Mueller Matrix Polarimetry on Cyanine Dye J-Aggregates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solutions and Preparation
2.2. J-aggregate Assembly Mechanism
2.3. Mechanically Induced Chirality of J-aggregates
Studies on Benchtop Spectropolarimeters
2.4. Mueller Matrix Polarimetry Studies
Films of J-aggregates
3. Materials and Methods
3.1. Solution and Film Generation
3.2. CD and MMP Studies
3.2.1. Benchtop CD Studies
3.2.2. MMP Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pisoni, D.S.; Todeschini, L.; Borges, A.C.A.; Petzhold, C.L.; Rodembusch, F.S.; Campo, L.F. Symmetrical and Asymmetrical Cyanine Dyes. Synthesis, Spectral Properties, and BSA Association Study. J. Org. Chem. 2014, 79, 5511–5520. [Google Scholar] [CrossRef] [PubMed]
- Place, I.; Perlstein, J.; Penner, T.L.; Whitten, D.G. Stabilization of the Aggregation of Cyanine Dyes at the Molecular and Nanoscopic Level †. Langmuir 2000, 16, 9042–9048. [Google Scholar] [CrossRef]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef] [PubMed]
- Bricks, J.L.; Slominskii, Y.L.; Panas, I.D.; Demchenko, A.P. Fluorescent J-aggregates of Cyanine Dyes: Basic Research and Applications Review. Methods Appl. Fluoresc. 2017, 6, 012001. [Google Scholar] [CrossRef]
- Jelley, E.E. Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature 1936, 138, 1009–1010. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, X.; Yan, X. Assembly Induced Super-Large Red-Shifted Absorption: The Burgeoning Field of Organic Near-Infrared Materials. CCS Chem. 2021, 3, 678–693. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, W.; Pang, X.; Xiao, F.; Kalva, S.K.; Zhang, Y.; Pramanik, M.; Tian, L.; Liu, G.; Wang, M. Polyester-Tethered near-Infrared Fluorophores Confined in Colloidal Nanoparticles: Tunable and Thermoresponsive Aggregation and Biomedical Applications. Aggregate 2022, e261. [Google Scholar] [CrossRef]
- Lang, E.; Sorokin, A.; Drechsler, M.; Malyukin, Y.V.; Köhler, J. Optical Spectroscopy on Individual Amphi-PIC J-aggregates. Nano Lett. 2005, 5, 2635–2640. [Google Scholar] [CrossRef]
- Pawlik, A.; Kirstein, S.; De Rossi, U.; Daehne, S. Structural Conditions for Spontaneous Generation of Optical Activity in J-aggregates. J. Phys. Chem. B 1997, 101, 5646–5651. [Google Scholar] [CrossRef]
- Maj, M.; Jeon, J.; Góra, R.W.; Cho, M. Induced Optical Activity of DNA-Templated Cyanine Dye Aggregates: Exciton Coupling Theory and TD-DFT Studies. J. Phys. Chem. A 2013, 117, 5909–5918. [Google Scholar] [CrossRef]
- Miyagawa, T.; Yamamoto, M.; Muraki, R.; Onouchi, H.; Yashima, E. Supramolecular Helical Assembly of an Achiral Cyanine Dye in an Induced Helical Amphiphilic Poly(Phenylacetylene) Interior in Water. J. Am. Chem. Soc. 2007, 129, 3676–3682. [Google Scholar] [CrossRef]
- Honda, C.; Hada, H. Circular Dichroism of Poly-Molecular Associate, J-aggregates, of 1, 1′-Diethyl-2, 2′-Cyanine Chloride by Regular Stirring of the Solution. Tetrahedron Lett. 1976, 17, 177–180. [Google Scholar] [CrossRef]
- Spitz, C.; Dähne, S.; Ouart, A.; Abraham, H.-W. Proof of Chirality of J-aggregates Spontaneously and Enantioselectively Generated from Achiral Dyes. J. Phys. Chem. B 2000, 104, 8664–8669. [Google Scholar] [CrossRef]
- De Rossi, U.; Dähne, S.; Meskers, S.C.; Dekkers, H.P. Spontaneous Formation of Chirality in J-aggregates Showing Davydov Splitting. Angew. Chem. Int. Ed. 1996, 35, 760–763. [Google Scholar] [CrossRef]
- Saeva, F.D.; Olin, G.R. The Extrinsic Circular Dichroism of J-aggregates Species of Achiral Dyes. J. Am. Chem. Soc. 1977, 99, 4848–4850. [Google Scholar] [CrossRef]
- Norden, B. Linear and Circular Dichroism of Polymeric Pseudoisocyanine. J. Phys. Chem. 1977, 81, 151–159. [Google Scholar] [CrossRef]
- Ribó, J.M.; El-Hachemi, Z.; Crusats, J. Effects of Flows in Auto-Organization, Self-Assembly, and Emergence of Chirality. Rend. Lincei 2013, 24, 197–211. [Google Scholar] [CrossRef]
- Arteaga, O.; Canillas, A.; Purrello, R.; Ribó, J.M. Evidence of Induced Chirality in Stirred Solutions of Supramolecular Nanofibers. Opt. Lett. 2009, 34, 2177. [Google Scholar] [CrossRef] [PubMed]
- Eisele, D.M.; Cone, C.W.; Bloemsma, E.A.; Vlaming, S.M.; van der Kwaak, C.G.F.; Silbey, R.J.; Bawendi, M.G.; Knoester, J.; Rabe, J.P.; Vanden Bout, D.A. Utilizing Redox-Chemistry to Elucidate the Nature of Exciton Transitions in Supramolecular Dye Nanotubes. Nat. Chem. 2012, 4, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Gentile, M.J.; Núñez-Sánchez, S.; Barnes, W.L. Optical Field-Enhancement and Subwavelength Field-Confinement Using Excitonic Nanostructures. Nano Lett. 2014, 14, 2339–2344. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Xie, J.; Zhao, D. NIR J-aggregates of Hydroazaheptacene Tetraimides. J. Am. Chem. Soc. 2014, 136, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Bialas, D.; Kirchner, E.; Röhr, M.I.S.; Würthner, F. Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. J. Am. Chem. Soc. 2021, 143, 4500–4518. [Google Scholar] [CrossRef]
- Schellman, J.; Jensen, H.P. Optical Spectroscopy of Oriented Molecules. Chem. Rev. 1987, 87, 1359–1399. [Google Scholar] [CrossRef]
- De Greef, T.F.A.; Smulders, M.M.J.; Wolffs, M.; Schenning, A.P.H.J.; Sijbesma, R.P.; Meijer, E.W. Supramolecular Polymerization. Chem. Rev. 2009, 109, 5687–5754. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.A.; Krueger, E.L.; Vanden Bout, D.A. Temperature-Dependent Exciton Properties of Two Cylindrical J-aggregates. J. Phys. Chem. C 2014, 118, 24325–24334. [Google Scholar] [CrossRef]
- Moll, J.; Daehne, S.; Durrant, J.R.; Wiersma, D.A. Optical Dynamics of Excitons in J Aggregates of a Carbocyanine Dye. J. Chem. Phys. 1995, 102, 6362–6370. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Zhang, W. Bioinspired Molecular Qubits and Nanoparticle Ensembles That Could Be Initialized, Manipulated, and Read Out under Mild Conditions. J. Phys. Chem. Lett. 2022, 13, 508–513. [Google Scholar] [CrossRef]
- D’Urso, A.; Randazzo, R.; Lo Faro, L.; Purrello, R. Vortexes and Nanoscale Chirality. Angew. Chem. Int. Ed. 2010, 49, 108–112. [Google Scholar] [CrossRef]
- Goerlitzer, E.S.A.; Puri, A.S.; Moses, J.J.; Poulikakos, L.V.; Vogel, N. The Beginner’s Guide to Chiral Plasmonics: Mostly Harmless Theory and the Design of Large-Area Substrates. Adv. Opt. Mater. 2021, 9, 2100378. [Google Scholar] [CrossRef]
- Hussain, R.; Jávorfi, T.; Siligardi, G. CD Imaging at High Spatial Resolution at Diamond B23 Beamline: Evolution and Applications. Front. Chem. 2021, 9, 616928. [Google Scholar] [CrossRef]
- Zinna, F.; Resta, C.; Górecki, M.; Pescitelli, G.; Di Bari, L.; Jávorfi, T.; Hussain, R.; Siligardi, G. Circular Dichroism Imaging: Mapping the Local Supramolecular Order in Thin Films of Chiral Functional Polymers. Macromolecules 2017, 50, 2054–2060. [Google Scholar] [CrossRef]
- Răsădean, D.-M.; Gianga, T.-M.; Jávorfi, T.; Hussain, R.; Siligardi, G.; Pantoș, G.D. Mapping the Chiroptical Properties of Local Domains in Thin Films of Chiral Silicon Phthalocyanines by CD Imaging. Molecules 2020, 25, 6048. [Google Scholar] [CrossRef] [PubMed]
- El-Hachemi, Z.; Arteaga, O.; Canillas, A.; Crusats, J.; Llorens, J.; Ribo, J.M. Chirality Generated by Flows in Pseudocyanine Dye J-aggregates: Revisiting 40 Years Old Reports. Chirality 2011, 23, 585–592. [Google Scholar] [CrossRef] [PubMed]
Solution Conc. (µM) | CW gabs (×10−3) | CCW gabs (×10−3) 1 |
---|---|---|
15 | −2.52 | 2.13 |
25 | −2.11 | 2.58 |
35 | −2.43 | 3.27 |
50 | −2.42 | 2.00 |
75 | −1.19 | 1.69 |
Solution Conc. (µM) | CW | CCW | No Stirring | |||
---|---|---|---|---|---|---|
CD (mdeg) | gabs (×10−3) | CD (mdeg) | gabs (×10−3) | CD (mdeg) | gabs (×10−3) | |
15 | −27.77 | −1.46 | 45.37 | 1.00 | 1.21 | −0.027 |
25 | −30.09 | −0.91 | 22.56 | 0.68 | 0.24 | 0.023 |
35 | −16.47 | −1.03 | 67.50 1 | 2.41 1 | 13.28 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clowes, S.R.; Răsădean, D.M.; Gianga, T.-M.; Jávorfi, T.; Hussain, R.; Siligardi, G.; Pantoş, G.D. Mueller Matrix Polarimetry on Cyanine Dye J-Aggregates. Molecules 2023, 28, 1523. https://doi.org/10.3390/molecules28041523
Clowes SR, Răsădean DM, Gianga T-M, Jávorfi T, Hussain R, Siligardi G, Pantoş GD. Mueller Matrix Polarimetry on Cyanine Dye J-Aggregates. Molecules. 2023; 28(4):1523. https://doi.org/10.3390/molecules28041523
Chicago/Turabian StyleClowes, Samuel R., Dora M. Răsădean, Tiberiu-M. Gianga, Tamás Jávorfi, Rohanah Hussain, Giuliano Siligardi, and G. Dan Pantoş. 2023. "Mueller Matrix Polarimetry on Cyanine Dye J-Aggregates" Molecules 28, no. 4: 1523. https://doi.org/10.3390/molecules28041523
APA StyleClowes, S. R., Răsădean, D. M., Gianga, T. -M., Jávorfi, T., Hussain, R., Siligardi, G., & Pantoş, G. D. (2023). Mueller Matrix Polarimetry on Cyanine Dye J-Aggregates. Molecules, 28(4), 1523. https://doi.org/10.3390/molecules28041523