A “Trojan Horse” Strategy: The Preparation of Bile Acid-Modifying Irinotecan Hydrochloride Nanoliposomes for Liver-Targeted Anticancer Drug Delivery System Study
Abstract
:1. Introduction
2. Results
2.1. The Results of BBD Study
2.2. Characterization of the CPT-11-Lip and CA-CPT-11-Lip
2.2.1. Morphology, EE, DL, Particle Size, Zeta Potential, and PDI
2.2.2. Particle Size Stability
2.2.3. In Vitro Release
2.3. The Results of Tissue Distribution Study
2.4. In Vitro Cytotoxicity Study
2.5. Effects of Cholic Acid on Cell Uptake of CPT-11
3. Discussion
3.1. Choice of Liposomes Preparation Method
3.2. Optimization of EE, Particle Size and PDI
3.3. Targeting and Effects
3.4. Potential of CA as a Liposomal Membrane Material
4. Materials and Methods
4.1. Materials, Cell Lines, and Animals
4.2. Preparation of CPT-11-Lip and CA-CPT-11-Lip
4.3. BBD Study
4.4. Characterization of the Liposomes Study
4.4.1. Drug Loading (DL) and Encapsulation Efficiency (EE)
4.4.2. Morphology, Particle Size, Zeta Potential, Polydispersity Index (PDI), and Stability In Vitro
4.4.3. In Vitro Drug Release Study
4.5. Tissue Distribution Study
4.6. In Vitro Cytotoxicity Study
4.7. CPT-11 In Vitro Uptake Study
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mejia, J.C.; Pasko, J. Primary liver cancers: Intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Surg. Clin. N. Am. 2020, 100, 535–549. [Google Scholar] [CrossRef]
- Liu, H.M.; Yuan, M.H.; Liu, Y.S.; Guo, Y.P.; Xiao, H.J.; Guo, L.; Liu, F. Self-monitoring and self-delivery of self-assembled fluorescent nanoparticles in cancer therapy. Int. J. Nanomed. 2021, 16, 2487–2499. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shen, R.Y.; Meng, T.T.; Hu, F.Q.; Yuan, H. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer. Molecules 2022, 27, 2981. [Google Scholar] [CrossRef]
- Pommier, Y. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer 2006, 6, 789–802. [Google Scholar] [CrossRef]
- Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res. 2019, 148, 104398. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecan-still an important player in cancer chemotherapy: A comprehensive overview. Int. J. Mol. Sci. 2020, 21, 4919. [Google Scholar] [CrossRef] [PubMed]
- Oyaga-Iriarte, E.; Insausti, A.; Sayar, O.; Aldaz, A. Prediction of irinotecan toxicity in metastatic colorectal cancer patients based on machine learning models with pharmacokinetic parameters. J. Pharmacol. Sci. 2019, 140, 20–25. [Google Scholar] [CrossRef]
- Yamada, Y.; Fujii, H.; Ohata, K.; Kato-Hayashi, H.; Watanabe, D.; Ishihara, T.; Uemura, S.; Iwashita, T.; Imai, H.; Matsuhashi, N.; et al. High total bilirubin level is a significant risk factor for severe neutropenia in patients receiving irinotecan-based chemotherapy. Med. Oncol. 2019, 36, 63. [Google Scholar] [CrossRef]
- Chamseddine, A.N.; Ducreux, M.; Armand, J.P.; Paoletti, X.; Satar, T.; Paci, A.; Mir, O. Intestinal bacterial beta-glucuronidase as a possible predictive biomarker of irinotecan-induced diarrhea severity. Pharmacol. Ther. 2019, 199, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.Z.; Akhter, S.; Anwar, M.; Kumar, A.; Rahman, M.; Talasaz, A.H.; Ahmad, F.J. Colorectal cancer targeted Irinotecan-Assam Bora rice starch based microspheres: A mechanistic, pharmacokinetic and biochemical investigation. Drug Dev. Ind. Pharm. 2013, 39, 1936–1943. [Google Scholar] [CrossRef]
- Cersosimo, R.J. Irinotecan: A new antineoplastic agent for the management of colorectal cancer. Ann. Pharmacother. 1998, 32, 1324–1333. [Google Scholar] [CrossRef]
- Sreekanth, V.; Bansal, S.; Motiani, R.K.; Kundu, S.; Muppu, S.K.; Majumdar, T.D.; Panjamurthy, K.; Sengupta, S.; Bajaj, A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug. Chem. 2013, 24, 1468–1484. [Google Scholar] [CrossRef]
- Frampton, J.E. Liposomal lrinotecan: A review in metastatic pancreatic adenocarcinoma. Drugs 2020, 80, 1007–1018. [Google Scholar] [CrossRef]
- Martinez-Martinez, M.; Rodriguez-Berna, G.; Bermejo, M.; Gonzalez-Alvarez, I.; Gonzalez-Alvarez, M.; Merino, M. Covalently crosslinked organophosphorous derivatives-chitosan hydrogel as a drug delivery system for oral administration of camptothecin. Eur. J. Pharm. Biopharm. 2019, 136, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Rahman, M.; Alharbi, K.S.; Altowayan, W.M.; Abdelhaleem Ali, A.M.; Almalki, W.H.; Abul Barkat, M.; Singh, T.; Nasar, S.; Akhter, M.H.; et al. Hispolon-loaded liquid crystalline nanoparticles: Development, stability, in vitro delivery profile, and assessment of hepatoprotective activity in hepatocellular carcinoma. ACS Omega 2022, 7, 9452–9464. [Google Scholar] [CrossRef]
- Shnoudeh, A.J.; Qadumii, L.; Zihlif, M.; Al-Ameer, H.J.; Salou, R.A.; Jaber, A.Y.; Hamad, I. Green synthesis of gold, iron and selenium nanoparticles using phytoconstituents: Preliminary evaluation of antioxidant and biocompatibility potential. Molecules 2022, 27, 1334. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Hamad, I.; Bünger, R.; Andresen, T.L.; Jørgensen, K.; Hunter, A.C.; Baranji, L.; Rosivall, L.; Szebeni, J. Activation of the human complement system by cholesterol-rich and PEGylated liposomes-modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels. J. Liposome Res. 2006, 16, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gong, J.B.; Wei, Z.P. Strategies for liposome drug delivery systems to improve tumor treatment efficacy. AAPS PharmSciTech. 2021, 23, 27. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Hamad, I. Factors controlling pharmacokinetics of intravenously injected nanoparticulate systems. In Nanotechnology in Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2009; pp. 267–282. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, J.M.; Gao, C.F.; Wang, A.N.; Xia, J.X.; Hong, C.; Zhong, Z.R.; Zuo, Z.; Kim, J.S.; Ren, H.W.; et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Control. Release. 2021, 330, 641–657. [Google Scholar] [CrossRef] [PubMed]
- Dobson, P.D.; Kell, D.B. Carrier-mediated cellular uptake of pharmaceutical drugs: An exception or the rule? Nat. Rev. Drug Discov. 2008, 7, 205–220. [Google Scholar] [CrossRef]
- Kramer, W. Transporters, Trojan horses and therapeutics: Suitability of bile acid and peptide transporters for drug delivery. Biol. Chem. 2011, 392, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [Google Scholar] [CrossRef]
- Ibarra, L.E. Cellular Trojan horses for delivery of nanomedicines to brain tumors: Where do we stand and what is next? Nanomedicine 2021, 16, 517–522. [Google Scholar] [CrossRef]
- Matalqah, S.M.; Aiedeh, K.; Mhaidat, N.M.; Alzoubi, K.H.; Bustanji, Y.; Hamad, I. Chitosan Nanoparticles as a Novel Drug Delivery System: A Review Article. Curr. Drug Targets 2020, 15, 1613–1624. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, M.Y.; Gao, Y.; Zhu, S.Q.; Chen, S.X.; Liu, W.Y.; Zhong, H.J.; Liu, J.P. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: Preparation and evaluation. Drug Deliv. 2016, 23, 2003–2014. [Google Scholar] [CrossRef]
- Soe, Z.C.; Poudel, B.K.; Nguyen, H.T.; Thapa, R.K.; Ou, W.Q.; Gautam, M.; Poudel, K.; Jin, S.G.; Jeong, J.H.; Ku, S.K.; et al. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J. Pharm. Sci. 2019, 14, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Kucharz, K.; Kristensen, K.; Johnsen, K.B.; Lund, M.A.; Lønstrup, M.; Moos, T.; Andresen, T.L.; Lauritzen, M.J. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat. Commun. 2021, 12, 4121. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Tang, X.; Zhang, W.; Feng, J.; Wu, W. Preparation and in vitro and in vivo evaluations of 10-hydroxycamptothecin liposomes modified with stearyl glycyrrhetinate. Drug Deliv. 2019, 26, 673–679. [Google Scholar] [CrossRef]
- Lei, K.L.; Yuan, M.H.; Zhou, T.; Ye, Q.; Zeng, B.; Zhou, Q.; Wei, A.L.; Guo, L. Research progress in the application of bile acid-drug conjugates: A “trojan horse” strategy. Steroids 2021, 173, 108879. [Google Scholar] [CrossRef]
- Chen, Z.P.; Zhu, J.B.; Chen, H.X.; Xiao, Y.Y.; Chen, J.; Cai, B.C. Bifendate liposomes modified by bile and its role in enhancing hepatocytes uptake in vitro. J. China Pharm. Univ. 2010, 4, 342–347. [Google Scholar]
- Karim, S.; Akhter, M.H.; Burzangi, A.S.; Alkreathy, H.; Alharthy, B.; Kotta, S.; Md, S.; Rashid, M.A.; Afzal, O.; Altamimi, A.S.A.; et al. Phytosterol-loaded surface-tailored bioactive-polymer nanoparticles for cancer treatment: Optimization, in vitro cell Viability, antioxidant activity, and stability studies. Gels. 2022, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Boxi, A.; Ashe, S.; Thathapudi, N.C.; Nayak, B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 73, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Hou, S.L.; Tong, P.H.; Li, J.P. Liposomes: Preparation, characteristics, and application strategies in analytical chemistry. Crit. Rev. Anal. Chem. 2022, 52, 392–412. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, J.; Cheng, Y.; Luo, L.H.; Zheng, P.J.; Tong, Y.D.; Li, Z. A lyophilized sterically stabilized liposome-containing docetaxel: In vitro and in vivo evaluation. J. Liposome Res. 2017, 27, 64–73. [Google Scholar] [CrossRef]
- Xiao, L.X.; Yu, E.D.; Yue, H.L.; Li, Q.Y. Enhanced liver Targeting of camptothecin via conjugation with deoxycholic acid. Molecules 2019, 24, 1179. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Wang, W.; Fang, Y. Preparation of different kinds of alkaloids liposomes. Pharm. Clin. Res. 2009, 3, 237–240. [Google Scholar]
- Liu, M.F.; Jin, S.; Yan, H.; Du, S. Effect of oxymatrine HSPC liposomes on improving bioavailability, liver target distribution and hepatoprotective activity of oxymatrine. Eur. J. Pharm. Sci. 2017, 104, 212–220. [Google Scholar] [CrossRef]
- Wei, H.; Song, J.; Li, H.; Li, Y.; Zhu, S.; Zhou, X.; Zhang, X.; Yang, L. Active loading liposomal irinotecan hydrochloride: Preparation, in vitro and in vivo evaluation. Asian J. Pharm. Sci. 2013, 8, 303–311. [Google Scholar] [CrossRef]
- Nagayasu, A.; Uchiyama, K.; Kiwada, H. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 1999, 40, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Elizondo, E.; Moreno, E.; Cabrera, I.; Cordoba, A.; Sala, S.; Veciana, J.; Ventosa, N. Liposomes and other vesicular systems: Structural characteristics, methods of preparation, and use in nanomedicine. Prog. Mol. Biol. Transl. Sci. 2011, 104, 1–52. [Google Scholar] [CrossRef]
- Monte, M.J.; Marin, J.G.J.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol. 2009, 15, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Faustino, C.; Serafim, C.; Rijo, P.; Reis, C.P. Bile acids and bile acid derivatives: Use in drug delivery systems and as therapeutic agents. Expert Opin. Drug Deliv. 2016, 13, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.Y.; Bae, Y.H. Bile acid transporter-mediated oral drug delivery. J. Control. Release. 2020, 327, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.X.; Ding, Y.; Shen, Z.W.; Zhang, T.; Lan, J.S.; Yang, J.; Zhang, N.L.; Chen, G. Research progress on role of cholesterol in liposomes and replacement with sterols and saponins. Chin. Tradit. Herb. Drugs 2020, 51, 6396–6404. [Google Scholar]
- Rajpoot, K.; Jain, S.K. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: Development, characterization, and in vitro cytotoxicity study using HT-29 cells. J. Microencapsul. 2019, 36, 659–676. [Google Scholar] [CrossRef]
- Mohammad, A.S.; Griffith, J.I.; Adkins, C.E.; Shah, N.; Sechrest, E.; Dolan, E.L.; Terrell-Hall, T.B.; Hendriks, B.S.; Lee, H.; Lockman, P.R. Liposomal irinotecan accumulates in metastatic lesions, crosses the blood-tumor barrier (BTB), and prolongs survival in an experimental model of brain metastases of triple negative breast cancer. Pharm. Res. 2018, 35, 31. [Google Scholar] [CrossRef]
Level | A Lecithin Dosage/mg | B The Ratio of Lecithin and Cholesterol | C CPT-11 Dosage/mg |
---|---|---|---|
−1 | 50 | 3:1 | 5 |
0 | 100 | 5:1 | 10 |
1 | 150 | 7:1 | 15 |
NO. | A | B | C | EE (%) | DL (%) |
---|---|---|---|---|---|
1 | 0 | 1 | −1 | 84.24 | 3.19 |
2 | −1 | 1 | 0 | 42.59 | 5.47 |
3 | 0 | 0 | 0 | 62.31 | 4.38 |
4 | 1 | −1 | 0 | 54.31 | 2.41 |
5 | 1 | 0 | −1 | 87.38 | 2.20 |
6 | 0 | 0 | 0 | 61.47 | 4.23 |
7 | −1 | 0 | 1 | 20.41 | 3.38 |
8 | 0 | 0 | 0 | 68.51 | 4.66 |
9 | 0 | 0 | 0 | 64.28 | 4.56 |
10 | −1 | 0 | −1 | 49.06 | 3.05 |
11 | 1 | 0 | 1 | 55.73 | 3.97 |
12 | 0 | 0 | 0 | 67.28 | 4.61 |
13 | 0 | −1 | 1 | 32.66 | 2.99 |
14 | 1 | 1 | 0 | 61.71 | 3.20 |
15 | 0 | 1 | 1 | 55.78 | 5.75 |
16 | 0 | −1 | −1 | 62.94 | 2.25 |
17 | −1 | −1 | 0 | 16.06 | 1.80 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5818.3 | 9 | 646.48 | 58.06 | ** |
A-A | 2145.45 | 1 | 2145.45 | 192.69 | ** |
B-B | 767.34 | 1 | 767.34 | 68.92 | ** |
C-C | 1771.32 | 1 | 1771.32 | 159.09 | ** |
AB | 91.49 | 1 | 91.49 | 8.22 | * |
AC | 2.25 | 1 | 2.25 | 0.2021 | 0.6666 |
BC | 0.8281 | 1 | 0.8281 | 0.0744 | 0.7929 |
A² | 748.3 | 1 | 748.3 | 67.21 | ** |
B² | 241.36 | 1 | 241.36 | 21.68 | ** |
C² | 15.3 | 1 | 15.3 | 1.37 | 0.2794 |
Residual | 77.94 | 7 | 11.13 | ||
Lack of Fit | 47.15 | 3 | 15.72 | 2.04 | 0.2507 |
Pure Error | 30.79 | 4 | 7.7 | ||
Cor Total | 5896.24 | 16 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 21.14 | 9 | 2.35 | 26.31 | ** |
A-A | 0.4608 | 1 | 0.4608 | 5.16 | 0.0573 |
B-B | 8.32 | 1 | 8.32 | 93.21 | ** |
C-C | 3.64 | 1 | 3.64 | 40.82 | ** |
AB | 2.07 | 1 | 2.07 | 23.22 | ** |
AC | 0.5184 | 1 | 0.5184 | 5.81 | * |
BC | 0.8281 | 1 | 0.8281 | 9.27 | * |
A² | 2.91 | 1 | 2.91 | 32.6 | ** |
B² | 0.8022 | 1 | 0.8022 | 8.98 | * |
C² | 1.08 | 1 | 1.08 | 12.1 | * |
Residual | 0.6251 | 7 | 0.0893 | ||
Lack of Fit | 0.4972 | 3 | 0.1657 | 5.18 | 0.0729 |
Pure Error | 0.1279 | 4 | 0.032 | ||
Cor Total | 21.77 | 16 |
EE (%) | DL (%) | |
---|---|---|
Sample 1 | 82.38 | 3.73 |
Sample 2 | 80.21 | 3.67 |
Sample 3 | 83.54 | 3.77 |
Average value | 82.04 | 3.72 |
Predictive value | 80.27 | 3.92 |
Deviation | 1.77 | −0.2 |
Size (nm) ± SD | PDI ± SD | ZP (mV) ± SD | EE (%) | LD (%) | |
---|---|---|---|---|---|
CPT-11-Lip | 197.70 ± 3.04 | 0.174 ± 0.038 | −53.07 ± 1.47 | 74.54 ± 1.44 | 3.73 ± 0.09 |
CA-CPT-11-Lip | 154.16 ± 4.92 | 0.146 ± 0.018 | −56.93 ± 0.46 | 82.04 ± 1.38 | 3.72 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Liu, Y.; Lei, K.; Liu, J.; Hu, M.; Guo, L.; Guo, Y.; Ye, Q. A “Trojan Horse” Strategy: The Preparation of Bile Acid-Modifying Irinotecan Hydrochloride Nanoliposomes for Liver-Targeted Anticancer Drug Delivery System Study. Molecules 2023, 28, 1577. https://doi.org/10.3390/molecules28041577
Zhou T, Liu Y, Lei K, Liu J, Hu M, Guo L, Guo Y, Ye Q. A “Trojan Horse” Strategy: The Preparation of Bile Acid-Modifying Irinotecan Hydrochloride Nanoliposomes for Liver-Targeted Anticancer Drug Delivery System Study. Molecules. 2023; 28(4):1577. https://doi.org/10.3390/molecules28041577
Chicago/Turabian StyleZhou, Tao, Yushi Liu, Kelu Lei, Junjing Liu, Minghao Hu, Li Guo, Yiping Guo, and Qiang Ye. 2023. "A “Trojan Horse” Strategy: The Preparation of Bile Acid-Modifying Irinotecan Hydrochloride Nanoliposomes for Liver-Targeted Anticancer Drug Delivery System Study" Molecules 28, no. 4: 1577. https://doi.org/10.3390/molecules28041577
APA StyleZhou, T., Liu, Y., Lei, K., Liu, J., Hu, M., Guo, L., Guo, Y., & Ye, Q. (2023). A “Trojan Horse” Strategy: The Preparation of Bile Acid-Modifying Irinotecan Hydrochloride Nanoliposomes for Liver-Targeted Anticancer Drug Delivery System Study. Molecules, 28(4), 1577. https://doi.org/10.3390/molecules28041577