On-Site Detection of Volatile Organic Compounds (VOCs)
Abstract
:1. Introduction
2. Fast/Screening Methods for on-Site/Mobile Analysis of VOCs
2.1. Nonselective Gas Sensors
2.1.1. Photoionization Detectors
2.1.2. Electrochemical (Amperometric) Sensors
2.1.3. Metal Oxide (Potentiometric) Sensors
2.1.4. Pellistors, Surface Acoustic Wave, Quartz Crystal Microbalance and Other Sensors
2.2. Electronic Noses
2.3. Spectroscopic Methods
2.3.1. Nondispersive Infrared Sensors
2.3.2. UV Spectrometers
2.3.3. Chemiluminescence
2.4. Miniaturized GC
2.5. Portable Mass Spectrometry and Ion Mobility Spectrometry
2.5.1. Direct Injection Mass Spectrometry (DIMS)
2.5.2. Ion Mobility Spectrometry (IMS)
3. Discussion
4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Air Quality Guidelines for Europe; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- World Health Organization. Evolution of WHO Air Quality Guidelines: Past, Present and Future; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- Peñuelas, J.; Staudt, M. BVOCs and global change. Trends Plant Sci. 2010, 15, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Reimann, S.; Lewis, A.C. Anthropogenic VOCs. In Volatile Organic Compounds in the Atmosphere; Blackwell Publishing: Oxford, UK, 2007; pp. 33–81. [Google Scholar]
- Rumchev, K.; Brown, H.; Spickett, J. Volatile organic compounds: Do they present a risk to our health? Rev. Environ. Health 2007, 22, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Soni, V.; Singh, P.; Shree, V.; Goel, V. Effects of VOCs on human health. In Air Pollution and Control; Springer: Singapore, 2018; pp. 119–142. [Google Scholar]
- Namieśnik, J.; Górecki, T.; Łukasiak, J. Indoor air quality (IAQ), pollutants, their sources and concentration levels. Build. Environ. 1992, 27, 339–356. [Google Scholar] [CrossRef]
- Dimitriades, B. Effects of hydrocarbon and nitrogen oxides on photochemical smog formation. Environ. Sci. Technol. 1972, 6, 253–260. [Google Scholar] [CrossRef]
- Aumont, B.; Madronich, S.; Bey, I.; Tyndall, G.S. Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modeling approach. J. Atmos. Chem. 2000, 35, 59–75. [Google Scholar] [CrossRef]
- Koppmann, R. Volatile Organic Compounds in the Atmosphere; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Lussac, E.; Barattin, R.; Cardinael, P.; Agasse, V. Review on micro-gas analyzer systems: Feasibility, separations and applications. Crit. Rev. Anal. Chem. 2016, 46, 455–468. [Google Scholar] [CrossRef]
- Dewulf, J.; Van Langenhove, H.; Wittmann, G. Analysis of volatile organic compounds using gas chromatography. TrAC Trends Anal. Chem. 2002, 21, 637–646. [Google Scholar] [CrossRef]
- Bravo-Linares, C.M.; Mudge, S.M. Analysis of volatile organic compounds (VOCs) in sediments using in situ SPME sampling. J. Environ. Monit. 2007, 9, 411–418. [Google Scholar] [CrossRef]
- Namieśnik, J.; Wardencki, W. Solventless sample preparation techniques in environmental analysis. J. High Resolut. Chromatogr. 2000, 23, 297–303. [Google Scholar] [CrossRef]
- Ueta, I.; Mizuguchi, A.; Fujimura, K.; Kawakubo, S.; Saito, Y. Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples. Anal. Chim. Acta 2012, 746, 77–83. [Google Scholar] [CrossRef]
- Ras, M.R.; Borrull, F.; Marcé, R.M. Sampling and preconcentration techniques for determination of volatile organic compounds in air samples. TrAC Trends Anal. Chem. 2009, 28, 347–361. [Google Scholar] [CrossRef]
- Harper, M. Sorbent trapping of volatile organic compounds from air. J. Chromatogr. A 2000, 885, 129–151. [Google Scholar] [CrossRef]
- Kumar, A.; Víden, I. Volatile organic compounds: Sampling methods and their worldwide profile in ambient air. Environ. Monit. Assess. 2007, 131, 301–321. [Google Scholar] [CrossRef]
- Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Solid phase microextraction techniques used for gas chromatography: A review. Acta Chromatogr. 2020, 32, 1–9. [Google Scholar] [CrossRef]
- Lara-Ibeas, I.; Cuevas, A.R.; Le Calvé, S. Recent developments and trends in miniaturized gas preconcentrators for portable gas chromatography systems: A review. Sens. Actuators B Chem. 2021, 346, 130449. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, Z.; Cheng, Y.; Sun, W.; Xi, Z.; Jia, W.; Li, G.; Wang, Y.; Guo, M.; Li, D. Review and prospect on portable mass spectrometer for recent applications. Vacuum 2022, 199, 110889. [Google Scholar] [CrossRef]
- Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; López, R.; Madejón, E.; Díaz, M. Use of electronic nose and GC-MS in detection and monitoring some VOC. Atmos. Environ. 2012, 51, 278–285. [Google Scholar] [CrossRef]
- Demichelis, A.; Pascale, C.; Lecuna, M.; Niederhauser, B.; Sassi, G.; Sassi, M.P. Compact devices for generation of reference trace VOC mixtures: A new concept in assuring quality at chemical and biochemical laboratories. Anal. Bioanal. Chem. 2018, 410, 2619–2628. [Google Scholar] [CrossRef]
- Rhoderick, G.C.; Yen, J.H. Development of a NIST Standard Reference Material containing thirty volatile organic compounds at 5 nmol/mol in nitrogen. Anal. Chem. 2006, 78, 3125–3132. [Google Scholar] [CrossRef]
- Sassi, G.; Demichelis, A.; Lecuna, M.; Sassi, M.P. Preparation of standard VOC mixtures for climate monitoring. Int. J. Environ. Anal. Chem. 2015, 95, 1195–1207. [Google Scholar] [CrossRef]
- Agbroko, S.O.; Covington, J. A novel, low-cost, portable PID sensor for the detection of volatile organic compounds. Sens. Actuators B Chem. 2018, 275, 10–15. [Google Scholar] [CrossRef]
- Pang, X.; Nan, H.; Zhong, J.; Ye, D.; Shaw, M.D.; Lewis, A.C. Low-cost photoionization sensors as detectors in GC× GC systems designed for ambient VOC measurements. Sci. Total Environ. 2019, 664, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Spadi, A.; Angeloni, G.; Guerrini, L.; Corti, F.; Maioli, F.; Calamai, L.; Parenti, A.; Masella, P. A Conventional VOC-PID Sensor for a Rapid Discrimination among Aromatic Plant Varieties: Classification Models Fitted to a Rosemary Case-Study. Appl. Sci. 2022, 12, 6399. [Google Scholar] [CrossRef]
- Zabiegała, B.; Przyk, E.; Przyjazny, A.; Namieśnik, J. Evaluation of indoor air quality on the basis of measurements of VOC concentrations. Chem. Anal. 2000, 45, 11–26. [Google Scholar]
- Silvester, D.S. New innovations in ionic liquid–based miniaturised amperometric gas sensors. Curr. Opin. Electrochem. 2019, 15, 7–17. [Google Scholar] [CrossRef]
- Miah, M.R.; Yang, M.; Khandaker, S.; Bashar, M.M.; Alsukaibi, A.K.D.; Hassan, H.M.; Znad, H.; Awual, M.R. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sens. Actuators A Phys. 2022, 347, 113933. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, K.-H.; Mehta, P.K.; Ge, L.; Lisak, G. Progress and challenges in electrochemical sensing of volatile organic compounds using metal-organic frameworks. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2016–2048. [Google Scholar] [CrossRef]
- Meixner, H.; Lampe, U. Metal oxide sensors. Sens. Actuators B Chem. 1996, 33, 198–202. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef]
- Sayago, I.; Aleixandre, M.; Santos, J.P. Development of tin oxide-based nanosensors for electronic nose environmental applications. Biosensors 2019, 9, 21. [Google Scholar] [CrossRef]
- Han, D.; Zhai, L.; Gu, F.; Wang, Z. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens. Actuators B Chem. 2018, 262, 655–663. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, G.; Nagashima, K.; Takahashi, T.; Hosomi, T.; Yanagida, T. Metal–oxide nanowire molecular sensors and their promises. Chemosensors 2021, 9, 41. [Google Scholar] [CrossRef]
- John, R.A.B.; Kumar, A.R. A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures. Inorg. Chem. Commun. 2021, 133, 108893. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Corsaro, C.; Neri, G.; Leonardi, S.G.; Neri, F.; Lavanya, N.; Sekar, C.; Donato, N.; Neri, G. Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors 2021, 21, 2494. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured metal oxide-based acetone gas sensors: A review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef]
- Acharyya, S.; Nag, S.; Kimbahune, S.; Ghose, A.; Pal, A.; Guha, P.K. Selective discrimination of VOCs applying gas sensing kinetic analysis over a metal oxide-based chemiresistive gas sensor. ACS Sens. 2021, 6, 2218–2224. [Google Scholar] [CrossRef]
- Fois, M.; Cox, T.; Ratcliffe, N.; de Lacy Costello, B. Rare earth doped metal oxide sensor for the multimodal detection of volatile organic compounds (VOCs). Sens. Actuators B Chem. 2021, 330, 129264. [Google Scholar] [CrossRef]
- Pargoletti, E.; Cappelletti, G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for vocs gas sensing. Nanomaterials 2020, 10, 1485. [Google Scholar] [CrossRef]
- Baur, T.; Amann, J.; Schultealbert, C.; Schütze, A. Field study of metal oxide semiconductor gas sensors in temperature cycled operation for selective VOC monitoring in indoor air. Atmosphere 2021, 12, 647. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, Q.; Zhang, J.; Xi, G. General fabrication and enhanced VOC gas-sensing properties of hierarchically porous metal oxides. RSC Adv. 2017, 7, 35897–35904. [Google Scholar] [CrossRef]
- Ollé, E.P.; Farré-Lladós, J.; Casals-Terré, J. Advancements in microfabricated gas sensors and microanalytical tools for the sensitive and selective detection of odors. Sensors 2020, 20, 5478. [Google Scholar] [CrossRef] [PubMed]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [PubMed]
- Szulczyński, B.; Gębicki, J. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 2017, 4, 21. [Google Scholar] [CrossRef]
- Ho, C.K.; Lindgren, E.R.; Rawlinson, K.S.; McGrath, L.K.; Wright, J.L. Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds. Sensors 2003, 3, 236–247. [Google Scholar] [CrossRef]
- Horrillo, M.; Fernández, M.; Fontecha, J.; Sayago, I.; Garcıa, M.; Aleixandre, M.; Santos, J.; Arés, L.; Gutiérrez, J.; Gracia, I. Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings. Thin Solid Film. 2004, 467, 234–238. [Google Scholar] [CrossRef]
- Gao, F.; Boussaid, F.; Xuan, W.; Tsui, C.-Y.; Bermak, A. Dual transduction surface acoustic wave gas sensor for VOC discrimination. IEEE Electron Device Lett. 2018, 39, 1920–1923. [Google Scholar] [CrossRef]
- Viespe, C.; Miu, D. Characteristics of surface acoustic wave sensors with nanoparticles embedded in polymer sensitive layers for VOC detection. Sensors 2018, 18, 2401. [Google Scholar] [CrossRef]
- Kus, F.; Altinkok, C.; Zayim, E.; Erdemir, S.; Tasaltin, C.; Gurol, I. Surface acoustic wave (SAW) sensor for volatile organic compounds (VOCs) detection with calix [4] arene functionalized Gold nanorods (AuNRs) and silver nanocubes (AgNCs). Sens. Actuators B Chem. 2021, 330, 129402. [Google Scholar] [CrossRef]
- Palla-Papavlu, A.; Voicu, S.I.; Dinescu, M. Sensitive materials and coating technologies for surface acoustic wave sensors. Chemosensors 2021, 9, 105. [Google Scholar] [CrossRef]
- Speight, R.E.; Cooper, M.A. A survey of the 2010 quartz crystal microbalance literature. J. Mol. Recognit. 2012, 25, 451–473. [Google Scholar] [CrossRef]
- O’sullivan, C.; Guilbault, G. Commercial quartz crystal microbalances–theory and applications. Biosens. Bioelectron. 1999, 14, 663–670. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, C. Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review. Food Chem. 2021, 334, 127615. [Google Scholar] [CrossRef]
- Vaughan, S.R.; Pérez, R.L.; Chhotaray, P.; Warner, I.M. Quartz crystal microbalance based sensor arrays for detection and discrimination of VOCs using phosphonium ionic liquid composites. Sensors 2020, 20, 615. [Google Scholar] [CrossRef]
- Regmi, B.P.; Adhikari, P.L.; Dangi, B.B. Ionic liquid-based quartz crystal microbalance sensors for organic vapors: A tutorial review. Chemosensors 2021, 9, 194. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic nose and its applications: A survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors 2017, 17, 2715. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Chmielewski, J. Electronic nose as a tool for monitoring the authenticity of food. A review. Food Anal. Methods 2017, 10, 1800–1816. [Google Scholar] [CrossRef]
- Sanaeifar, A.; ZakiDizaji, H.; Jafari, A.; de la Guardia, M. Early detection of contamination and defect in foodstuffs by electronic nose: A review. TrAC Trends Anal. Chem. 2017, 97, 257–271. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Okur, S.; Sarheed, M.; Huber, R.; Zhang, Z.; Heinke, L.; Kanbar, A.; Wöll, C.; Nick, P.; Lemmer, U. Identification of mint scents using a QCM based e-nose. Chemosensors 2021, 9, 31. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar]
- Dragonieri, S.; Pennazza, G.; Carratu, P.; Resta, O. Electronic nose technology in respiratory diseases. Lung 2017, 195, 157–165. [Google Scholar] [CrossRef]
- Van de Goor, R.; van Hooren, M.; Dingemans, A.-M.; Kremer, B.; Kross, K. Training and validating a portable electronic nose for lung cancer screening. J. Thorac. Oncol. 2018, 13, 676–681. [Google Scholar] [CrossRef]
- Tirzïte, M.; Bukovskis, M.; Strazda, G.; Jurka, N.; Taivans, I. Detection of lung cancer with electronic nose and logistic regression analysis. J. Breath Res. 2018, 13, 016006. [Google Scholar] [CrossRef]
- Behera, B.; Joshi, R.; Vishnu, G.A.; Bhalerao, S.; Pandya, H.J. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath Res. 2019, 13, 024001. [Google Scholar] [CrossRef]
- Sarno, R.; Sabilla, S.I.; Wijaya, D.R. Electronic Nose for Detecting Multilevel Diabetes using Optimized Deep Neural Network. Eng. Lett. 2020, 28, 31–42. [Google Scholar]
- Riscica, F.; Dirani, E.; Accardo, A.; Chapoval, A. An Inexpensive, Portable, and Versatile Electronic Nose for Illness Detect. Известия Алтайскoгo гoсударственнoгo университета 2021, 1, 47–52. [Google Scholar] [CrossRef]
- Cheng, L.; Meng, Q.-H.; Lilienthal, A.J.; Qi, P.-F. Development of compact electronic noses: A review. Meas. Sci. Technol. 2021, 32, 062002. [Google Scholar] [CrossRef]
- Hou, H.-R.; Meng, Q.-H.; Qi, P.-F.; Jing, T. A hand-held electronic nose system for rapid identification of Chinese liquors. IEEE Trans. Instrum. Meas. 2021, 70, 2006411. [Google Scholar] [CrossRef]
- Huang, Y.; Doh, I.-J.; Bae, E. Design and validation of a portable machine learning-based electronic nose. Sensors 2021, 21, 3923. [Google Scholar] [CrossRef]
- Matatagui, D.; Bahos, F.A.; Gràcia, I.; Horrillo, M.D.C. Portable low-cost electronic nose based on surface acoustic wave sensors for the detection of BTX vapors in air. Sensors 2019, 19, 5406. [Google Scholar] [CrossRef]
- Illahi, A.A.C.; Dadios, E.P.; Bandala, A.A.; Vicerra, R.R.P. Electronic Nose Technology and Application: A Review. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–5. [Google Scholar]
- Khan, S.; Newport, D.; Le Calvé, S. Gas detection using portable deep-UV absorption spectrophotometry: A review. Sensors 2019, 19, 5210. [Google Scholar] [CrossRef]
- Jha, R.K. Non-Dispersive infrared gas sensing technology: A review. IEEE Sens. J. 2021, 22, 6–15. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 2020, 11, 5245. [Google Scholar] [CrossRef]
- Xu, M.; Peng, B.; Zhu, X.; Guo, Y. Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology. Sensors 2022, 22, 836. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, S.; Tiele, A.; Agbroko, S.O.; Covington, J.A. Development of a tuneable NDIR optical electronic nose. Sensors 2020, 20, 6875. [Google Scholar] [CrossRef] [PubMed]
- Hue, J.; Dupoy, M.; Bordy, T.; Rousier, R.; Vignoud, S.; Schaerer, B.; Tran-Thi, T.-H.; Rivron, C.; Mugherli, L.; Karpe, P. Benzene and xylene detection by absorbance in the range of 10–100 ppb application: Quality of indoor air. Sens. Actuators B Chem. 2013, 189, 194–198. [Google Scholar] [CrossRef]
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar]
- Toby, S. Chemiluminescence in the reactions of ozone. Chem. Rev. 1984, 84, 277–285. [Google Scholar] [CrossRef]
- Finlayson, B.; Pitts, J., Jr.; Atkinson, R. Low-pressure gas-phase ozone-olefin reactions. Chemiluminescence, kinetics, and mechanisms. J. Am. Chem. Soc. 1974, 96, 5356–5367. [Google Scholar] [CrossRef]
- Hills, A.J.; Zimmerman, P.R. Isoprene measurement by ozone-induced chemiluminescence. Anal. Chem. 1990, 62, 1055–1060. [Google Scholar] [CrossRef]
- Jiménez, A.; Navas, M.; Galán, G. Air analysis: Determination of ozone by chemiluminescence. Appl. Spectrosc. Rev. 1997, 32, 141–149. [Google Scholar] [CrossRef]
- Ohira, S.-I.; Li, J.; Lonneman, W.A.; Dasgupta, P.K.; Toda, K. Can breath isoprene be measured by ozone chemiluminescence? Anal. Chem. 2007, 79, 2641–2649. [Google Scholar] [CrossRef]
- Mukosera, G.T.; Liu, T.; Ahmed, A.S.I.; Li, Q.; Sheng, M.H.-C.; Tipple, T.E.; Baylink, D.J.; Power, G.G.; Blood, A.B. Detection of dinitrosyl iron complexes by ozone-based chemiluminescence. Nitric Oxide 2018, 79, 57–67. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, J.; Song, Y.; Li, Z.; Liu, X.; Zhang, M.; Zang, H.; Cao, X.; Lv, C. An environment-friendly device for rapid determination of chemical oxygen demand in waters based on ozone-induced chemiluminescence technology. Anal. Methods 2019, 11, 1707–1714. [Google Scholar] [CrossRef]
- Matsumoto, J. Measurements of total ozone reactivity in a suburban forest in Japan. Atmos. Environ. 2021, 246, 117990. [Google Scholar] [CrossRef]
- Takayanagi, T. Monitoring of Ambient Ozone: Instrumentations and Applications Mini-Review. J. Flow Inject. Anal. 2017, 34, 67–70. [Google Scholar]
- Long, R.W.; Whitehill, A.; Habel, A.; Urbanski, S.; Halliday, H.; Colón, M.; Kaushik, S.; Landis, M.S. Comparison of ozone measurement methods in biomass burning smoke: An evaluation under field and laboratory conditions. Atmos. Meas. Tech. 2021, 14, 1783–1800. [Google Scholar] [CrossRef]
- Witkiewicz, Z.; Wardencki, W. Transportable, portable and micro gas chromatographs. Anal. Chem. Indian J. 2019, 19, 142. [Google Scholar]
- Meuzelaar, H.L.; Dworzanski, J.P.; Arnold, N.S.; McClennen, W.H.; Wager, D.J. Advances in field-portable mobile GC/MS instrumentation. Field Anal. Chem. Technol. 2000, 4, 3–13. [Google Scholar] [CrossRef]
- Regmi, B.P.; Agah, M. Micro gas chromatography: An overview of critical components and their integration. Anal. Chem. 2018, 90, 13133–13150. [Google Scholar] [CrossRef]
- Yashin, Y.I.; Yashin, A.Y. Miniaturization of gas-chromatographic instruments. J. Anal. Chem. 2001, 56, 794–805. [Google Scholar] [CrossRef]
- Qu, H.; Duan, X. Recent advances in micro detectors for micro gas chromatography. Sci. China Mater. 2019, 62, 611–623. [Google Scholar] [CrossRef]
- Rodríguez-Cuevas, A.; Lara-Ibeas, I.; Leprince, A.; Wolf, M.; Le Calvé, S. Easy-to-manufacture micro gas preconcentrator integrated in a portable GC for enhanced trace detection of BTEX. Sens. Actuators B Chem. 2020, 324, 128690. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Mancarella, F.; Betti, P.; Dalcanale, E.; Cardinali, G.; Severi, M. Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph. Sens. Actuators B Chem. 2009, 141, 322–328. [Google Scholar] [CrossRef]
- You, D.-W.; Seon, Y.-S.; Jang, Y.; Bang, J.; Oh, J.-S.; Jung, K.-W. A portable gas chromatograph for real-time monitoring of aromatic volatile organic compounds in air samples. J. Chromatogr. A 2020, 1625, 461267. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Sayler, S.K.; Zhou, M.; Zhu, H.; Richardson, R.J.; Neitzel, R.L.; Kurabayashi, K.; Fan, X. On-site monitoring of occupational exposure to volatile organic compounds by a portable comprehensive 2-dimensional gas chromatography device. Anal. Methods 2018, 10, 237–244. [Google Scholar] [CrossRef]
- Wang, J.; Nuñovero, N.; Nidetz, R.; Peterson, S.J.; Brookover, B.M.; Steinecker, W.H.; Zellers, E.T. Belt-mounted micro-gas-chromatograph prototype for determining personal exposures to volatile-organic-compound mixture components. Anal. Chem. 2019, 91, 4747–4754. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bryant-Genevier, J.; Nuñovero, N.; Zhang, C.; Kraay, B.; Zhan, C.; Scholten, K.; Nidetz, R.; Buggaveeti, S.; Zellers, E.T. Compact prototype microfabricated gas chromatographic analyzer for autonomous determinations of VOC mixtures at typical workplace concentrations. Microsyst. Nanoeng. 2018, 4, 17101. [Google Scholar] [CrossRef]
- Wei-Hao Li, M.; Ghosh, A.; Venkatasubramanian, A.; Sharma, R.; Huang, X.; Fan, X. High-Sensitivity Micro-Gas Chromatograph–Photoionization Detector for Trace Vapor Detection. ACS Sens. 2021, 6, 2348–2355. [Google Scholar] [CrossRef]
- Lawson, A.M. Mass Spectrometry; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021; Volume 1. [Google Scholar]
- Mielczarek, P.; Silberring, J.; Smoluch, M. Miniaturization in mass spectrometry. Mass Spectrom. Rev. 2020, 39, 453–470. [Google Scholar] [CrossRef]
- Evans-Nguyen, K.; Stelmack, A.R.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Fieldable mass spectrometry for forensic science, homeland security, and defense applications. Mass Spectrom. Rev. 2021, 40, 628–646. [Google Scholar] [CrossRef]
- Lebrón-Aguilar, R.; Soria, A.C.; Quintanilla-López, J.E. Comprehensive evaluation of direct injection mass spectrometry for the quantitative profiling of volatiles in food samples. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150375. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal. Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef]
- Biasioli, F.; Yeretzian, C.; Märk, T.D.; Dewulf, J.; Van Langenhove, H. Direct-injection mass spectrometry adds the time dimension to (B) VOC analysis. TrAC Trends Anal. Chem. 2011, 30, 1003–1017. [Google Scholar] [CrossRef]
- Biasioli, F.; Gasperi, F.; Yeretzian, C.; Märk, T.D. PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends Anal. Chem. 2011, 30, 968–977. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Wasik, A. Revealing dynamic changes of the volatile profile of food samples using PTR–MS. Food Chem. 2021, 364, 130404. [Google Scholar] [CrossRef]
- Deuscher, Z.; Andriot, I.; Sémon, E.; Repoux, M.; Preys, S.; Roger, J.M.; Boulanger, R.; Labouré, H.; Le Quéré, J.L. Volatile compounds profiling by using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The case study of dark chocolates organoleptic differences. J. Mass Spectrom. 2019, 54, 92–119. [Google Scholar] [CrossRef]
- Taylor, A.J.; Beauchamp, J.D.; Langford, V.S. Non-destructive and high-throughput—APCI-MS, PTR-MS and SIFT-MS as methods of choice for exploring flavor release. In Dynamic Flavor: Capturing Aroma Using Real-Time Mass Spectrometry; ACS Publications: Washington, DC, USA, 2021; pp. 1–16. [Google Scholar]
- Mazzucotelli, M.; Farneti, B.; Khomenko, I.; Gonzalez-Estanol, K.; Pedrotti, M.; Fragasso, M.; Capozzi, V.; Biasioli, F. Proton Transfer Reaction Mass Spectrometry: A green alternative for food volatilome profiling. Green Anal. Chem. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Yuan, B.; Koss, A.R.; Warneke, C.; Coggon, M.; Sekimoto, K.; de Gouw, J.A. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences. Chem. Rev. 2017, 117, 13187–13229. [Google Scholar] [CrossRef]
- Liu, Y.; Misztal, P.K.; Xiong, J.; Tian, Y.; Arata, C.; Weber, R.J.; Nazaroff, W.W.; Goldstein, A.H. Characterizing sources and emissions of volatile organic compounds in a northern California residence using space-and time-resolved measurements. Indoor Air 2019, 29, 630–644. [Google Scholar] [CrossRef]
- Gkatzelis, G.I.; Coggon, M.M.; McDonald, B.C.; Peischl, J.; Aikin, K.C.; Gilman, J.B.; Trainer, M.; Warneke, C. Identifying volatile chemical product tracer compounds in US cities. Environ. Sci. Technol. 2020, 55, 188–199. [Google Scholar] [CrossRef]
- Wu, C.; Wang, C.; Wang, S.; Wang, W.; Yuan, B.; Qi, J.; Wang, B.; Wang, H.; Wang, C.; Song, W. Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air. Atmos. Chem. Phys. 2020, 20, 14769–14785. [Google Scholar] [CrossRef]
- Giannoukos, S.; Agapiou, A.; Brkić, B.; Taylor, S. Volatolomics: A broad area of experimentation. J. Chromatogr. B 2019, 1105, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Ghislain, M.; Costarramone, N.; Sotiropoulos, J.M.; Pigot, T.; Van Den Berg, R.; Lacombe, S.; Le Bechec, M. Direct analysis of aldehydes and carboxylic acids in the gas phase by negative ionization selected ion flow tube mass spectrometry: Quantification and modelling of ion–molecule reactions. Rapid Commun. Mass Spectrom. 2019, 33, 1623–1634. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, C.; Zou, X.; Lu, Y.; Shen, C.; Ding, X.; Wang, H.; Jiang, H.; Chu, Y. Exhaled breath online measurement for cervical cancer patients and healthy subjects by proton transfer reaction mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 5603–5612. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.; Ruszkiewicz, D.M.; Wilkinson, M.; Beauchamp, J.D.; Cristescu, S.M.; Fowler, S.J.; Salman, D.; Di Francesco, F.; Koppen, G.; Langejürgen, J. A benchmarking protocol for breath analysis: The peppermint experiment. J. Breath Res. 2020, 14, 046008. [Google Scholar]
- Hill, H.H., Jr.; Siems, W.F.; St. Louis, R.H. Ion mobility spectrometry. Anal. Chem. 1990, 62, 1201A–1209A. [Google Scholar] [CrossRef]
- Gabelica, V.; Marklund, E. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 51–59. [Google Scholar] [CrossRef]
- St. Louis, R.H.; Hill, H.H., Jr.; Eiceman, G.A. Ion mobility spectrometry in analytical chemistry. Crit. Rev. Anal. Chem. 1990, 21, 321–355. [Google Scholar] [CrossRef]
- Ahrens, A.; Zimmermann, S. Towards a hand-held, fast, and sensitive gas chromatograph-ion mobility spectrometer for detecting volatile compounds. Anal. Bioanal. Chem. 2021, 413, 1009–1016. [Google Scholar] [CrossRef]
- Ahrens, A.; Hitzemann, M.; Zimmermann, S. Miniaturized high-performance drift tube ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 2019, 22, 77–83. [Google Scholar] [CrossRef]
- Fulton, A.C.; Vaughan, S.R.; DeGreeff, L.E. Non-contact detection of fentanyl by a field-portable ion mobility spectrometer. Drug Test. Anal. 2022, 14, 1451–1459. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Bocos-Bintintan, V.; Patrut, A.; Moll, V.H.; Turner, M.; Thomas, C.P. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS. Anal. Chim. Acta 2017, 982, 209–217. [Google Scholar] [CrossRef]
- Guo, X.; Schwab, W.; Ho, C.-T.; Song, C.; Wan, X. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef]
- Prichard, E.; Barwick, V. Quality Assurance in Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
Description | Boiling Point Range (°C) |
---|---|
Very volatile compounds (VVOC) | <0 to 50–100 |
Volatile organic compounds (VOC) | 50–100 to 240–260 |
Semi-volatile organic compounds (SVOC) | 240–260 to 380–400 |
Sensitivity | Change of Signal Per Analyte Concentration |
---|---|
Selectivity | Response towards different analytes |
Stability | Reproducibility of results over time |
Operating conditions | Temperature range, humidity, and other conditions in which the system can operate |
Response time and Frequency | Time from start of measurement to signal generation and number of measurements in a given time |
Limit of detection (LOD) | Lowest concentration of analyte that can be detected |
Dynamic range | Concentration range in which the method can be applied |
Resource requirements | Consumption of electricity, gases, materials or other resources |
Portability | Ranging from wearable to stationary |
Cost and maintenance | Price for the device and operation |
Accuracy, precision and robustness | Often dependent on calibration requirements, instrument drift and changing operating conditions |
Price | Cost for the device and/or measurement |
Data extraction | Ease of getting a readout from the measurement |
Method | Selectivity/Analytes | Major Advantages/Limitations |
---|---|---|
PID | VOCs with the right ionization potential | + instantaneous response + constant operation + inexpensive + simple to use + high measuring range + high sensitivity to aromatics - nonselective - halogenated species not detectable |
ECS | Most VOCs | + broadband sensors + low power consumption + durable (not poisoned by other gases) + low costs - limited sensitivity and detection range - limited temperature range - limited shelf life - large |
MOS | Oxidizing compounds and most reducing compounds | + good durability + small + low cost + easy to use + commercial production - cross sensitivity of VOCs and inorganic VCs - influenced by humidity - high working temperature - sulfur poisoning - not very flexible |
Pellistors | Combustible volatiles | + small + inexpensive - low selectivity - high LOD - sensitive to environment changes - baseline drift |
SAW | Depended on the film material on the sensor | + response to nearly all gases + small + sensitivity +Low power consumption + high sensitivity + fast response + long lifetime - still limited selectivity - temperature sensitive - signal-to-noise ratio - noisy - poor reproducibility |
QCM | Depended on the film material on the sensor | + sensitivity + fast response + good sensitivity + good reproducibility - limited selectivity - signal-to-noise ratio - humidity/temperature sensitive - limited measurement range - complexity |
E-Nose | Almost all volatile compounds, depending on the sensors used in the array | + fingerprinting specific odors comprised of multiple compounds + good selectivity - more expensive than the sum of individual sensors - quantification difficult |
NDIR | IR absorbing VOCs (+ small inorganic compounds) | + fast response + sensitivity + selectivity + stability + portable + insensitive to environmental changes + low power consumption + non-destructive - difficult to miniaturize - expensive - sensitivity - interferences - higher energy consumption than sensors |
UV | All UV absorbing VOCs | + sensitivity + selectivity + stability + very fast response + insensitive to environmental changes + non-destructive - difficult to miniaturize - expensive |
CL | NO, reduced S-compounds, double bond compounds | + sensitivity + selectivity + very fast response + low sensitivity to environmental changes + stability - need for ozone gas |
µGC | Basically, all volatile analytes, depending on detector | + good selectivity + high sensitivity + variability (e.g., stationary phase) + fingerprinting + good portability - discontinuous measurement - instrument maintenance |
DIMS | All VOCs with proton affinity > precursor ion (mostly H3O+) | + good selectivity + very good sensitivity + very fast response + simplicity (compared to other MS techniques) - limited portability - very expensive - very high energy consumption (plug bound) |
IMS | All VOCs depending in ionization source | + selectivity + sensitivity + portable + low power consumption + fast response - expensive - high energy consumption (battery possible) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epping, R.; Koch, M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023, 28, 1598. https://doi.org/10.3390/molecules28041598
Epping R, Koch M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules. 2023; 28(4):1598. https://doi.org/10.3390/molecules28041598
Chicago/Turabian StyleEpping, Ruben, and Matthias Koch. 2023. "On-Site Detection of Volatile Organic Compounds (VOCs)" Molecules 28, no. 4: 1598. https://doi.org/10.3390/molecules28041598
APA StyleEpping, R., & Koch, M. (2023). On-Site Detection of Volatile Organic Compounds (VOCs). Molecules, 28(4), 1598. https://doi.org/10.3390/molecules28041598