Carbon Dots-Based Fluorescence Assay for the Facile and Reliable Detection of Ag+ in Natural Water and Serum Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterizations of C-dots
2.2. Development of Sensing Assay
2.3. Applicability and Reliability of the Assay
2.4. Sensing Mechanism Investigation
3. Materials and Methods
3.1. Reagents and Materials
3.2. Characterization and Instrumentation
3.3. Preparation of C-Dots
3.4. Sensing Assay Development
3.5. Selectivity of the Assay
3.6. Reliability of the Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, M.; Gou, H.L.; Al-Ogaidi, I.; Wu, N.Q. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Park, J.S.; Choi, W.; Jang, K.W.; Na, S.S. High-sensitivity detection of silver ions using oligonucleotide-immobilized oscillator. Biosens. Bioelectron. 2013, 41, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Barriada, J.L.; Tappin, A.D.; Evans, E.H.; Achterberg, E.P. Dissolved silver measurements in seawater. Trac-Trends Anal. Chem. 2007, 26, 809–817. [Google Scholar] [CrossRef]
- Li, Q.; Bai, Z.L.; Xi, X.J.; Guo, Z.W.; Liu, C.; Liu, X.R.; Zhao, X.Y.; Li, Z.Y.; Cheng, Y.; Wei, Y. Rapid microwave-assisted green synthesis of guanine-derived carbon dots for highly selective detection of Ag+ in aqueous solution. Spectroc. Acta Pt. A Molec. Biomolec. Spectr. 2021, 248, 119208. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Jiang, Y.X.; Cui, C.; Luo, Y.P.; Peng, Z.L. Sensitive, Selective and Reliable Detection of Fe3+ in Lake Water via Carbon Dots-Based Fluorescence Assay. Molecules 2022, 27, 6749. [Google Scholar] [CrossRef]
- Xiang, C.S.; Yu, L. Fluorescent carbon dots and their sensing applications. Trac-Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar]
- Batool, M.; Junaid, H.M.; Tabassum, S.; Kanwal, F.; Abid, K.; Fatima, Z.; Shah, A.T. Metal Ion Detection by Carbon Dots-A Review. Crit. Rev. Anal. Chem. 2022, 52, 756–767. [Google Scholar] [CrossRef]
- Ji, C.Y.; Zhou, Y.Q.; Leblanc, R.M.; Peng, Z.L. Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sens. 2020, 5, 2724–2741. [Google Scholar] [CrossRef]
- Mintz, K.; Waidely, E.; Zhou, Y.Q.; Peng, Z.L.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; Leblanc, R.M. Carbon Dots and Gold Nanoparticles based Immunoassay for Detection of Alpha-L-Fucosidase. Anal. Chim. Acta 2018, 1041, 114–121. [Google Scholar] [CrossRef]
- Lu, H.Z.; Li, C.C.; Wang, H.H.; Wang, X.M.; Xu, S.F. Biomass-Derived Sulfur, Nitrogen Co-Doped Carbon Dots for Colorimetric and Fluorescent Dual Mode Detection of Silver (I) and Cell Imaging. ACS Omega 2019, 4, 21500–21508. [Google Scholar] [CrossRef]
- Huang, S.; Yang, E.L.; Yao, J.D.; Liu, Y.; Xiao, Q. Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells. Anal. Chim. Acta 2018, 1035, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.Z.; Yu, C.W.; Xu, S.F. A dual reference ion-imprinted ratiometric fluorescence probe for simultaneous detection of silver (I) and lead (II). Sens. Actuator B Chem. 2019, 288, 691–698. [Google Scholar] [CrossRef]
- Yan, F.Y.; Bai, Z.J.; Zu, F.L.; Zhang, Y.; Sun, X.D.; Ma, T.C.; Chen, L. Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging ofsilver ions and glutathione. Microchim. Acta 2019, 186, 113. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Y.; Lu, Y.X.; Chen, Y.; Sun, J.W.; Liu, Y.Y. Colorimetric Nanosensor Based on the Aggregation of AuNP Triggered by Carbon Quantum Dots for Detection of Ag+ Ions. ACS Sustain. Chem. Eng. 2018, 6, 3706–3713. [Google Scholar] [CrossRef]
- Cheng, S.J.; Zhang, J.Q.; Liu, Y.M.; Wang, Y.T.; Xiao, Y.T.; Zhang, Y. High quantum yield nitrogen and boron co-doped carbon dots for sensing Ag+, biological imaging and fluorescent inks. Anal. Methods 2021, 13, 5523–5531. [Google Scholar] [CrossRef]
- Thirumalaivasan, N.; Wu, S.P. Bright Luminescent Carbon Dots for Multifunctional Selective Sensing and Imaging Applications in Living Cells. ACS Appl. Bio Mater. 2020, 3, 6439–6446. [Google Scholar] [CrossRef]
- Bai, H.Y.; Chen, W.X.; Yang, J.; Cao, Y.X.; Yu, J.J.; Zhao, H.Q.; Zhou, H.W.; Jin, X.L. Green synthesis of orange emissive carbon dots for the detection of Ag+ and their application via solid-phase sensing and security ink. Nanotechnology 2022, 33, 035709. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Lei, L.; Wang, F.Y.; Xu, Z.A.; Zhang, W. Multi-functional carbon dots-based nanoprobe for ratiometric enzyme reaction monitoring and biothiol analysis. Sens. Actuator B Chem. 2018, 264, 296–303. [Google Scholar] [CrossRef]
- Qi, Q.; Sun, L.L.; Xu, J.Y.; Guo, X.J.; Zhang, H.M.; Zhao, X.H. Carrageenan-derived sulfur, nitrogen co-doped carbon dots for sequential detection of Ag+ and Lime Sulfur with “on-off-on” pattern. J. Alloys Compd. 2022, 922, 166129. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Y.F.; Zhou, X.J.; Xu, L.N.; Zhang, D.H.; Wang, C.P.; Chu, F.X.; Qian, T. Nanosensors Based on Structural Memory Carbon Nanodots for Ag+ Fluorescence Determination. Nanomaterials 2021, 11, 2687. [Google Scholar] [CrossRef]
- Liao, S.; Zhao, X.Y.; Zhu, F.W.; Chen, M.A.; Wu, Z.L.; Song, X.Z.; Yang, H.; Chen, X.Q. Novel S, N-doped carbon quantum dot-based “off-on” fluorescent sensor for silver ion and cysteine. Talanta 2018, 180, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, R.Y.; Liu, S.Y. A novel dual-emission fluorescent probe for ratiometric and visual detection of Cu2+ ions and Ag+ ions. Anal. Bioanal. Chem. 2022, 414, 3067–3075. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.X.; Tan, Z.M.; Zhao, T.S.; Wu, J.J.; Li, Y.; Jia, Y.N.; Peng, Z.L. Indocyanine Green derived Carbon Dots with Significantly Enhanced Properties for Efficient Photothermal Therapy. Nanoscale 2023, 15, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Chao, D.Y.; Lyu, W.; Liu, Y.B.; Zhou, L.; Zhang, Q.R.; Deng, R.P.; Zhang, H.J. Solvent-dependent carbon dots and their applications in the detection of water in organic solvents. J. Mater. Chem. C 2018, 6, 7527–7532. [Google Scholar] [CrossRef]
- Han, Q.R.; Xu, W.J.; Ji, C.Y.; Xiong, G.Y.; Shi, C.S.; Zhang, D.M.; Shi, W.Q.; Jiang, Y.X.; Peng, Z.L. Multicolor and Single-Component White Light-Emitting Carbon Dots from a Single Precursor for Light-Emitting Diodes. ACS Appl. Nano Mater. 2022, 5, 15914–15924. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.R.; Wu, Q.Y.; Wang, Z.Z.; Tao, Y.C.; Zhao, Y.J.; Wang, B.; Cao, J.J.; Wang, H.; Cu, X.Q.; et al. Ultra-Bright and Stable Pure Blue Light-Emitting Diode from O, N Co-Doped Carbon Dots. Laser Photon. Rev. 2021, 15, 2000412. [Google Scholar] [CrossRef]
- Shi, W.Q.; Han, Q.R.; Wu, J.J.; Ji, C.Y.; Zhou, Y.Q.; Li, S.H.; Gao, L.P.; Leblanc, R.M.; Peng, Z.L. Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes. Int. J. Mol. Sci. 2022, 23, 1456. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Ji, C.Y.; Wu, J.J.; Han, Q.R.; Cui, C.; Shi, W.Q.; Peng, Z.L. Formation, photoluminescence and in vitro bioimaging of polyethylene glycol-derived carbon dots: The molecular weight effects. Polymer 2022, 243, 124625. [Google Scholar] [CrossRef]
- Ji, C.Y.; Han, Q.R.; Zhou, Y.Q.; Wu, J.J.; Shi, W.Q.; Gao, L.P.; Leblanc, R.M.; Peng, Z.L. Phenylenediamine-derived near infrared carbon dots: The kilogram-scale preparation, formation process, photoluminescence tuning mechanism and application as red phosphors. Carbon 2022, 192, 198–208. [Google Scholar] [CrossRef]
- Wu, J.B.; Lin, M.L.; Cong, X.; Liu, H.N.; Tan, P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef]
- Ji, C.Y.; Zhou, Y.Q.; Shi, W.Q.; Wu, J.J.; Han, Q.R.; Zhao, T.S.; Leblanc, R.M.; Peng, Z.L. Facile and Sensitive Detection of Nitrogen-Containing Organic Bases with Near Infrared C-Dots Derived Assays. Nanomaterials 2021, 11, 2607. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.P.; Yang, J.; Tian, J.W.; Jia, L.; Yu, J.S. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 2014, 77, 775–782. [Google Scholar] [CrossRef]
- Zou, X.X.; Li, G.D.; Wang, Y.N.; Zhao, J.; Yan, C.; Guo, M.Y.; Li, L.; Chen, J.S. Direct conversion of urea into graphitic carbon nitride over mesoporous TiO2 spheres under mild condition. Chem. Commun. 2011, 47, 1066–1068. [Google Scholar] [CrossRef]
- Hao, Y.M.; Wang, H.P.; Wang, Z.H.; Dong, W.J.; Hu, Q.; Shuang, S.M.; Dong, C.; Gong, X.J. Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an “off-on” fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications. Microchim. Acta 2021, 188, 16. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhu, T.T.; Zan, M.H.; Liu, Y.L.; Xing, X.M.; Qian, Q.; Mei, Q.; Dong, W.F.; Li, L. Red emissive N, Cl-doped carbon dots for detection of tea polyphenols and lysosomal imaging at the cellular level. Sens. Actuator B Chem. 2022, 370, 132424. [Google Scholar] [CrossRef]
- Huynh, T.V.; Anh, N.T.N.; Darmanto, W.; Doong, R.A. Erbium-doped graphene quantum dots with up- and down-conversion luminescence for effective detection of ferric ions in water and human serum. Sens. Actuator B Chem. 2021, 328, 129056. [Google Scholar] [CrossRef]
- Liu, H.C.; Ding, J.; Zhang, K.; Ding, L. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. Trac Trends Anal. Chem. 2019, 118, 315–337. [Google Scholar] [CrossRef]
- Zu, F.L.; Yan, F.Y.; Bai, Z.J.; Xu, J.X.; Wang, Y.Y.; Huang, Y.C.; Zhou, X.G. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Molaei, M.J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal. Methods 2020, 12, 1266–1287. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhou, K.; Qiu, Y.; Xia, L.; Xia, Z.N.; Zhang, K.L.; Fu, Q.F. Strongly emissive formamide-derived N-doped carbon dots embedded Eu (III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag. Sens. Actuator B Chem. 2021, 339, 129922. [Google Scholar] [CrossRef]
Sample | Ag+ Added/μM | Found/μM | Recovery/% | |
---|---|---|---|---|
1 | 35 | 36.40 | 104.00 | |
2 | DI water | 40 | 38.89 | 97.23 |
3 | 45 | 43.04 | 95.64 | |
4 | 35 | 36.4 | 104.00 | |
5 | Mineral water | 40 | 40.55 | 101.38 |
6 | 45 | 43.04 | 95.64 | |
7 | 35 | 33.08 | 94.51 | |
8 | Lake water | 40 | 37.23 | 93.08 |
9 | 45 | 41.38 | 91.96 | |
10 | 15 | 15.65 | 104.33 | |
11 | Serum | 20 | 18.97 | 94.85 |
12 | 30 | 28.10 | 93.67 | |
13 | 40 | 38.06 | 95.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Cui, C.; Zhang, X.; Jiang, Y.; Xiang, Z.; Ji, C.; Peng, Z. Carbon Dots-Based Fluorescence Assay for the Facile and Reliable Detection of Ag+ in Natural Water and Serum Samples. Molecules 2023, 28, 1566. https://doi.org/10.3390/molecules28041566
Luo Y, Cui C, Zhang X, Jiang Y, Xiang Z, Ji C, Peng Z. Carbon Dots-Based Fluorescence Assay for the Facile and Reliable Detection of Ag+ in Natural Water and Serum Samples. Molecules. 2023; 28(4):1566. https://doi.org/10.3390/molecules28041566
Chicago/Turabian StyleLuo, Yuanping, Chen Cui, Xingshou Zhang, Yuxiang Jiang, Zhuang Xiang, Chunyu Ji, and Zhili Peng. 2023. "Carbon Dots-Based Fluorescence Assay for the Facile and Reliable Detection of Ag+ in Natural Water and Serum Samples" Molecules 28, no. 4: 1566. https://doi.org/10.3390/molecules28041566
APA StyleLuo, Y., Cui, C., Zhang, X., Jiang, Y., Xiang, Z., Ji, C., & Peng, Z. (2023). Carbon Dots-Based Fluorescence Assay for the Facile and Reliable Detection of Ag+ in Natural Water and Serum Samples. Molecules, 28(4), 1566. https://doi.org/10.3390/molecules28041566