Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]uril and Cucurbit[8]uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition
Abstract
:1. Introduction
2. Results
2.1. Reactions Modelled
2.2. 1:1. CB:Dye Complexes
2.3. Effect of pH of the Medium (Neutral vs. Positively Charged Dye)
2.4. Effect of the Cavity Size
2.5. Effect of High-Energy Water Molecules in the Host Cavity
2.6. Effect of the Metal Cation
2.7. Ternary Complexes
1:1:1. CB@Dye@Metal Cation
2.8. 2:1. CB:Dye (Denoted as 2CB@Dye Structures)
Forming Molecular Architectures
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, M.E.; Brewster, M.E. Cyclodextrin-Based Pharmaceutics: Past, Present and Future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Homden, D.M.; Redshaw, C. The Use of Calixarenes in Metal-Based Catalysis. Chem. Rev. 2008, 108, 5086–5130. [Google Scholar] [CrossRef] [PubMed]
- Bukhzam, A.; Bader, N. Crown Ethers: Their Complexes and Analytical Applications. J. Appl. Chem. 2017, 3, 237–244. [Google Scholar]
- Masson, E.; Ling, X.; Joseph, R.; Kyeremeh-Mensah, L.; Lu, X. Cucurbituril Chemistry: A Tale of Supramolecular Success. RSC Adv. 2012, 2, 1213–1247. [Google Scholar] [CrossRef]
- Barrow, S.J.; Kasera, S.; Rowland, M.J.; Del Barrio, J.; Scherman, O.A. Cucurbituril-Based Molecular Recognition. Chem. Rev. 2015, 115, 12320–12406. [Google Scholar] [CrossRef] [PubMed]
- Assaf, K.I.; Nau, W.M. Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chem. Soc. Rev. 2015, 44, 394–418. [Google Scholar] [CrossRef]
- Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The Cucurbit[n]Uril Family. Angew. Chemie Int. Ed. 2005, 44, 4844–4870. [Google Scholar] [CrossRef]
- Cicolani, R.S.; Souza, L.R.R.; de Santana Dias, G.B.; Gonçalves, J.M.R.; dos Santos Abrahão, I.; Silva, V.M.; Demets, G.J.F. Cucurbiturils for Environmental and Analytical Chemistry. J. Incl. Phenom. Macrocycl. Chem. 2021, 99, 1–12. [Google Scholar] [CrossRef]
- Lee, J.W.; Samal, S.; Selvapalam, N.; Kim, H.J.; Kim, K. Cucurbituril Homologues and Derivatives: New Opportunities in Supramolecular Chemistry. Acc. Chem. Res. 2003, 36, 621–630. [Google Scholar] [CrossRef]
- Day, A.; Arnold, A.P.; Blanch, R.J.; Snushall, B. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. J. Org. Chem. 2001, 66, 8094–8100. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.L.; Wei, M.; Shang, L.; Yang, Y.W. Cucurbiturils-Mediated Noble Metal Nanoparticles for Applications in Sensing, SERS, Theranostics, and Catalysis. Adv. Funct. Mater. 2021, 31, 1–26. [Google Scholar] [CrossRef]
- Kim, J.; Jung, I.S.; Kim, S.Y.; Lee, E.; Kang, J.K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-Ray Crystal Structures of Cucurbit[n]Uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540–541. [Google Scholar] [CrossRef]
- Nau, W.M.; Florea, M.; Assaf, K.I. Deep inside Cucurbiturils: Physical Properties and Volumes of Their Inner Cavity Determine the Hydrophobic Driving Force for Host-Guest Complexation. Isr. J. Chem. 2011, 51, 559–577. [Google Scholar] [CrossRef]
- Mohanty, J.; Bhasikuttan, A.C.; Nau, W.M.; Pal, H. Host−Guest Complexation of Neutral Red with Macrocyclic Host Molecules: Contrasting PKa Shifts and Binding Affinities for Cucurbit[7]Uril and β-Cyclodextrin. J. Phys. Chem. B 2006, 110, 5132–5138. [Google Scholar] [CrossRef]
- Shaikh, M.; Mohanty, J.; Singh, P.K.; Nau, W.M.; Pal, H. Complexation of Acridine Orange by Cucurbit[7]Uril and β-Cyclodextrin: Photophysical Effects and PKa Shifts. Photochem. Photobiol. Sci. 2008, 7, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Pal, H.; Koti, A.S.R.; Sapre, A.V. Photophysical Properties and Rotational Relaxation Dynamics of Neutral Red Bound to β-Cyclodextrin. J. Phys. Chem. A 2004, 108, 1465–1474. [Google Scholar] [CrossRef]
- Jeon, W.S.; Moon, K.; Park, S.H.; Chun, H.; Ko, Y.H.; Lee, J.Y.; Lee, E.S.; Samal, S.; Selvapalam, N.; Rekharsky, M.V.; et al. Complexation of Ferrocene Derivatives by the Cucurbit[7]Uril Host: A Comparative Study of the Cucurbituril and Cyclodextrin Host Families. J. Am. Chem. Soc. 2005, 127, 12984–12989. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, J.; Choudhury, S.D.; Upadhyaya, H.P.; Bhasikuttan, A.C.; Pal, H. Control of the Supramolecular Excimer Formation of Thioflavin T within a Cucurbit[8]Uril Host: A Fluorescence on/off Mechanism. Chem. A Eur. J. 2009, 15, 5215–5219. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yuan, L.; Ihmels, H.; Macartney, D.H. Cucurbit[8]Uril/Cucurbit[7]Uril Controlled off/on Fluorescence of the Acridizinium and 9-Aminoacridizinium Cations in Aqueous Solution. Chem. Eur. J. 2007, 13, 6468–6473. [Google Scholar] [CrossRef]
- Das, D.; Assaf, K.I.; Nau, W.M. Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Front. Chem. 2019, 7, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basílio, N.; Pischel, U. Drug Delivery by Controlling a Supramolecular Host–Guest Assembly with a Reversible Photoswitch. Chem. Eur. J. 2016, 22, 15208–15211. [Google Scholar] [CrossRef] [PubMed]
- Pennakalathil, J.; Jahja, E.; Özdemir, E.S.; Konu, Ö.; Tuncel, D. Red Emitting, Cucurbituril-Capped, PH-Responsive Conjugated Oligomer-Based Nanoparticles for Drug Delivery and Cellular Imaging. Biomacromolecules 2014, 15, 3366–3374. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Agasti, S.S.; Zhu, Z.; Isaacs, L.; Rotello, V.M. Recognition-Mediated Activation of Therapeutic Gold Nanoparticles inside Living Cells. Nat. Chem. 2010, 2, 962–966. [Google Scholar] [CrossRef]
- Máximo, P.; Colaço, M.; Pauleta, S.R.; Costa, P.J.; Pischel, U.; Parola, A.J.; Basílio, N. Photomodulation of Ultrastable Host–Guest Complexes in Water and Their Application in Light-Controlled Steroid Release. Org. Chem. Front. 2022, 9, 4238–4249. [Google Scholar] [CrossRef]
- Ghale, G.; Ramalingam, V.; Urbach, A.R.; Nau, W.M. Determining Protease Substrate Selectivity and Inhibition by Label-Free Supramolecular Tandem Enzyme Assays. J. Am. Chem. Soc. 2011, 133, 7528–7535. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.H.; Kim, K.; Kang, J.K.; Chun, H.; Lee, J.W.; Sakamoto, S.; Yamaguchi, K.; Fettinger, J.C.; Kim, K. Designed Self-Assembly of Molecular Necklaces Using Host-Stabilized Charge-Transfer Interactions. J. Am. Chem. Soc. 2004, 126, 1932–1933. [Google Scholar] [CrossRef]
- Frampton, M.J.; Anderson, H.L. Insulated Molecular Wires. Angew. Chemie Int. Ed. 2007, 46, 1028–1064. [Google Scholar] [CrossRef]
- Kim, K. Mechanically Interlocked Molecules Incorporating Cucurbituril and Their Supramolecular Assemblies. Chem. Soc. Rev. 2002, 31, 96–107. [Google Scholar] [CrossRef]
- Uzunova, V.D.; Cullinane, C.; Brix, K.; Nau, W.M.; Day, A.I. Toxicity of Cucurbit[7]Uril and Cucurbit[8]Uril: An Exploratory in Vitro and in Vivo Study. Org. Biomol. Chem. 2010, 8, 2037–2042. [Google Scholar] [CrossRef]
- Liu, L. Controlled Release from Cucurbituril. J. Incl. Phenom. Macrocycl. Chem. 2017, 87, 1–12. [Google Scholar] [CrossRef]
- Hettiarachchi, G.; Nguyen, D.; Wu, J.; Lucas, D.; Ma, D.; Isaacs, L.; Briken, V. Toxicology and Drug Delivery by Cucurbit[n]Uril Type Molecular Containers. PLoS ONE 2010, 5, e10514. [Google Scholar] [CrossRef]
- Choudhury, S.D.; Mohanty, J.; Pal, H.; Bhasikuttan, A.C. Cooperative Metal Ion Binding to a Cucurbit[7]Uril–Thioflavin T Complex: Demonstration of a Stimulus-Responsive Fluorescent Supramolecular Capsule. J. Am. Chem. Soc. 2010, 132, 1395–1401. [Google Scholar] [CrossRef]
- Nau, W.M.; Mohanty, J. Taming Fluorescent Dyes with Cucurbituril. Int. J. Photoenergy 2005, 7, 133–141. [Google Scholar] [CrossRef]
- Barooah, N.; Mohanty, J.; Pal, H.; Bhasikuttan, A.C. Cucurbituril-Induced Supramolecular PKa Shift in Fluorescent Dyes and Its Prospective Applications. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2014, 84, 1–17. [Google Scholar] [CrossRef]
- Koner, A.L.; Nau, W.M. Cucurbituril Encapsulation of Fluorescent Dyes. Supramol. Chem. 2007, 19, 55–66. [Google Scholar] [CrossRef]
- Shinde, M.N.; Dutta Choudhury, S.; Barooah, N.; Pal, H.; Bhasikuttan, A.C.; Mohanty, J. Metal-Ion-Mediated Assemblies of Thiazole Orange with Cucurbit[7]Uril: A Photophysical Study. J. Phys. Chem. B 2015, 119, 3815–3823. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Guo, M.; Li, X.; Malkovskiy, A.; Wesdemiotis, C.; Pang, Y. Formation of Linear Supramolecular Polymers That Is Based on Host-Guest Assembly in Water. Chem. Commun. 2011, 47, 8883–8885. [Google Scholar] [CrossRef] [PubMed]
- Bhasikuttan, A.C.; Mohanty, J.; Nau, W.M.; Pal, H. Efficient Fluorescence Enhancement and Cooperative Binding of an Organic Dye in a Supra-Biomolecular Host-Protein Assembly. Angew. Chemie Int. Ed. 2007, 46, 4120–4122. [Google Scholar] [CrossRef]
- Dsouza, R.N.; Pischel, U.; Nau, W.M. Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution. Chem. Rev. 2011, 111, 7941–7980. [Google Scholar] [CrossRef] [PubMed]
- Maskevich, A.A.; Stsiapura, V.I.; Kuzmitsky, V.A.; Kuznetsova, I.M.; Povarova, O.I.; Uversky, V.N.; Turoverov, K.K. Spectral Properties of Thioflavin T in Solvents with Different Dielectric Properties and in a Fibril-Incorporated Form. J. Proteome Res. 2007, 6, 1392–1401. [Google Scholar] [CrossRef]
- Ban, T.; Hamada, D.; Hasegawall, K.; Naiki, H.; Goto, Y. Direct Observation of Amyloid Fibril Growth Monitored by Thioflavin T Fluorescence. J. Biol. Chem. 2003, 278, 16462–16465. [Google Scholar] [CrossRef]
- Singh, P.K.; Kumbhakar, M.; Pal, H.; Nath, S. Ultrafast Bond Twisting Dynamics in Amyloid Fibril Sensor. J. Phys. Chem. B 2010, 114, 2541–2546. [Google Scholar] [CrossRef]
- Mohanty, J.; Thakur, N.; Dutta Choudhury, S.; Barooah, N.; Pal, H.; Bhasikuttan, A.C. Recognition-Mediated Light-up of Thiazole Orange with Cucurbit[8]Uril: Exchange and Release by Chemical Stimuli. J. Phys. Chem. B 2012, 116, 130–135. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Chen, K.; Hua, Z.Y.; Zhu, Q.J.; Xue, S.F.; Tao, Z. Cucurbit[n]Uril-Based Host–Guest-Metal Ion Chemistry: An Emerging Branch in Cucurbit[n]Uril Chemistry. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 1–14. [Google Scholar] [CrossRef]
- Jarikote, D.V.; Krebs, N.; Tannert, S.; Röder, B.; Seitz, O. Exploring Base-Pair-Specific Optical Properties of the DNA Stain Thiazole Orange. Chem. A Eur. J. 2007, 13, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.L.; Ediz, V.; Yaron, D.; Armitage, B.A. Experimental and Computational Investigation of Unsymmetrical Cyanine Dyes: Understanding Torsionally Responsive Fluorogenic Dyes. J. Am. Chem. Soc. 2007, 129, 5710–5718. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Pal, H.; Bhasikuttan, A.C.; Sapre, A.V. Photophysical Properties of the Cationic Form of Neutral Red. Photochem. Photobiol. 1999, 69, 529–535. [Google Scholar] [CrossRef]
- Shaikh, M.; Choudhury, S.D.; Mohanty, J.; Bhasikuttan, A.C.; Pal, H. Contrasting Guest Binding Interaction of Cucurbit[7-8]Urils with Neutral Red Dye: Controlled Exchange of Multiple Guests. Phys. Chem. Chem. Phys. 2010, 12, 7050–7055. [Google Scholar] [CrossRef]
- Shinde, M.N.; Khurana, R.; Barooah, N.; Bhasikuttan, A.C.; Mohanty, J. Metal Ion-Induced Supramolecular PKa Tuning and Fluorescence Regeneration of a p-Sulfonatocalixarene Encapsulated Neutral Red Dye. Org. Biomol. Chem. 2017, 15, 3975–3984. [Google Scholar] [CrossRef]
- Kircheva, N.; Dobrev, S.; Dasheva, L.; Koleva, I.; Nikolova, V.; Angelova, S.; Dudev, T. Complexation of Biologically Essential (Mono- and Divalent) Metal Cations to Cucurbiturils: A DFT/SMD Evaluation of the Key Factors Governing the Host–Guest Recognition. RSC Adv. 2020, 10, 28139–28147. [Google Scholar] [CrossRef] [PubMed]
- Koleva, I.Z.; Dobrev, S.; Kircheva, N.; Dasheva, L.; Nikolova, V.; Angelova, S.; Dudev, T. Complexation of Trivalent Metal Cations (Al3+, Ga3+, In3+, La3+, Lu3+) to Cucurbiturils: A DFT/SMD Evaluation of the Key Factors Governing the Host-Guest Recognition. Phys. Chem. Chem. Phys. 2022, 24, 6274–6281. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.; Mohanty, J.; Bhasikuttan, A.C.; Uzunova, V.D.; Nau, W.M.; Pal, H. Salt-Induced Guest Relocation from a Macrocyclic Cavity into a Biomolecular Pocket: Interplay between Cucurbit[7]Uril and Albumin. Chem. Commun. 2008, 3681–3683. [Google Scholar] [CrossRef]
- Ong, W.; Kaifer, A.E. Salt Effects on the Apparent Stability of the Cucurbit[7]Uril-Methyl Viologen Inclusion Complex. J. Org. Chem. 2004, 69, 1383–1385. [Google Scholar] [CrossRef]
- Harris, W.R.; Messori, L. A Comparative Study of Aluminum(III), Gallium(III), Indium(III), and Thallium(III) Binding to Human Serum Transferrin. Coord. Chem. Rev. 2002, 228, 237–262. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Angelova, S.; Nikolova, V.; Molla, N.; Dudev, T. Factors Governing the Host-Guest Interactions between IIA/IIB Group Metal Cations and α-Cyclodextrin: A DFT/CDM Study. Inorg. Chem. 2017, 56, 1981–1987. [Google Scholar] [CrossRef]
- Nikolova, V.K.; Kirkova, C.V.; Angelova, S.E.; Dudev, T.M. Host-Guest Interactions between p-Sulfonatocalix[4]Arene and p-Sulfonatothiacalix[4]Arene and Group IA, IIA and f-Block Metal Cations: A DFT/SMD Study. Beilstein J. Org. Chem. 2019, 15, 1321–1330. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Cao, L.; Škalamera, Đ.; Zavalij, P.Y.; Hostaš, J.; Hobza, P.; Mlinarić-Majerski, K.; Glaser, R.; Isaacs, L. Influence of Hydrophobic Residues on the Binding of CB[7] toward Diammonium Ions of Common Ammonium⋯ammonium Distance. Org. Biomol. Chem. 2015, 13, 6249–6254. [Google Scholar] [CrossRef]
- Bardelang, D.; Udachin, K.A.; Leek, D.M.; Margeson, J.C.; Chan, G.; Ratcliffe, C.I.; Ripmeester, J.A. Cucurbit[n]Urils (n = 5–8): A Comprehensive Solid State Study. Cryst. Growth Des. 2011, 11, 5598–5614. [Google Scholar] [CrossRef] [Green Version]
- Cramer, C.J.; Truhlar, D.G. SM6: A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute−Water Clusters—Journal of Chemical Theory and Computation (ACS Publications). J. Chem. Theory 2005, 1, 1133–1152. [Google Scholar]
- Schrödinger, L.; DeLano, W. PyMOL. 2020. Available online: http://www.pymol.org/pymol (accessed on 5 October 2022).
Trivial Name | Abbreviation | IUPAC Name | Chemical Structure |
---|---|---|---|
Thioflavin T | TfT | 2-[4-(Dimethylamino)phenyl]−3,6-dimethyl−1,3-benzothiazol−3-ium chloride | |
Thiazole orange | TO | 1-Methyl−4-[(3-methyl−2(3H)-benzothiazolylidene)methyl]quinolinium iodide | |
Neutral red | NR | 3-amino−7-dimethylamino−2-methylphenazine hydrochloride |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kircheva, N.; Dobrev, S.; Dasheva, L.; Nikolova, V.; Angelova, S.; Dudev, T. Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]uril and Cucurbit[8]uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition. Molecules 2023, 28, 1540. https://doi.org/10.3390/molecules28041540
Kircheva N, Dobrev S, Dasheva L, Nikolova V, Angelova S, Dudev T. Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]uril and Cucurbit[8]uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition. Molecules. 2023; 28(4):1540. https://doi.org/10.3390/molecules28041540
Chicago/Turabian StyleKircheva, Nikoleta, Stefan Dobrev, Lyubima Dasheva, Valya Nikolova, Silvia Angelova, and Todor Dudev. 2023. "Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]uril and Cucurbit[8]uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition" Molecules 28, no. 4: 1540. https://doi.org/10.3390/molecules28041540
APA StyleKircheva, N., Dobrev, S., Dasheva, L., Nikolova, V., Angelova, S., & Dudev, T. (2023). Metal-Assisted Complexation of Fluorogenic Dyes by Cucurbit[7]uril and Cucurbit[8]uril: A DFT Evaluation of the Key Factors Governing the Host–Guest Recognition. Molecules, 28(4), 1540. https://doi.org/10.3390/molecules28041540