Quantitative Structure Retention-Relationship Modeling: Towards an Innovative General-Purpose Strategy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Diversity of the Dataset
2.2. Comparison of Feature Selection Methods
2.3. Important Features
2.4. Predictive Performance of the Different Algorithms on All Datasets
2.5. Applicability Domain Check
3. Materials and Methods
3.1. Dataset Collection
3.2. Molecular Descriptors and Their Calculation
3.3. Data Cleaning and Preprocessing
3.4. QSRR Modeling with Feature Selection
3.5. Combining Multiple Predictions Using Stacking
Algorithms
3.6. Hyperparameter Optimization
3.7. Applicability Domain
3.8. Model Validation
3.9. Tools and Software Used
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MLR_cfs | Multiple Linear regression on correlation based features selected |
SVM_cfs | Support Vector Machine on correlation based features selected |
GBM | Gradient Boosting Model |
RF | Random Forest: tR- Retention Time |
CFS | Correlation based feature Selection |
RFE | Recursive Feature Elimination |
AD | Applicability Domain |
RMSE | Root mean Squared Error |
CV | Cross Validation |
R2 | Coefficient of Correlation |
LC | Liquid Chromatography |
References
- François, I.; Sandra, K.; Sandra, P. Comprehensive liquid chromatography: Fundamental aspects and practical considerations—A review. Anal. Chim. Acta 2009, 641, 14–31. [Google Scholar] [CrossRef]
- Kaliszan, R. Correlation between the retention indices and the connectivity indices of alcohols and methyl esters with complex cyclic structure. Chromatographia 1977, 10, 529–531. [Google Scholar] [CrossRef]
- Kaliszan, R. Quantitative structure—Retention relationships (QSRR) in chromatography. Encycl. Sep. Sci. 2000, 4063–4075. [Google Scholar]
- Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Nowakowska, J. The comparative study of micellar TLC and RP-TLC as potential tools for lipophilicity assessment based on QSRR approach. J. Pharm. Biomed. Anal. 2018, 149, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Liu, H.; Yao, X.; Liu, M. An accurate QSRR model for the prediction of the GC×GC–TOFMS retention time of polychlorinated biphenyl (PCB) congeners. Anal. Bioanal. Chem. 2007, 388, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ukić, Š.; Novak, M.; Žuvela, P.; Avdalović, N.; Liu, Y.; Buszewski, B.; Bolanča, T. Development of gradient retention model in ion chromatography. Part I: Conventional QSRR approach. Chromatographia 2014, 77, 985–996. [Google Scholar] [CrossRef]
- Bodzioch, K.; Durand, A.; Kaliszan, R.; Bączek, T.; Vander Heyden, Y. Advanced QSRR modeling of peptides behavior in RPLC. Talanta 2010, 81, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Put, R.; Vander Heyden, Y. Review on modelling aspects in reversed-phase liquid chromatographic quantitative structure–retention relationships. Anal. Chim. Acta 2007, 602, 164–172. [Google Scholar] [CrossRef]
- Goryński, K.; Bojko, B.; Nowaczyk, A.; Buciński, A.; Pawliszyn, J.; Kaliszan, R. Quantitative structure–retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: Endogenous metabolites and banned compounds. Anal. Chim. Acta 2013, 797, 13–19. [Google Scholar] [CrossRef]
- Sagandykova, G.; Buszewski, B. Perspectives and recent advances in quantitative structure-retention relationships for high performance liquid chromatography. How far are we? TrAC Trends Anal. Chem. 2021, 141, 116294. [Google Scholar] [CrossRef]
- Bouwmeester, R.; Martens, L.; Degroeve, S. Comprehensive and empirical evaluation of machine learning algorithms for small molecule LC retention time prediction. Anal. Chem. 2019, 91, 3694–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodarzi, M.; Jensen, R.; Vander Heyden, Y. QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions. J. Chromatogr. B 2012, 910, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Zuvela, P.; Liu, J.J.; Macur, K.; Baczek, T. Molecular descriptor subset selection in theoretical peptide quantitative structure—Retention relationship model development using nature-inspired optimization algorithms. Anal. Chem. 2015, 87, 9876–9883. [Google Scholar] [CrossRef] [PubMed]
- Žuvela, P.; Macur, K.; Liu, J.J.; Bączek, T. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches. J. Pharm. Biomed. Anal. 2016, 127, 94–100. [Google Scholar] [CrossRef]
- Wen, Y.; Talebi, M.; Amos, R.I.; Szucs, R.; Dolan, J.W.; Pohl, C.A.; Haddad, P.R. Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model. J. Chromatogr. A 2018, 1541, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Breneman, C.M.; Bi, J.; Sukumar, N.; Bennett, K.P.; Cramer, S.; Tugcu, N. Prediction of protein retention times in 92 anion-exchange chromatography systems using support vector regression. J. Chem. Inf. Comput. Sci. 2002, 42, 1347–1357. [Google Scholar] [CrossRef]
- Hancock, T.; Put, R.; Coomans, D.; Vander Heyden, Y.; Everingham, Y. A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies. Chemom. Intell. Lab. Syst. 2005, 76, 185–196. [Google Scholar] [CrossRef]
- Xu, Z.; Chughtai, H.; Tian, L.; Liu, L.; Roy, J.F.; Bayen, S. Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis. Talanta 2023, 253, 123861. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Maggi, M.A.; Ruggieri, F. Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: Comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters. Anal. Bioanal. Chem. 2015, 407, 1181–1190. [Google Scholar] [CrossRef]
- Ciura, K.; Kovačević, S.; Pastewska, M.; Kapica, H.; Kornela, M.; Sawicki, W. Prediction of the chromatographic hydrophobicity index with immobilized artificial membrane chromatography using simple molecular descriptors and artificial neural networks. J. Chromatogr. A 2021, 1660, 462666. [Google Scholar] [CrossRef]
- Krmar, J.; Vukićević, M.; Kovačević, A.; Protić, A.; Zečević, M.; Otašević, B. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure-retention relationships modelling in micellar liquid chromatography. J. Chromatogr. A 2020, 1623, 461146. [Google Scholar] [CrossRef]
- Pastewska, M.; Bednarczyk-Cwynar, B.; Kovačević, S.; Buławska, N.; Ulenberg, S.; Georgiev, P.; Kapica, H.; Kawczak, P.; Bączek, T.; Sawicki, W.; et al. Multivariate assessment of anticancer oleanane triterpenoids lipophilicity. J. Chromatogr. A 2021, 1656, 462552. [Google Scholar] [CrossRef] [PubMed]
- Ulenberg, S.; Ciura, K.; Georgiev, P.; Pastewska, M.; Ślifirski, G.; Król, M.; Herold, F.; Bączek, T. Use of biomimetic chromatography and in vitro assay to develop predictive GA-MLR model for use in drug-property prediction among anti-depressant drug candidates. Microchem. J. 2022, 175, 107183. [Google Scholar] [CrossRef]
- Kamedulska, A.; Kubik, Ł.; Jacyna, J.; Struck-Lewicka, W.; Markuszewski, M.J.; Wiczling, P. Toward the General Mechanistic Model of Liquid Chromatographic Retention. Anal. Chem. 2022, 94, 11070–11080. [Google Scholar] [CrossRef]
- Kamedulska, A.; Kubik, Ł.; Wiczling, P. Statistical analysis of isocratic chromatographic data using Bayesian modeling. Anal. Bioanal. Chem. 2022, 414, 3471–3481. [Google Scholar] [CrossRef] [PubMed]
- Wiczling, P.; Kamedulska, A.; Kubik, Ł. Application of Bayesian Multilevel Modeling in the Quantitative Structure–Retention Relationship Studies of Heterogeneous Compounds. Anal. Chem. 2021, 93, 6961–6971. [Google Scholar] [CrossRef]
- Ghorbanzadeh, M.; van Ede, K.I.; Larsson, M.; van Duursen, M.B.; Poellinger, L.; Lucke-Johansson, S.; Machala, M.; Pencikova, K.; Vondracek, J.; van den Berg, M.; et al. In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines. Chem. Res. Toxicol. 2014, 27, 1120–1132. [Google Scholar] [CrossRef]
- Sutton, C.; Boley, M.; Ghiringhelli, L.M.; Rupp, M.; Vreeken, J.; Scheffler, M. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 2020, 11, 4428. [Google Scholar] [CrossRef]
- Al-Fakih, A.; Algamal, Z.; Lee, M.; Aziz, M. A sparse QSRR model for predicting retention indices of essential oils based on robust screening approach. SAR QSAR Environ. Res. 2017, 28, 691–703. [Google Scholar] [CrossRef]
- Fouad, M.A.; Tolba, E.H.; Manal, A.; El Kerdawy, A.M. QSRR modeling for the chromatographic retention behavior of some β-lactam antibiotics using forward and firefly variable selection algorithms coupled with multiple linear regression. J. Chromatogr. A 2018, 1549, 51–62. [Google Scholar] [CrossRef]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Shardlow, M. An Analysis of Feature Selection Techniques; The University of Manchester: Manchester, UK, 2016; Volume 1, pp. 1–7. [Google Scholar]
- Muthukrishnan, R.; Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. In Proceedings of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016; pp. 18–20. [Google Scholar]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Hepp, T.; Schmid, M.; Gefeller, O.; Waldmann, E.; Mayr, A. Approaches to regularized regression–a comparison between gradient boosting and the lasso. Methods Inf. Med. 2016, 55, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Kaliszan, R. Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1993, 656, 417–435. [Google Scholar] [CrossRef]
- rdkit.org. The RDKit 2022.03.1 Documentation. 2022. Available online: https://www.rdkit.org/docs/ (accessed on 1 January 2023).
- Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules 2012, 17, 4791–4810. [Google Scholar] [CrossRef] [PubMed]
- Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Kovalishyn, V.V.; Prokopenko, V.V.; Tetko, I.V. Applicability domain for in silico models to achieve accuracy of experimental measurements. J. Chemom. 2010, 24, 202–208. [Google Scholar] [CrossRef]
- Van Laethem, T.; Kumari, P.; Hubert, P.; Fillet, M.; Sacré, P.Y.; Hubert, C. A pharmaceutical-related molecules dataset for reversed-phase chromatography retention time prediction built on combining pH and gradient time conditions. Data Brief 2022, 42, 108017. [Google Scholar] [CrossRef]
- Kubik, Ł.; Wiczling, P. Quantitative structure-(chromatographic) retention relationship models for dissociating compounds. J. Pharm. Biomed. Anal. 2016, 127, 176–183. [Google Scholar] [CrossRef]
- Taraji, M.; Haddad, P.R.; Amos, R.I.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Rapid method development in hydrophilic inter-action liquid chromatography for pharmaceutical analysis using a combination of quantitative structure–retention relationships and design of experiments. Anal. Chem. 2017, 89, 1870–1878. [Google Scholar] [CrossRef]
- Tyteca, E.; Talebi, M.; Amos, R.; Park, S.H.; Taraji, M.; Wen, Y.; Szucs, R.; Pohl, C.A.; Dolan, J.W.; Haddad, P.R. Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: Use of retention factor ratio. J. Chromatogr. A 2017, 1486, 50–58. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Liu, H.; Dougherty, E.R.; Dy, J.G.; Torkkola, K.; Tuv, E.; Peng, H.; Ding, C.; Long, F.; Berens, M.; Parsons, L.; et al. Evolving feature selection. IEEE Intell. Syst. 2005, 20, 64–76. [Google Scholar] [CrossRef]
- Charoenkwan, P.; Chiangjong, W.; Nantasenamat, C.; Hasan, M.M.; Manavalan, B.; Shoombuatong, W. StackIL6: A stacking ensemble model for improving the prediction of IL-6 inducing peptides. Brief. Bioinform. 2021, 22, bbab172. [Google Scholar] [CrossRef]
- Matlock, K.; de Niz, C.; Rahman, R.; Ghosh, S.; Pal, R. Investigation of model stacking for drug sensitivity prediction. BMC Bioinform. 2018, 19, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Ranstam, J.; Cook, J. LASSO regression. J. Br. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Springer Nature: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Center for Bioinformatics and Molecular Biostatistics: San Francisco, CA, USA, 2004. [Google Scholar]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Taraji, M.; Haddad, P.R.; Amos, R.I.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Error measures in quantitative structure-retention relationships studies. J. Chromatogr. A 2017, 1524, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Landrum, G. Rdkit documentation. Release 2013, 1, 4. [Google Scholar]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Team, R.C.; et al. Package ‘caret’. R J. 2020, 223, 7. [Google Scholar]
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘ggplot2’. In Create Elegant Data Visualisations Using the Grammar of Graphics: Version 2; R Foundation for Statistical Computing: Vienna, Austria, 2016; Volume 2, pp. 1–189. [Google Scholar]
- Milano Chemometrics and QSAR Research Group. Applicability Domain Toolbox (for MATLAB). 2013. Available online: https://michem.unimib.it/download/matlab-toolboxes/applicability-domain-toolbox-for-matlab/ (accessed on 10 October 2022).
Models | CV | External Test | ||
---|---|---|---|---|
RMSECV | R2 | RMSE | R2 | |
MLR_CFS | 0.17 | 0.71 | 0.25 | 0.50 |
SVR_CFS | 0.15 | 0.78 | 0.22 | 0.64 |
MLR_CFS | 0.14 | 0.83 | 0.22 | 0.70 |
SVR_RFE | 0.13 | 0.83 | 0.17 | 0.80 |
Lasso | 0.13 | 0.84 | 0.20 | 0.70 |
RF | 0.13 | 0.83 | 0.19 | 0.76 |
GBM | 0.13 | 0.81 | 0.18 | 0.72 |
Stack | 0.13 | 0.82 | 0.25 | 0.80 |
Models | CV | External Test | ||
---|---|---|---|---|
RMSECV | R2 | RMSE | R2 | |
MLR_CFS | 0.15 | 0.79 | 0.34 | 0.41 |
SVR_CFS | 0.17 | 0.72 | 0.25 | 0.53 |
MLR_RFE | 0.14 | 0.81 | 0.30 | 0.58 |
SVR_RFE | 0.13 | 0.89 | 0.21 | 0.70 |
Lasso | 0.13 | 0.82 | 0.22 | 0.66 |
RF | 0.14 | 0.81 | 0.21 | 0.70 |
GBM | 0.15 | 0.80 | 0.24 | 0.50 |
Stack | 0.12 | 0.87 | 0.18 | 0.77 |
Models | CV | External Test | ||
---|---|---|---|---|
RMSECV | R2 | RMSE | R2 | |
MLR_CFS | 0.15 | 0.81 | 0.41 | 0.42 |
SVR_CFS | 0.19 | 0.78 | 0.26 | 0.63 |
MLR_RFE | 0.15 | 0.82 | 0.26 | 0.64 |
SVR_RFE | 0.14 | 0.85 | 0.19 | 0.83 |
Lasso | 0.13 | 0.87 | 0.23 | 0.71 |
RF | 0.14 | 0.87 | 0.22 | 0.75 |
GBM | 0.14 | 0.85 | 0.23 | 0.69 |
Stack | 0.12 | 0.87 | 0.21 | 0.75 |
Models | CV | External Test | ||
---|---|---|---|---|
RMSECV | R2 | RMSE | R2 | |
MLR_CFS | 0.20 | 0.76 | 0.31 | 0.58 |
SVR_CFS | 0.23 | 0.73 | 0.35 | 0.44 |
MLR_RFE | 0.16 | 0.87 | 0.29 | 0.63 |
SVR_RFE | 0.16 | 0.88 | 0.19 | 0.84 |
Lasso | 0.16 | 0.81 | 0.28 | 0.71 |
RF | 0.15 | 0.87 | 0.20 | 0.84 |
GBM | 0.15 | 0.88 | 0.15 | 0.90 |
Stack | 0.13 | 0.90 | 0.18 | 0.85 |
Models | CV | External Test | ||
---|---|---|---|---|
RMSECV | R2 | RMSE | R2 | |
MLR_CFS | 0.21 | 0.77 | 0.26 | 0.71 |
SVR_CFS | 0.22 | 0.76 | 0.29 | 0.64 |
MLR_RFE | 0.21 | 0.83 | 0.22 | 0.79 |
SVR_RFE | 0.17 | 0.87 | 0.15 | 0.91 |
Lasso | 0.15 | 0.89 | 0.30 | 0.70 |
RF | 0.15 | 0.86 | 0.17 | 0.88 |
GBM | 0.16 | 0.86 | 0.15 | 0.89 |
Stack | 0.14 | 0.92 | 0.12 | 0.93 |
Compound | Error pH 2.7 | Error pH 3.5 | Error pH 5.0 | Error pH 6.5 | Error pH 8.0 | Distance pH 2.7 | Distance pH 3.5 | Distance pH 5.0 | Distance pH 6.5 | Distance pH 8.0 | Applicability |
---|---|---|---|---|---|---|---|---|---|---|---|
23dideoxyadenosine | 0.49 | 1.67 | 0.47 | 1.49 | 2.82 | 13.86 | 13.57 | 12.87 | 13.15 | 13.35 | In |
mefenamic acid | 8.07 | 0.00 | 4.30 | 5.44 | 1.60 | 11.32 | 11.34 | 11.43 | 11.37 | 11.40 | In |
cytosine | 5.11 | 1.37 | 2.62 | 1.81 | 1.65 | 9.51 | 9.16 | 8.81 | 9.06 | 9.26 | In |
gallic acid | 2.76 | 2.09 | 0.11 | 0.21 | 0.20 | 8.39 | 8.45 | 8.44 | 8.48 | 8.53 | In |
4aminosalicylic acid | 0.19 | 3.37 | 0.80 | 0.05 | 0.37 | 5.84 | 6.20 | 6.21 | 6.14 | 6.21 | In |
2deoxyguanosine | 1.42 | 2.08 | 1.91 | 2.55 | 0.47 | 12.77 | 12.39 | 12.37 | 12.64 | 12.36 | In |
miconazole | 3.82 | 9.03 | 34.90 | 23.87 | 6.21 | 21.72 | 21.81 | 21.89 | 21.47 | 21.52 | Out |
chlordiazepoxide | 0.32 | 4.50 | 3.49 | 0.00 | 0.84 | 11.50 | 11.54 | 11.70 | 11.52 | 11.86 | In |
4nitrophenol | 1.96 | 4.98 | 4.98 | 4.41 | 1.96 | 7.66 | 7.73 | 7.77 | 8.05 | 9.12 | In |
coumarin | 3.26 | 1.95 | 0.31 | 0.94 | 1.65 | 7.44 | 7.49 | 8.03 | 8.27 | 8.50 | In |
Threshold | 15.87 | 15.86 | 15.88 | 15.64 | 14.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, P.; Van Laethem, T.; Hubert, P.; Fillet, M.; Sacré, P.-Y.; Hubert, C. Quantitative Structure Retention-Relationship Modeling: Towards an Innovative General-Purpose Strategy. Molecules 2023, 28, 1696. https://doi.org/10.3390/molecules28041696
Kumari P, Van Laethem T, Hubert P, Fillet M, Sacré P-Y, Hubert C. Quantitative Structure Retention-Relationship Modeling: Towards an Innovative General-Purpose Strategy. Molecules. 2023; 28(4):1696. https://doi.org/10.3390/molecules28041696
Chicago/Turabian StyleKumari, Priyanka, Thomas Van Laethem, Philippe Hubert, Marianne Fillet, Pierre-Yves Sacré, and Cédric Hubert. 2023. "Quantitative Structure Retention-Relationship Modeling: Towards an Innovative General-Purpose Strategy" Molecules 28, no. 4: 1696. https://doi.org/10.3390/molecules28041696
APA StyleKumari, P., Van Laethem, T., Hubert, P., Fillet, M., Sacré, P. -Y., & Hubert, C. (2023). Quantitative Structure Retention-Relationship Modeling: Towards an Innovative General-Purpose Strategy. Molecules, 28(4), 1696. https://doi.org/10.3390/molecules28041696