Multiple Effects of High Surface Area Hollow Nanospheres Assembled by Nickel Cobaltate Nanosheets on Soluble Lithium Polysulfides
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Hollow NiCo2O4 and Modified Separator
3.2. Materials Characterization
3.3. Visualization Li2S4 Adsorption
3.4. Electrochemical Measurements
3.5. Theoretical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yoshie, Y.; Hori, K.; Mae, T.; Noda, S. High-energy-density Li–S battery with positive electrode of lithium polysulfides held by carbon nanotube sponge. Carbon 2021, 182, 32–41. [Google Scholar] [CrossRef]
- Liu, Y.; Elias, Y.; Meng, J.S.; Aurbach, D.; Zou, R.; Xia, D.; Pang, Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364. [Google Scholar] [CrossRef]
- Yao, W.; Zheng, W.; Xu, J.; Tian, C.; Han, K.; Sun, W.; Xiao, S. ZnS-SnS@NC Heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021, 15, 7114–7130. [Google Scholar] [CrossRef]
- Ren, W.; Ma, W.; Zhang, S.; Tang, B. Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 2019, 23, 707–732. [Google Scholar] [CrossRef]
- Lakshmi, K.; Vedhanarayanan, B.; Shen, H.; Lin, T. Encapsulating chalcogens as the rate accelerator into MoS2 with expanded interlayer spacing to boost the capacity and cycle stability of Li–S batteries. 2D Mater. 2022, 9, 034002. [Google Scholar] [CrossRef]
- Donato, G.D.; Ates, T.; Adenusi, H.; Varzi, A.; Navarra, M.A.; Passerini, S. Electrolyte Measures to Prevent Polysulfide Shuttle in Lithium-Sulfur Batteries. Batter. Supercaps 2022, 5, e202200097. [Google Scholar] [CrossRef]
- Pu, J.; Gong, W.; Shen, Z.; Wang, L.; Yao, Y.; Hong, G. CoNiO2/Co4N Heterostructure nanowires assieted polysulfide reaction kinetics for improved lithium-sulfur batteries. Adv. Sci. 2022, 9, 2104375. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, Z.; Lim, Y.V.; Wang, Y.; Li, Y.; Zhang, D.; Yang, H. Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003689. [Google Scholar] [CrossRef]
- Zhai, P.; Peng, H.; Cheng, X.; Zhu, L.; Huang, J.; Zhu, W.; Zhang, Q. Scaled-up fabrication of porous-graphene-modified separator for high-capacity lithium-sulfur batteries. Energy Storage Mater. 2017, 7, 56–63. [Google Scholar] [CrossRef]
- Pu, J.; Wang, T.; Zhu, X.; Tan, Y.; Gao, L.; Chen, J.; Huang, J.; Wang, Z. Multifunctional Ni/NiO heterostructure nanoparticles doped carbon nanorods modified separator for enhancing Li–S battery performance. Electrochim. Acta 2022, 435, 141396. [Google Scholar] [CrossRef]
- Lee, D.K.; Ahn, C.W.; Jeon, H.-J. Web-structured graphitic carbon fiber felt as an interlayer for rechargeable lithium-sulfur batteries with highly improved cycling performance. J. Power Sources 2017, 360, 559–568. [Google Scholar] [CrossRef]
- Ma, Z.; Jing, F.; Li, J.; Zhao, Y.; Shao, G. High electrical conductivity of 3D mesporous carbon nanocage as an efficient polysulfide buffer layer for high sulfur utilization in lithium-sulfur batteries. J. Mater. Chem. A 2019, 789, 71–79. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Asiri, A.M.; Zhang, X. Centrifugally spun porous carbon microfibers as interlayer for Li–S batteries. J. Mater. Sci. 2020, 55, 3538–3548. [Google Scholar] [CrossRef]
- Yuan, Z.; Peng, H.; Hou, T.; Huang, J.; Chen, C.; Wang, D.; Cheng, X.; Wei, F.; Zhang, Q. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Lett. 2016, 16, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Kundu, D.; Nazar, L.F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 2016, 3, 130–136. [Google Scholar] [CrossRef]
- Kong, W.; Yan, L.; Luo, Y.; Wang, D.; Jiang, K.; Li, Q.; Fan, S.; Wang, J. Ultrathin MnO2/Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfide-Trapping Shield for High-Performance Li–S Batteries. Adv. Funct. Mater. 2017, 27, 1606663. [Google Scholar] [CrossRef]
- Zheng, C.; Niu, S.; Lv, W.; Zhou, G.; Li, J.; Fan, S.; Deng, Y.; Pan, Z.; Li, B.; Kang, F.; et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306–312. [Google Scholar] [CrossRef]
- Wang, J.; Liang, J.; Wu, J.; Xuan, C.; Wu, Z.; Guo, X.; Lai, C.; Zhu, Y.; Wang, D. Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 6503–6509. [Google Scholar] [CrossRef]
- Pu, J.; Tan, Y.; Wang, T.; Zhu, X.; Fan, S. Ultrathin Two-Dimensional Fe–Co Bimetallic Oxide Nanosheets for Separator Modification of Lithium-Sulfur Batteries. Molecules 2022, 27, 7762. [Google Scholar] [CrossRef]
- Pu, J.; Liu, Z.; Ma, Z.; Wang, J.; Zhang, L.; Chang, S.; Wu, W.; Shen, Z.; Zhang, H. Structure design of NiCo2O4 electrodes for high performance pseudocapacitors and lithium-ion batteries. J. Mater. Chem. A 2016, 4, 17394–17402. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Wang, J.; Jin, X.; Cui, F.; Sheng, E.; Wang, Z. Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors. Electrochim. Acta 2013, 106, 226–234. [Google Scholar] [CrossRef]
- Pu, J.; Jin, X.; Wang, J.; Cui, F.; Chu, S.; Sheng, E.; Wang, Z. Shape-controlled synthesis of ternary nickel cobaltite and their application in supercapacitors. J. Electronal. Chem. 2013, 707, 66–73. [Google Scholar] [CrossRef]
- Gu, W.; Pan, Z.; Tao, H.; Guo, P.J.; Zhong, C.; Li, J.; Ye, C.; Zhou, Q. Boron-modulated surface of hollow nickel framework for improved hydrogen evolution. Chem. Commun. 2021, 57, 2404–2407. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Zhu, K.; Gong, W.; Pu, J.; Li, X.; Guo, C.; Wu, L.; Wang, R.; Li, H.; Sun, J.; et al. “One Stone Two Birds” Design for Dual-Functional TiO2-TiN Heterostructures Enabled Dendrite-Free and Kinetics-Enhanced Lithium-Sulfur Batteries. Adv. Energy Mater. 2022, 12, 2200308. [Google Scholar]
- Yim, T.; Han, S.H.; Park, N.H.; Park, M.-S.; Lee, J.H.; Shin, J.; Choi, J.W.; Jung, Y.; Jo, Y.N.; Yu, J.-S.; et al. Effective Polysulfide Rejection by Dipole-Aligned BaTiO3 Coated Separator in Lithium-Sulfur Batteries. Adv. Funct. Mater. 2016, 26, 7817–7823. [Google Scholar] [CrossRef]
- He, J.; Chen, Y.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 2018, 11, 2560–2568. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Seh, Z.W.; Fu, Z.; Zhang, R.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786. [Google Scholar] [CrossRef]
- Li, H.; Gu, S.; Tao, B.; Xie, Y.; Guo, F.; Zhang, S.; Liu, B.; Liu, J.; Zhang, W.; Chang, H. Highly wrinkled NiO nanosheet-based hierachical structure/reduced fluorographene composite for enhanced performance of lithium-sulfur battery. J. Taiwan Inst. Chem. E. 2020, 111, 205–211. [Google Scholar] [CrossRef]
- Zhong, Y.; Yin, L.; He, P.; Liu, W.; Wu, Z.; Wang, H. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459. [Google Scholar] [CrossRef]
- Niu, X.; Wang, X.; Wang, D.; Li, Y.; Zhang, Y.; Zhang, Y.; Yang, T.; Yu, T.; Tu, J. Metal hydroxide–a new stabilizer for theconstruction of sulfur/carbon composites as highperformance cathode materials for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 17106–17112. [Google Scholar] [CrossRef]
- Liang, X.; Kwok, C.Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C.J.; Houtarde, D.; Kaup, K.; Sommer, H.; et al. Tuning Transition Metal Oxide-Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle. Adv. Energy Mater. 2016, 6, 1501636. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Wang, Z.; Nie, L.; Hu, X.; Yu, Y.; Liu, W. Electrocatalytic NiCo2O4 Nanofiber Arrays on Carbon Cloth for Flexible and High-Loading Lithium–Sulfur Batteries. Nano Lett. 2021, 21, 5285–5292. [Google Scholar] [CrossRef]
- Liu, Y.; Han, D.; Wang, L.; Li, G.; Liu, S.; Gao, X. NiCo2O4 Nanofibers as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite with High Volumetric Capacity for Lithium–Sulfur Battery. Adv. Energy Mater. 2019, 9, 1803477. [Google Scholar] [CrossRef]
- Luo, D.; Deng, Y.; Zhang, Z.; Li, J.; Liang, R.; Li, M.; Jiang, Y.; Zhang, W.; Liu, Y.; Lei, W.; et al. Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1900228. [Google Scholar] [CrossRef]
- Hu, L.; Dai, C.; Liu, H.; Li, Y.; Shen, B.; Chen, Y.; Bao, S.; Xu, M. Double-Shelled NiO-NiCo2O4 Heterostructure@Carbon Hollow Nanocages as an Efficient Sulfur Host for Advanced Lithium–Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1800709. [Google Scholar] [CrossRef]
- Lei, T.; Chen, W.; Lv, W.; Huang, J.; Zhu, J.; Chu, J.; Yan, C.; Wu, C.; Yan, Y.; He, W.; et al. Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. Joule 2018, 2, 2091–2104. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, X.; Xu, J.; Cao, F.; Li, C. Adenine Derivative Host with Interlaced 2D Structure and Dual Lithiophilic–Sulfiphilic Sites to Enable High-Loading Li–S Batteries. ACS Nano 2019, 13, 9520–9532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ji, X. Bamboo-like Co3O4 nanofiber as host materials for enhanced lithium-sulfur battery performance. J. Alloys Compound. 2019, 777, 688–692. [Google Scholar] [CrossRef]
- Pu, J.; Wang, Z.; Xue, P.; Zhu, K.; Li, J.; Yao, Y. The effect of NiO-Ni3N interfaces in in-situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries. J. Energy Chem. 2022, 68, 762–770. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, Y.; Feng, T.; Wang, Z.; Li, L.; Wu, F.; Chen, R. Curbing poly-sulfde shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 2020, 70, 104532. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, Y.; Zhang, J.; Zhong, X.; Liu, J.; Xie, Y.; Zhong, S.; Xu, Z. Embedding Fe2P nanocrystals in bayberry-like N, P-enriched carbon nanospheres as excellent oxygen reduction electrocatalyst for zinc-air battery. J. Power Sources 2021, 501, 230006. [Google Scholar] [CrossRef]
- Xiong, D.; Huang, S.; Fang, D.; Yan, D.; Li, G.; Yan, Y.; Chen, S.; Liu, Y.; Li, X.; Lim, Y.V.; et al. Porosity Engineering of MXene Membrane towards Polysulfide Inhibition and Fast Lithium Ion Transportation for Lithium-Sulfur Batteries. Small 2021, 17, 2007442. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zu, C.; Zhou, W.; Manthiram, A.; Goodenough, J.B. Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. Adv. Mater. 2016, 28, 6926–6931. [Google Scholar] [CrossRef]
- Zhang, J.; You, C.; Zhang, W.; Wang, J.; Guo, S.; Xu, Y. Conductive briding effect of TiN nanoparticles on the electrochemical performance of TiN@CNT-S composite cathode. Electrochim. Acta 2017, 250, 159–166. [Google Scholar] [CrossRef]
- Wei, C.; Tian, M.; Wang, M.; Shi, Z.; Yu, L.; Li, S.; Fan, Z.; Yang, R.; Sun, J. Universal in Situ Crafted MOx-MXene Heterostructures as Heavy and Multifunctional Hosts for 3D-Printed Li–S Batteries. ACS Nano 2020, 14, 16073–16084. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Jing, P.; Guo, Y.; Zhang, Y.; Wei, Y.; Wang, Q.; Zhang, Y.; Wu, H. Bioderived carbon fiber conductive networks with inlaid electrocatalysts as an ultralight freestanding interlayer for working LieSeS2 pouch cells. Carbon 2022, 189, 10–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, J.; Zhu, X.; Wang, J.; Yu, S. Multiple Effects of High Surface Area Hollow Nanospheres Assembled by Nickel Cobaltate Nanosheets on Soluble Lithium Polysulfides. Molecules 2023, 28, 1539. https://doi.org/10.3390/molecules28041539
Pu J, Zhu X, Wang J, Yu S. Multiple Effects of High Surface Area Hollow Nanospheres Assembled by Nickel Cobaltate Nanosheets on Soluble Lithium Polysulfides. Molecules. 2023; 28(4):1539. https://doi.org/10.3390/molecules28041539
Chicago/Turabian StylePu, Jun, Xiaomei Zhu, Jie Wang, and Shaomeng Yu. 2023. "Multiple Effects of High Surface Area Hollow Nanospheres Assembled by Nickel Cobaltate Nanosheets on Soluble Lithium Polysulfides" Molecules 28, no. 4: 1539. https://doi.org/10.3390/molecules28041539
APA StylePu, J., Zhu, X., Wang, J., & Yu, S. (2023). Multiple Effects of High Surface Area Hollow Nanospheres Assembled by Nickel Cobaltate Nanosheets on Soluble Lithium Polysulfides. Molecules, 28(4), 1539. https://doi.org/10.3390/molecules28041539