Photodynamics of the Molecular Ruby [Cr(ddpd)2]3+
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electronic Structure Method
2.2. Nonadiabatic Dynamics Simulations
3. Results and Discussion
3.1. Electronic Structure
3.2. Setup of the LVC Model
3.3. Excited-State Dynamics
3.4. Mechanism
3.5. Nuclear Motion
3.6. Near-Infrared Emission
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
bpmp | 2,6-bis(2-pyridylmethyl)pyridine |
CASPT2 | complete-active-space second-order perturbation theory |
CASSCF | complete-active-space self-consistent field |
cpmp | 6,2″-carboxypyridyl-2,2′-methylamine-pyridyl-pyridine |
ddpd | N,N′-dimethyl-N,N′-dipyridine-2-ylpyridine-2,6-diamine |
dqp | 2,6-di(quinolin-8-yl)-pyridine |
FTIR | Fourier transform infrared (spectroscopy) |
ISC | intersystem crossing |
LFS | ligand-field splitting |
LVC | linear vibronic coupling |
SH | surface hopping |
TAS | transient absorption spectroscopy |
TDDFT | time-dependent density functional theory |
References
- Evans, R.C.; Burrows, H.D.; Douglas, P. (Eds.) Applied Photochemistry; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Lee, L.C.C.; Lo, K.K.W. Luminescent and Photofunctional Transition-Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J. Am. Chem. Soc. 2022, 144, 14420–14440. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.L.; He, H.Z.; Leung, K.H.; Chan, D.S.H.; Leung, D.H. Bioactive Luminescent Transition-Metal Complexes for Biomedical Applications. Angew. Chem. Int. Ed. 2013, 52, 7666–7682. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Wenger, O.S. Photoactive Complexes with Earth-Abundant Metals. J. Am. Chem. Soc. 2018, 140, 13522–13533. [Google Scholar] [CrossRef] [PubMed]
- Wenger, O.S. Is Iron the New Ruthenium? Chem. Eur. J. 2019, 25, 6043–6052. [Google Scholar] [CrossRef]
- Wegenberg, C.; Wenger, O.S. Luminescent First-Row Transition-Metal Complexes. JACS Au 2021, 1, 1860–1876. [Google Scholar] [CrossRef]
- Vogler, A.; Kunkely, H. Luminescent Metal Complexes: Diversity of Excited States. In Topics in Current Chemistry; Yersin, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 213, Chapter 3; pp. 143–182. [Google Scholar]
- Kjær, K.S.; Kaul, N.; Prakash, O.; Chábera, P.; Rosemann, N.W.; Homarfar, A.; Gordivska, O.; Fredin, L.A.; Bergquist, K.E.; Häggström, L.; et al. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 2019, 363, 249–253. [Google Scholar] [CrossRef]
- Pal, A.K.; Li, C.; Hanan, G.S.; Zysman-Colman, E. Blue-Emissive Cobalt(III) Complexes and Their Use in the Photocatalytic Trifluoromethylation of Polycyclic Aromatic Hydrocarbons. Angew. Chem. Int. Ed. 2018, 57, 8027–8031. [Google Scholar] [CrossRef]
- Wong, Y.S.; Tang, M.C.; Ng, M.; Yam, V.W.W. Toward the Design of Phosphorescent Emitters of Cyclometalated Earth-Abundant Nickel(II) and Their Supramolecular Study. J. Am. Chem. Soc. 2020, 142, 7638–7646. [Google Scholar] [CrossRef]
- Shi, S.; Jung, M.C.; Coburn, C.; Tadle, A.; Sylvinson, M.R.D.; Djurovich, P.I.; Forrest, S.R.; Thompson, M.E. Highly Efficient Photo and Electroluminescence from Two-Coordinate Cu(I) Complexes Featuring Nonconventional N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2019, 141, 3576–3588. [Google Scholar] [CrossRef]
- Kitzmann, W.R.; Moll, J.; Heinze, K. Spin-flip luminescence. Photochem. Photobiol. Sci. 2022, 21, 1309–1331. [Google Scholar] [CrossRef]
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Otto, S.; Grabolle, M.; Förster, C.; Kreitner, C.; Resch-Genger, U.; Heinze, K. [Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue. Angew. Chem. Int. Ed. 2015, 54, 11572–11576. [Google Scholar] [CrossRef]
- Xiang, H.; Cheng, J.; Ma, X.; Zhou, X.; Chruma, J.J. Near-infrared phosphorescence: Materials and applications. Chem. Soc. Rev. 2013, 42, 6128–6185. [Google Scholar] [CrossRef]
- Wang, C.; Otto, S.; Dorn, M.; Kreidt, E.; Lebon, J.; Sršan, L.; Di Martino-Fumo, P.; Gerhards, M.; Resch-Genger, U.; Seitz, M.; et al. Deuterated Molecular Ruby with Record Luminescence Quantum Yield. Angew. Chem. Int. Ed. 2018, 57, 1112–1116. [Google Scholar] [CrossRef]
- Otto, S.; Harris, J.P.; Heinze, K.; Reber, C. Molecular Ruby under Pressure. Angew. Chem. Int. Ed. 2018, 57, 11069–11073. [Google Scholar] [CrossRef]
- Reichenauer, F.; Wang, C.; Förster, C.; Boden, P.; Ugur, N.; Báez-Cruz, R.; Kalmbach, J.; Carrella, L.M.; Rentschler, E.; Ramanan, C.; et al. Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+. J. Am. Chem. Soc. 2021, 143, 11843–11855. [Google Scholar] [CrossRef]
- Jiménez, J.R.; Doistau, B.; Cruz, C.M.; Besnard, C.; Cuerva, J.M.; Campaña, A.G.; Piguet, C. Chiral Moleculer Ruby [Cr(dqp)2]3+ with Long-Lived Circularly Polarized Luminescence. J. Am. Chem. Soc. 2019, 141, 13244–13252. [Google Scholar] [CrossRef]
- Jiménez, J.R.; Poncet, M.; Míguez-Lago, S.; Grass, S.; Lacour, J.; Besnard, C.; Cuerva, J.M.; Campaña, A.G.; Piguet, C. Bright Long-Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew. Chem. Int. Ed. 2021, 60, 10095–10102. [Google Scholar] [CrossRef]
- Sinha, N.; Jiménez, J.R.; Pfund, B.; Prescimone, A.; Piguet, C.; Wenger, O.S. A Near-Infrared-II Emissive Chromium(III) Complex. Angew. Chem. Int. Ed. 2021, 60, 23722–23728. [Google Scholar] [CrossRef]
- Dorn, M.; Hunger, D.; Förster, C.; van Slageren, J.; Heinze, K. Towards Luminescent Vanadium(II) Complexes with Slow Magnetic Relaxation and Quantum Coherence. Chem. Eur. J. 2022, e202202898. [Google Scholar] [CrossRef] [PubMed]
- Dorn, M.; Kalmbach, J.; Boden, P.; Päpcke, A.; Gómez, S.; Förster, C.; Kuczelinis, F.; Carrella, L.M.; Büldt, L.A.; Bings, N.H.; et al. A Vanadium(III) Complex with Blue and NIR-II Spin-Flip Luminescence in Solution. J. Am. Chem. Soc. 2020, 142, 7947–7955. [Google Scholar] [CrossRef] [PubMed]
- Dorn, M.; Kalmbach, J.; Boden, P.; Kruse, A.; Dab, C.; Reber, C.; Niedner-Schatteburg, G.; Lochbrunner, S.; Gerhards, M.; Seitz, M.; et al. Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(III) complex. I: Synthesis, spectroscopy and static quantum chemistry. Chem. Sci. 2021, 12, 10780–10790. [Google Scholar] [CrossRef] [PubMed]
- Zobel, J.P.; Knoll, T.; González, L. Ultrafast and long-time excited state kinetics of an NIR-emissive vanadium(III) complex II. Elucidating Triplet-to-Singlet Excited-State Dynamics. Chem. Sci. 2021, 12, 10791–10801. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.; Nauth, A.M.; Ermilov, E.; Scholz, N.; Friedrich, A.; Resch-Genger, U.; Lochbrunner, S.; Opatz, T.; Heinze, K. Photo-Chromium: Sensitizer for Visible-Light Induced Oxidative C–H Bond Functionlization–Electron of Energy Transfer. ChemPhotoChem 2017, 51, 344–349. [Google Scholar] [CrossRef]
- Kitzmann, W.R.; Ramanan, C.; Naumann, R.; Heinze, K. Molecular ruby: Exploring the excited state landscape. Dalton Trans. 2022, 51, 6519–6525. [Google Scholar] [CrossRef]
- Boden, P.; Di Martino-Fumo, P.; Niedner-Schatteburg, G.; Seidel, W.; Heinze, K.; Gerhards, M. Transient FTIR spectroscopy after one- and two-colour excitation on a highly luminescent chromium (III) complex. Phys. Chem. Chem. Phys. 2021, 23, 13808–13818. [Google Scholar] [CrossRef]
- Zobel, J.P.; González, L. The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. JACS Au 2021, 1, 1116–1140. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Pantazis, D.A.; Chen, X.Y.; Landis, C.R.; Neese, F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008, 4, 908–919. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- van Wüllen, C. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998, 109, 392–399. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Roos, B.O. Multiconfigurational Quantum Chemistry for Ground and Excited States. In Radiation Induced Molecular Phenomena in Nucleic Acids; Shukla, M.K., Leszczynski, J., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 125–156. [Google Scholar]
- Li Manni, G.; Guther, K.; Ma, D.; Dobrautz, W. Foundation of Multi-Configurational Quantum Chemistry. In Quantum Chemistry and Dynamics in Excited States: Methods and Applications; González, L., Lindh, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; Chapter 6. [Google Scholar]
- Galván, I.F.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J.J.; Bokarev, S.I.; Bogdanov, N.A.; Carlson, R.K.; et al. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comp. 2019, 15, 5925–5964. [Google Scholar] [CrossRef]
- Finley, J.; Malmqvist, P.Å.; Roos, B.O.; Serrano-Andrés, L. The multi-state CASPT2 method. Chem. Phys. Lett. 1998, 288, 299–306. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.Å.; Veryazov, V.; Widmark, P.O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851–2858. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.Å.; Veryazov, V.; Widmark, P.O. New Relativistic ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575–6579. [Google Scholar] [CrossRef]
- Aquilante, F.; Lindh, R.; Pedersen, T.B. Unbiased auxiliary basis sets for accurate two-electron integral approximations. J. Chem. Phys. 2007, 127, 114107. [Google Scholar] [CrossRef]
- Forsberg, N.; Malmqvist, P.Å. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett. 1997, 274, 196–204. [Google Scholar] [CrossRef]
- Ghigo, G.; Roos, B.O.; Malmqvist, P.Å. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory CASPT2. Chem. Phys. Lett. 2004, 396, 142–149. [Google Scholar] [CrossRef]
- Zobel, J.P.; Nogueira, J.J.; González, L. The IPEA Dilemma in CASPT2. Chem. Sci. 2017, 8, 1482–1499. [Google Scholar] [CrossRef] [PubMed]
- Schimmelpfennig, B. AMFI, An Atomic Mean-Field Spin-Orbit Integral Program; University of Stockholm: Stockholm, Sweden, 1996. [Google Scholar]
- Tully, J.C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061–1071. [Google Scholar] [CrossRef]
- Mai, S.; Marquetand, P.; González, L. Nonadiabatic dynamics: The SHARC approach. WIREs Comput. Mol. Sci. 2018, 8, e1370. [Google Scholar] [CrossRef] [PubMed]
- Mai, S.; Richter, M.; Heindl, M.; Menger, M.F.S.J.; Atkins, A.; Ruckenbauer, M.; Plasser, F.; Ibele, L.M.; Kropf, S.; Oppel, M.; et al. SHARC2.1: Surface Hopping Including Arbitrary Couplings—Program Package for Non-Adiabatic Dynamics. Available online: https://sharc-md.org/ (accessed on 6 February 2023).
- Köppel, H.; Domcke, W.; Cederbaum, L.S. Multimode Molecular Dynamics Beyond the Born-Oppenheimer Approximation. In Advances in Chemical Physics; Prigogine, I., Rice, S.A., Eds.; John Wiley & Sons: New York, NY, USA, 1984; Volume 57, pp. 59–246. [Google Scholar]
- Plasser, F.; Gómez, S.; Menger, M.F.S.J.; Mai, S.; González, L. Highly efficient surface hopping dynamics using a linear vibronic coupling model. Phys. Chem. Chem. Phys. 2019, 21, 57–69. [Google Scholar] [CrossRef]
- Zobel, J.P.; Heindl, M.; Plasser, F.; Mai, S.; González, L. Surface Hopping Dynamics on Vibronic Coupling Models. Acc. Chem. Res. 2021, 54, 3760–3771. [Google Scholar] [CrossRef]
- Fumanal, M.; Plasser, F.; Mai, S.; Daniel, C.; Gindensperger, E. Interstate vibronic coupling constants between electronic excited states for complex molecules. J. Chem. Phys. 2018, 148, 124119. [Google Scholar] [CrossRef]
- Sun, L.; Hase, W.L. Comparison of classical and Wigner sampling of transition state energy level for quasiclassical trajectory chemical dynamics simulations. J. Chem. Phys. 2010, 133, 044313. [Google Scholar] [CrossRef]
- Barbatti, M.; Grannuci, G.; Persico, M.; Ruckenbauer, M.; Vazdar, M.; Eckert-Maksić, M.; Lischka, H. The on-the-fly surface-hopping program system NEWTON-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. J. Photochem. Photobiol. A 2007, 190, 228–240. [Google Scholar] [CrossRef]
- Granucci, G.; Persico, M.; Toniolo, A. Direct Semiclassical simulation of photochemical processes with semiempirical wave functions. J. Chem. Phys. 2001, 114, 10608–10615. [Google Scholar] [CrossRef]
- Granucci, G.; Persico, M.; Zoccante, A. Including quantum decoherence in surface hopping. J. Chem. Phys. 2010, 133, 134111. [Google Scholar] [CrossRef]
- Plasser, F.; Ruckenbauer, M.; Mai, S.; Oppel, M.; Marquetand, P.; González, L. Efficient and Flexible Computation of Many-Electron Wave-Function Overlaps. J. Chem. Theory Comput. 2016, 12, 1207–1219. [Google Scholar] [CrossRef]
- Zobel, J.P.; Bokareva, O.S.; Zimmer, P.; Wölper, C.; Bauer, M.; González, L. Intersystem Crossing and Triplet Dynamics in Iron(II) N-Heterocyclic Carbene Photosensitizer. Inorg Chem. 2020, 59, 14666–14678. [Google Scholar] [CrossRef]
- Mai, S.; Menger, M.F.S.J.; Marazzi, M.; Stolba, D.L.; Monari, A.; González, L. Competing ultrafast photoinduced electron transfer and intersystem crossing of [Re(CO)3 (Dmp)(His124)(Trp122)]+ in Pseudomonas aeruginosa azurin: A nonadiabatic dynamics study. Theor. Chem. Acc. 2020, 139, 65. [Google Scholar] [CrossRef]
- González, L.; Escudero, D.; Serrano-Andrés, L. Progress and Challenges in the Calculation of Electronic Excited States. ChemPhysChem 2012, 13, 28–51. [Google Scholar] [CrossRef]
- Pápai, M. Photoinduced Low-Spin → High-Spin Mechanism of an Octahedral Fe(II) Compelx Revealed by Synergistic Spin-Vibronic Dynamics. Inorg. Chem. 2021, 60, 13950–13954. [Google Scholar] [CrossRef]
- Pápai, M. Towards Simuation of Fe(II) Low-Spin → High-Spin Photoswitching by Synergistic Spin-Vibronic Dynamics. J. Chem. Theory Comput. 2022, 18, 1329–1339. [Google Scholar] [CrossRef]
- Mai, S.; Marquetand, P.; González, L. A General Method to Describe Intersystem Crossing in Trajectory Surface Hopping. Int. J. Quant. Chem. 2015, 115, 1215–1231. [Google Scholar] [CrossRef]
- Mead, C.A.; Truhlar, D.G. Conditions for the definition of a strictly diabatic electronic basis for molecular systems. J. Chem. Phys. 1982, 77, 6090–6098. [Google Scholar] [CrossRef]
- Mai, S.; González, L. Unconventional two-step spin relaxation dynamics of [Re(CO)3(im)(phen)]+ in aqueous solution. Chem. Sci. 2019, 10, 10405–10411. [Google Scholar] [CrossRef] [Green Version]
- Zobel, J.P.; Kruse, A.; Baig, O.; Lochbrunner, S.; Bokarev, S.I.; Kühn, O.; González, L.; Bokareva, O.S. Can range-separated functionals be optimally tuned to predict spectra and excited state dynamics in photoactive iron complexes? Chem. Sci. 2023. [Google Scholar] [CrossRef]
- Kurtz, K.; Hofmann, A.; de Vivie-Riedle, R. Ground state normal mode analysis: Linking excited state dynamics and experimental observables. J. Chem. Phys. 2001, 114, 6151–6159. [Google Scholar] [CrossRef]
- Plasser, F.; Barbatti, M.; Aquino, A.J.A.; Lischka, H. Excited-State Diproton Transfer in [2,2′-Bipyridyl]-3,3′-diol: The Mechanism Is Sequential, Not Concerted. J. Phys. Chem. A 2009, 113, 8490–8499. [Google Scholar] [CrossRef] [PubMed]
- Kasha, M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950, 9, 14. [Google Scholar] [CrossRef]
- Lawson Daku, L.M.; Aquilante, F.; Robinson, T.W.; Hauser, A. Accurate Spin-State Energetics of Transition Metal Complexes. 1. CCSD(T), CASPT2, and DFT Study of [M(NCH)6]2+ (M = Fe, Co). J. Chem. Theory Comput. 2012, 8, 4216–4231. [Google Scholar] [CrossRef]
- Vela, S.; Fumanal, M.; Ribas-Ariño, J.; Robert, V. On the Zeroth-Order Hamiltonian for CASPT2 Calculations of Spin Crossover Compounds. J. Comput. Chem. 2016, 37, 947–953. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zobel, J.P.; Radatz, H.; González, L. Photodynamics of the Molecular Ruby [Cr(ddpd)2]3+. Molecules 2023, 28, 1668. https://doi.org/10.3390/molecules28041668
Zobel JP, Radatz H, González L. Photodynamics of the Molecular Ruby [Cr(ddpd)2]3+. Molecules. 2023; 28(4):1668. https://doi.org/10.3390/molecules28041668
Chicago/Turabian StyleZobel, J. Patrick, Hanna Radatz, and Leticia González. 2023. "Photodynamics of the Molecular Ruby [Cr(ddpd)2]3+" Molecules 28, no. 4: 1668. https://doi.org/10.3390/molecules28041668
APA StyleZobel, J. P., Radatz, H., & González, L. (2023). Photodynamics of the Molecular Ruby [Cr(ddpd)2]3+. Molecules, 28(4), 1668. https://doi.org/10.3390/molecules28041668