Chemistry of CS2 and CS3 Bridged Decaborane Analogues: Regular Coordination Versus Cluster Expansion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Reactivity of nido-1 and nido-2 with M’(CO)5.THF (M = Mo, W)
2.2. Condensed Clusters: [{Ru(CO)3}3S{Ru(CO)}{Ru(CO)2}Co2B6SH4{Ru(CO)3}2(SCH2S2)], 7 and [(Cp*Rh)2B6H4S4{Co(CO)}2{Co(CO)2}2(μ-CO)S{Co(CO)3}2], 8
2.2.1. Structural Account of 7
2.2.2. Structural Account of 8
3. Experimental Section
3.1. Materials and Methods
3.2. Formation of 3 and 4
3.3. Formation of 5 and 6
3.4. Formation of Metallaheteroborane 7
3.5. Formation of Metallaheteroborane 8
3.6. X-ray Structure Determination
3.7. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Grimes, R.N. Transition Metal Metallacarbaboranes. In Comprehensive Organometallic Chemistry II; Abel, E.W., Stone, F.G.A., Wilkinson, G., Eds.; Pergamon Press, Inc.: Oxford, UK, 1995; Volume 1, pp. 373–430. [Google Scholar]
- Hosmane, N.S. (Ed.) Boron Science: New Technologies and Applications; CRC Press, Inc.: Boca Raton, FL, USA, 2011. [Google Scholar]
- Housecroft, C.E. Boron Atoms in Transition Metal Clusters. Adv. Organomet. Chem. 1991, 33, 1–50. [Google Scholar]
- Pathak, K.; Saha, K.; Ghosh, S. Nanovehicles and Boron Clusters. In Fundamentals and Applications of Boron Chemistry; Zhu, Y., Hosmane, N., Eds.; Elsevier, Inc.: Oxford, UK, 2022; Volume 2. [Google Scholar]
- Borthakur, R.; Mondal, B.; Nandi, P.; Ghosh, S. Hypoelectronic Isomeric Diiridaboranes [(Cp*Ir)2B6H6]: The “Rule-Breakers” (Cp* = η5-C5Me5). Chem.Commun. 2016, 52, 3199–3202. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Zhang, Q.-F.; Mondal, B.; Cheung, L.F.; Kar, S.; Saha, K.; Varghese, B.; Wang, L.-S.; Ghosh, S. [(Cp2M)2B9H11] (M = Zr or Hf): Early Transition Metal ‘Guarded’ Heptaborane with Strong Covalent and Electrostatic Bonding. Chem. Sci. 2018, 9, 1976–1981. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Bairagi, S.; Haridas, A.; Joshi, G.; Jemmis, E.D.; Ghosh, S. Hexagonal Planar [B6H6] within a [B6H12] Borate Complex: Structure and Bonding of [(Cp*Ti)2(μ-ɳ6:ɳ6-B6H6)(μ-H)6]. Angew. Chem. Int. Ed. 2022, 61, e202208293. [Google Scholar]
- Lipscomb, W.N. Boron Hydrides; Dover Publications Inc.: Mineola, NY, USA, 2012. [Google Scholar]
- Grimes, R.N. Carboranes, 3rd ed.; Elsevier: Oxford, UK, 2016; pp. 929–944. [Google Scholar]
- Burke, A.; Ellis, D.; Giles, B.T.; Hodson, B.E.; Macgregor, S.A.; Rosair, G.M.; Welch, A.J. Beyond the Icosahedron: The First 13-Vertex Carborane. Angew. Chem. Int. Ed. 2003, 42, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.D. The Polyhedral Metallaboranes Part II. Metallaborane Clusters with Eight Vertices and More. Prog. Inorg. Chem. 1986, 34, 211–434. [Google Scholar]
- Ghosh, S.; Rheingold, A.L.; Fehlner, T.P. Metallaboranes of the earlier transition metals. An arachno nine-vertex, nine-skeletal electron pair rhenaborane of novel shape: Importance of total vertex connectivities in such systems. Chem. Commun. 2001, 895–896. [Google Scholar] [CrossRef]
- Ghosh, S.; Beatty, A.M.; Fehlner, T.P. Synthesis and Characterization of Bicapped Hexagonal Bipyramidal 2,3-Cl2-1,8-{Cp*Re}2B6H4[{Cp*Re}2{µ n6-n6-1,2-B6H4Cl2}, Cp* = n5-C5Me5]: The Missing Link Connecting (p–2) Skeletal Electron Pair Hypoelectronic Rhenaboranes and 24-Valence Electron Triple-Decker Complexes. J. Am. Chem. Soc. 2001, 123, 9188–9189. [Google Scholar]
- Zheng, F.; Yui, T.H.; Zhang, J.; Xie, Z. Synthesis and X-ray characterization of 15- and 16-vertex closo-carboranes. Nat. Commun. 2020, 11, 5943–5947. [Google Scholar] [CrossRef]
- Kar, S.; Pradhan, A.N.; Ghosh, S. Polyhedral Metallaboranes and Metallacarboranes. In Comprehensive Organometallic Chemistry IV, 4th ed.; Parkin, G., Meyer, K., O’hare, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 9, pp. 263–369. [Google Scholar]
- Roy, D.K.; Anju, R.S.; Varghese, B.; Ghosh, S. Reactivity of Dirhodium Analogues of Octaborane-12 and Decaborane-14 towards Transition-Metal Moieties. Organometallics 2013, 32, 1964–1970. [Google Scholar] [CrossRef]
- Bose, S.K.; Geetharani, K.; Ramkumar, V.; Varghese, B.; Ghosh, S. Chemistry of Vanadaboranes: Synthesis, Structures, and Characterization of Organovanadium Sulfide Clusters with Disulfido Linkage. Inorg. Chem. 2010, 49, 2881–2888. [Google Scholar] [CrossRef] [PubMed]
- Geetharani, K.; Bose, S.K.; Sahoo, S.; Varghese, B.; Mobin, S.M.; Ghosh, S. Cluster expansion reactions of group 6 and 8 metallaboranes using transition metal carbonyl compounds of groups 7–9. Inorg. Chem. 2011, 50, 5824–5832. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Bag, R.; Ghorai, S.; Bakthavachalam, K.; Jemmis, E.D.; Ghosh, S. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2}2{μ-η2:η2-B2H4}] and [{Cp*M(CO)2}2B2H2M(CO)4], M=Mo,W. Angew. Chem. Int. Ed. 2018, 57, 8079–8083. [Google Scholar] [CrossRef]
- Krishnamoorthy, B.S.; Thakur, A.; Chakrahari, K.K.V.; Bose, S.K.; Hamon, P.; Roisnel, T.; Kahlal, S.; Ghosh, S.; Halet, J.-F. Theoretical and Experimental Investigations on Hypoelectronic Heterodimetallaboranes of Group 6 Transition Metals. Inorg. Chem. 2012, 51, 10375–10383. [Google Scholar] [CrossRef]
- Bose, S.K.; Geetharani, K.; Varghese, B.; Ghosh, S. Condensed Tantalaborane Clusters: Synthesis and Structures of [(Cp*Ta)2B5H7{Fe(CO)3}2] and [(Cp*Ta)2B5H9{Fe(CO)3}4]. Inorg. Chem. 2011, 50, 2445–2449. [Google Scholar] [CrossRef]
- Bose, S.K.; Geetharani, K.; Sahoo, S.; Reddy, K.H.K.; Varghese, B.; Jemmis, E.D.; Ghosh, S. Synthesis, characterization, and electronic structure of new type of heterometallic boride clusters. Inorg. Chem. 2011, 50, 9414–9422. [Google Scholar] [CrossRef]
- Bose, S.K.; Ghosh, S. Linked and Fused Tungstaborane Clusters: Synthesis, Characterization, and Electronic Structures of bis-{(η5-C5Me5W)2B5H8}2 and (η5-C5Me5W)2{Fe(CO)3}nB6-nH10-n, n = 0, 1. Organometallics 2007, 26, 5377–5385. [Google Scholar] [CrossRef]
- Zafar, M.; Kar, S.; Nandi, C.; Ramalakshmi, R.; Ghosh, S. Cluster fusion: Face-fused macropolyhedral tetracobaltaboranes. Inorg. Chem. 2019, 58, 47–51. [Google Scholar] [CrossRef]
- Geetharani, K.; Krishnamoorthy, B.S.; Kahlal, S.; Mobin, S.M.; Halet, J.-F.; Ghosh, S. Synthesis and Characterization of Hypoelectronic Tantalaboranes. Comparison of the Geometric and Electronic Structures of [(Cp*TaX)2B5H11] (X = Cl, Br and I). Inorg. Chem. 2012, 51, 10176–10184. [Google Scholar] [CrossRef]
- Anju, R.S.; Saha, K.; Mondal, B.; Dorcet, V.; Roisnel, T.; Halet, J.-F.; Ghosh, S. Chemistry of Diruthenium Analogue of Pentaborane(9) With Heterocumulenes: Towards Novel Trimetallic Cubane-type Clusters. Inorg. Chem. 2014, 53, 10527–10535. [Google Scholar] [CrossRef]
- Roy, D.K.; Mondal, B.; Shankhari, P.; Anju, R.S.; Geetharani, K.; Mobin, S.M.; Ghosh, S. Supraicosahedral Polyhedra in Metallaboranes: Synthesis and Structural Characterization of 12-, 15- and 16-Vertex Rhodaboranes. Inorg. Chem. 2013, 52, 6705–6712. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.K.; Barik, S.K.; Mondal, B.; Varghese, B.; Ghosh, S. A Novel Heterometallic µ9-Boride Cluster: Synthesis and Structural Characterization of [(η5-C5Me5Rh)2{Co6(CO)12}(µ-H)(BH)B]. Inorg. Chem. 2014, 53, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, H. Transition metal-induced B–H functionalization of o-carborane. Coord. Chem. Rev. 2019, 378, 466–482. [Google Scholar] [CrossRef]
- Hosmane, N.S.; Maguire, J.A. Metallacarboranes of d- and f-Block metals. In Comprehensive Organometallic Chemistry III; Crabtree, R.H., Mingos, D.M.P., Eds.; Elsevier: Oxford, UK, 2006. [Google Scholar]
- Yao, Z.-J.; Huo, X.-K.; Jin, G.-X. Zwitterionic half-sandwich Rh and Ir complexes containing a diphosphine nido-carborane ligand: Synthesis, structure transformation and application in H2 activation. Chem. Commun. 2012, 48, 6714–6716. [Google Scholar] [CrossRef]
- Saha, K.; Roy, D.K.; Dewhurst, R.D.; Ghosh, S.; Braunschweig, H. Recent Advances in the Synthesis and Reactivity of Transition Metal σ-Borane/Borate Complexes. Acc. Chem. Res. 2021, 54, 1260–1273. [Google Scholar] [CrossRef]
- Borthakur, R.; Saha, K.; Kar, S.; Ghosh, S. Recent advances in transition metal diborane(6), diborane(4) and diborene(2) chemistry. Coord. Chem. Rev. 2019, 399, 213021–213037. [Google Scholar] [CrossRef]
- Grimes, R.N. Cluster forming and cage fusion in metallacarborane chemistry. Coord. Chem. Rev. 1995, 143, 71–96. [Google Scholar] [CrossRef]
- Ghosh, S.; Noll, B.C.; Fehlner, T.P. Expansion of iridaborane clusters by addition of monoborane. Novel metallaboranes and mechanistic detail. Dalton Trans. 2008, 371–378. [Google Scholar] [CrossRef]
- Dhayal, R.S.; Sahoo, S.; Reddy, K.H.K.; Mobin, S.M.; Jemmis, E.D.; Ghosh, S. Vertex-Fused Metallaborane Clusters: Synthesis, Characterization and Electronic Structure of [(η5-C5Me5Mo)3MoB9H18]. Inorg. Chem. 2010, 49, 900–904. [Google Scholar] [CrossRef]
- Londesborough, M.G.S.; MacLean, E.J.; Teat, S.J.; Thornton-Pett, M.; Kennedy, J.D. Macropolyhedral boron-containing cluster chemistry. Synchrotron X-ray structural analysis of [(PMe2Ph)2Pd2B16H20(PMe2Ph)2] and [(PMe2Ph)3Pt2B16H18(PMe2Ph)]: Models of intermediates to more condensed metallaboranes from the [(PMe2Ph)2PtB8H12] thermolysis system. Chem. Commun. 2005, 1584–1586. [Google Scholar] [CrossRef]
- Barton, L.; Bould, J.; Kennedy, J.D.; Rath, N.P. Macropolyhedral boron-containing cluster chemistry. Isolation and characterisation of the eighteen-vertex nido-5′-iridaoctaborano [3′,8′:1′,2]-closo-4-iridadodec aborane, [(CO)(PMe3)2IrB16H14Ir (CO)(PMe3)2]. J. Chem. Soc. Dalton Trans. 1996, 3145–3149. [Google Scholar] [CrossRef]
- Ghosh, S.; Lei, X.; Shang, M.; Fehlner, T.P. Role of the Transition Metal in Metallaborane Chemistry. Reactivity of (Cp*ReH2)2B4H4 with BH3·thf, CO, and Co2(CO)8. Inorg. Chem. 2000, 39, 5373–5382. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Fehlner, T.P.; Noll, B.C. Condensed metallaborane clusters: Synthesis and structure of Fe2(CO)6(η5-C5Me5RuCO) (η5-C5Me5Ru)B6H10. Chem. Commun. 2005, 3080–3082. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Shang, M.; Fehlner, T.P. A Novel Coordinated Inorganic Benzene: Synthesis and Characterization of {η5-C5Me5Re}2{μ-η6:η6-B4H4Co2(CO)5}. J. Am. Chem. Soc. 1999, 121, 7451–7452. [Google Scholar] [CrossRef]
- Nandi, C.; Kar, K.; Gayen, S.; Roisnel, T.; Ghosh, S. Directed Synthesis of CS2 and CS3-Bridged Decaborane-14 Analogues. Inorg. Chem. 2021, 60, 12367–12376. [Google Scholar] [CrossRef]
- Nandi, C.; Roy, A.; Kar, K.; Cordier, M.; Ghosh, S. Cluster Growth Reactions: Structures and Bonding of Metal-Rich Metallaheteroboranes Containing Heavier Chalcogen Elements. Inorg. Chem. 2022, 42, 16750–16759. [Google Scholar] [CrossRef]
- Pathak, K.; Nandi, C.; Ghosh, S. Metallaheteroboranes with group 16 elements: Aspects of synthesis, framework and reactivity. Coord. Chem. Rev. 2022, 453, 214303–214331. [Google Scholar] [CrossRef]
- Nandi, C.; Kar, S.; Zafar, M.; Kar, K.; Roisnel, T.; Dorcet, V.; Ghosh, S. Chemistry of Dimetallaoctaborane(12) with Chalcogen-Based Borate Ligands: Obedient versus Disobedient Clusters. Inorg. Chem. 2020, 59, 3537–3541. [Google Scholar] [CrossRef]
- Sahoo, S.; Mobin, S.M.; Ghosh, S. Direct Insertion of Sulphur, Selenium and Tellurium atoms into Metallaborane Cages using Chalcogen Powders. J. Organomet. Chem. 2010, 695, 945–949. [Google Scholar] [CrossRef]
- Baird, M.C.; Wilkinson, G. Bis(triphenylphosphine)(carbon disulphide)platinum. Chem. Commun. 1966, 514–515. [Google Scholar] [CrossRef]
- Vicente, J.; Chicote, M.T.; González-Herrero, P.; Jones, P.G.J. Synthesis of the first trithiocarbonatogold complex: [N(PPh3)2]2[Au2(µ2-η2-CS3)2]. First crystal structure of a µ2-η2-bridging trithiocarbonato complex. Chem. Soc. Chem. Commun. 1995, 745–746. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, J.; Lu, Z.; Xie, Z. Diboration of Alkenes and Alkynes with a Carborane-Fused Four-Membered Boracycle Bearing an Electron-Precise B-B Bond. Dalton Trans. 2021, 50, 17150–17155. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, C.; Mealli, C.; Meli, A.; Scapacci, G. Cobalt(II) and nickel(II) trithiocarbonate complexes as nucleophilic reagents. Reactivity and X-ray structure of the trithiocarbonate complex [Co(tppme)(S2CSCH3)][BPh4]·1.5thf. J. Chem. Soc. Dalton Trans. 1982, 799–804. [Google Scholar] [CrossRef]
- Gill, D.S.; Green, M.; Marsden, K.; Moore, I.; Orpen, A.G.; Stone, F.G.A.; Williams, I.D.; Woodward, P. The reaction of molybdenum and tungsten carbyne complexes with sulphur and selenium; crystal structures of [Mo{η2-(S2CCH2But)}(CO)2(η-C5H5)] and [W{η2-(S2CC6H4Me-4)}(CO)2(η-C5H5)]. J. Chem. Soc. Dalton Trans. 1984, 1343–1347. [Google Scholar] [CrossRef]
- Kar, S.; Kar, K.; Ghosh, S. Vertex-Fused Clusters Featuring a Flattened Butterfly. Organometallics 2022, 41, 1125–1129. [Google Scholar] [CrossRef]
- Saha, K.; Kaur, U.; Kar, S.; Mondal, B.; Joseph, B.; Antharjanam, P.K.S.; Ghosh, S. Trithia-diborinane and Bis(bridging-boryl) Complexes of Ruthenium Derived from a [BH3(SCHS)]− Ion. Inorg. Chem. 2019, 58, 2346–2353. [Google Scholar] [CrossRef]
- Saha, K.; Gayen, S.; Kaur, U.; Roisnel, T.; Ghosh, S. Stabilization of dichalcogenide ligands in the coordination sphere of a ruthenium system. Dalton Trans. 2021, 50, 12990–13001. [Google Scholar] [CrossRef]
- Kaur, P.; Thornton-Pett, M.; Clegg, W.; Kennedy, J.D. Macropolyhedral boron-containing cluster chemistry: Nineteen-vertex [(PPh3)NiS2B16H12(PPh3)] and eighteen-vertex S2B16H14(PPh3). J. Chem. Soc. Dalton Trans. 1996, 1996, 4155–4157. [Google Scholar] [CrossRef]
- Wade, K. The Structural Significance of the Number of Skeletal Bonding Electron-Pairs in Carboranes, the Higher Boranes and Borane Anions, and Various Transition-Metal Carbonyl Cluster Compounds. J. Chem. Soc. D 1971, 792–793. [Google Scholar] [CrossRef]
- Wade, K. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Chem. Radiochem. 1976, 18, 1–66. [Google Scholar]
- Mingos, D.M.P. Polyhedral Skeletal Electron Pair Approach. Acc. Chem. Res. 1984, 17, 311–319. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Balakrishnarajan, M.M.; Pancharatna, P.D. Electronic Requirements for Macropolyhedral Boranes. Chem. Rev. 2002, 102, 93–144. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXS97 and SHELXL97. Program for Crystal Structure Solution and Refinement; University of Gottingen: Gottingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. SHELXT—Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Van der Sluis, P.; Spek, A.L. BYPASS: An effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst. 1990, A46, 194–201. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003, 36, 7–13. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation with the program PLATON. Acta Cryst. 2009, D65, 148–155. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Schmider, H.L.; Becke, A.D. Optimized density functionals from the extended G2 test set. J. Chem. Phys. 1998, 108, 9624–9631. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, I.I.; Keith, R.T.; Millam, J.; Eppinnett, K.; Hovell, W.L.; Gilliland, R. GaussView, Version 3.09; Semichem Inc.: Shawnee, KS, USA, 2003. [Google Scholar]
- Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 7 October 2022).
- Led, J.J.; Gesmar, H. Application of the linear prediction method to NMR spectroscopy. Chem. Rev. 1991, 91, 1413–1426. [Google Scholar] [CrossRef]
- Yang, L.; Simionescu, R.; Lough, A.; Yan, H. Some observations relating to the stability of the BODIPY fluorophore under acidic and basic conditions. Dyes Pigm. 2011, 91, 264–267. [Google Scholar] [CrossRef]
- Weiss, R.; Grimes, R.N. Sources of Line Width in Boron-11 Nuclear Magnetic Resonance Spectra. Scalar Relaxation and Boron-Boron Coupling in B4H10 and B5H9. J. Am. Chem. Soc. 1978, 100, 1401–1405. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kar, K.; Saha, S.; Parmar, R.M.; Roy, A.; Cordier, M.; Roisnel, T.; Ghosh, S. Chemistry of CS2 and CS3 Bridged Decaborane Analogues: Regular Coordination Versus Cluster Expansion. Molecules 2023, 28, 998. https://doi.org/10.3390/molecules28030998
Kar K, Saha S, Parmar RM, Roy A, Cordier M, Roisnel T, Ghosh S. Chemistry of CS2 and CS3 Bridged Decaborane Analogues: Regular Coordination Versus Cluster Expansion. Molecules. 2023; 28(3):998. https://doi.org/10.3390/molecules28030998
Chicago/Turabian StyleKar, Ketaki, Suvam Saha, Rahul Maganbhai Parmar, Arindam Roy, Marie Cordier, Thierry Roisnel, and Sundargopal Ghosh. 2023. "Chemistry of CS2 and CS3 Bridged Decaborane Analogues: Regular Coordination Versus Cluster Expansion" Molecules 28, no. 3: 998. https://doi.org/10.3390/molecules28030998
APA StyleKar, K., Saha, S., Parmar, R. M., Roy, A., Cordier, M., Roisnel, T., & Ghosh, S. (2023). Chemistry of CS2 and CS3 Bridged Decaborane Analogues: Regular Coordination Versus Cluster Expansion. Molecules, 28(3), 998. https://doi.org/10.3390/molecules28030998