64 ± 0.16 Bb | 1.91 ± 0.08 Aa | 1.71 ± 0.03 Bb | 1.73 ± 0.02 Bb | |
B150 | 1.84 ± 0.07 Ab | 1.87 ± 0.07 Ab | 1.91 ± 0.11 Aab | 2.00 ± 0.05 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójciak, K.M.; Ferysiuk, K.; Kęska, P.; Materska, M.; Chilczuk, B.; Trząskowska, M.; Kruk, M.; Kołożyn-Krajewska, D.; Domínguez, R. Reduction of Nitrite in Canned Pork through the Application of Black Currant (Ribes nigrum L.) Leaves Extract. Molecules 2023, 28, 1749. https://doi.org/10.3390/molecules28041749
Wójciak KM, Ferysiuk K, Kęska P, Materska M, Chilczuk B, Trząskowska M, Kruk M, Kołożyn-Krajewska D, Domínguez R. Reduction of Nitrite in Canned Pork through the Application of Black Currant (Ribes nigrum L.) Leaves Extract. Molecules. 2023; 28(4):1749. https://doi.org/10.3390/molecules28041749
Chicago/Turabian StyleWójciak, Karolina M., Karolina Ferysiuk, Paulina Kęska, Małgorzata Materska, Barbara Chilczuk, Monika Trząskowska, Marcin Kruk, Danuta Kołożyn-Krajewska, and Rubén Domínguez. 2023. "Reduction of Nitrite in Canned Pork through the Application of Black Currant (Ribes nigrum L.) Leaves Extract" Molecules 28, no. 4: 1749. https://doi.org/10.3390/molecules28041749
APA StyleWójciak, K. M., Ferysiuk, K., Kęska, P., Materska, M., Chilczuk, B., Trząskowska, M., Kruk, M., Kołożyn-Krajewska, D., & Domínguez, R. (2023). Reduction of Nitrite in Canned Pork through the Application of Black Currant (Ribes nigrum L.) Leaves Extract. Molecules, 28(4), 1749. https://doi.org/10.3390/molecules28041749