DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium
Abstract
:1. Introduction
2. Results
2.1. Pyrimidine Analogs in Loops Do Not Affect Quadruplex Formation
2.2. The Activity of DNA Glycosylases and AP Endonuclease 1 (APE1) Are Impaired by Quadruplex Structure
2.3. Quadruplex–Duplex Equilibrium Can Be Monitored by FRET
2.4. Base Excision Repair and Quadruplex Stabilizing Ligands Shift the Duplex–Quadruplex Equilibrium towards Quadruplex
3. Discussion
3.1. DNA Damage and Repair in Quadruplex DNA
3.2. Base Excision Repair Promotes Quadruplex Formation
3.3. Duplex to Quadruplex Transition Using Pyridostatin
3.4. Conclusions and Limitations of This Study
4. Materials and Methods
4.1. Oligonucleotide Synthesis
4.2. Enzymes
4.3. Buffers and Reagents
4.4. CD Spectroscopy Studies
4.5. Fluorescence Studies
4.6. Quadruplex Fluorescence-Based Kinetic Studies and Pyridostatin Titration
4.7. Native Gel Electrophoresis of DNA Repair Intermediates
4.8. DNA Glycosylase and AP Endonuclease Studies by Denaturing Gel Electrophoresis
4.9. Spontaneous β-Elimination Time Course
4.10. Gel Quantification and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallace, S.S. Base Excision Repair: A Critical Player in Many Games. DNA Repair 2014, 19, 14–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krokan, H.E.; Bjørås, M. Base Excision Repair. Cold Spring Harb. Perspect. Biol. 2013, 5, a012583. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Vasquez, K.M. Impact of Alternative DNA Structures on DNA Damage, DNA Repair, and Genetic Instability. DNA Repair 2014, 19, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Satange, R.; Chang, C.K.; Hou, M.H. A Survey of Recent Unusual High-Resolution DNA Structures Provoked by Mismatches, Repeats and Ligand Binding. Nucleic Acids Res. 2018, 46, 6416–6434. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Kaushik, S.; Kukreti, S. Non-Canonical DNA Structures: Diversity and Disease Association. Front. Genet. 2022, 13, 959258. [Google Scholar] [CrossRef] [PubMed]
- Chambers, V.S.; Marsico, G.; Boutell, J.M.; di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome. Nat. Biotechnol. 2015, 33, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Gellert, M.; Lipsett, M.N.; Davies, D.R. Helix Formation by Guanylic Acid. Proc. Natl. Acad. Sci. USA 1962, 48, 2013–2018. [Google Scholar] [CrossRef] [Green Version]
- Guschlbauer, W.; Chantot, J.F.; Thiele, D. Four-Stranded Nucleic Acid Structures 25 Years Later: From Guanosine Gels to Telomer Dna. J. Biomol. Struct. Dyn. 1990, 8, 491–511. [Google Scholar] [CrossRef]
- Chaires, J.B. Human Telomeric G-Quadruplex: Thermodynamic and Kinetic Studies of Telomeric Quadruplex Stability. FEBS J. 2010, 277, 1098–1106. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, A.V.; Kubareva, E.A.; Monakhova, M.V.; Zvereva, M.I.; Dolinnaya, N.G. Impact of G-Quadruplexes on the Regulation of Genome Integrity, Dna Damage and Repair. Biomolecules 2021, 11, 1284. [Google Scholar] [CrossRef]
- Linke, R.; Limmer, M.; Juranek, S.A.; Heine, A.; Paeschke, K. The Relevance of G-quadruplexes for Dna Repair. Int. J. Mol. Sci. 2021, 22, 12599. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, M.; Fleming, A.M.; Burrows, C.J.; Wallace, S.S. Neil3 and NEIL1 DNA Glycosylases Remove Oxidative Damages from Quadruplex DNA and Exhibit Preferences for Lesions in the Telomeric Sequence Context. J. Biol. Chem. 2013, 288, 27263–27272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Fleming, A.M.; Averill, A.M.; Burrows, C.J.; Wallace, S.S. The NEIL Glycosylases Remove Oxidized Guanine Lesions from Telomeric and Promoter Quadruplex DNA Structures. Nucleic Acids Res. 2015, 43, 4039–4054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lech, C.J.; Cheow Lim, J.K.; Wen Lim, J.M.; Amrane, S.; Heddi, B.; Phan, A.T. Effects of Site-Specific Guanine C8-Modifications on an Intramolecular DNA G-Quadruplex. Biophys. J. 2011, 101, 1987–1998. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, A.A.; Fedorova, O.S.; Kuznetsov, N.A. Lesion Recognition and Cleavage of Damage-Containing Quadruplexes and Bulged Structures by DNA Glycosylases. Front. Cell Dev. Biol. 2020, 8, 595687. [Google Scholar] [CrossRef]
- Bielskute, S.; Plavec, J.; Podbevšek, P. Impact of Oxidative Lesions on the Human Telomeric G-Quadruplex. J. Am. Chem. Soc. 2019, 141, 2594–2603. [Google Scholar] [CrossRef] [Green Version]
- Bielskute, S.; Plavec, J.; Podbevšek, P. Oxidative Lesions Modulate G-Quadruplex Stability and Structure in the Human BCL2 Promoter. Nucleic Acids Res. 2021, 49, 2346–2356. [Google Scholar] [CrossRef]
- Lindahl, T. Instability and Decay of the Primary Structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef]
- Mullaart, E.; Lohman, P.H.M.; Berends, F.; Vijg, J. DNA Damage Metabolism and Aging. Mutat. Res. 1990, 237, 189–210. [Google Scholar] [CrossRef]
- Bordin, D.L.; Lirussi, L.; Nilsen, H. Cellular Response to Endogenous DNA Damage: DNA Base Modifications in Gene Expression Regulation. DNA Repair 2021, 99, 103051. [Google Scholar] [CrossRef]
- Ambrus, A.; Chen, D.; Dai, J.; Bialis, T.; Jones, R.A.; Yang, D. Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel / Antiparallel Strands in Potassium Solution. Nucleic Acids Res. 2006, 34, 2723–2735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, A.T.; Mergny, J.-L. Human Telomeric DNA: G-Quadruplex, i-Motif and Watson-Crick Double Helix. Nucleic Acids Res. 2002, 30, 4618–4625. [Google Scholar] [CrossRef] [PubMed]
- Risitano, A.; Fox, K.R. Stability of Intramolecular DNA Quadruplexes: Comparison with DNA Duplexes. Biochemistry 2003, 42, 6507–6513. [Google Scholar] [CrossRef] [PubMed]
- Jaumot, J.; Eritja, R.; Tauler, R.; Gargallo, R. Resolution of a Structural Competition Involving Dimeric G-Quadruplex and Its C-Rich Complementary Strand. Nucleic Acids Res. 2006, 34, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Mellac, S.; Fazakerley, G.V.; Sowers, L.C. Structures of Base Pairs with 5-(Hydroxymethyl)-2′-Deoxyuridine in DNA Determined by NMR Spectroscopy. Biochemistry 1993, 32, 7779–7786. [Google Scholar] [CrossRef]
- Hsu, C.W.; Conrad, J.W.; Sowers, M.L.; Baljinnyam, T.; Herring, J.L.; Hackfeld, L.C.; Hatch, S.S.; Sowers, L.C. A Combinatorial System to Examine the Enzymatic Repair of Multiply Damaged DNA Substrates. Nucleic Acids Res. 2022, 50, 7406–7419. [Google Scholar] [CrossRef]
- Masaoka, A.; Matsubara, M.; Hasegawa, R.; Tanaka, T.; Kurisu, S.; Terato, H.; Ohyama, Y.; Karino, N.; Matsuda, A.; Ide, H. Mammalian 5-Formyluracil-DNA Glycosylase. 2. Role of SMUG1 Uracil-DNA Glycosylase in Repair of 5-Formyluracil and Other Oxidized And. Biochemistry 2003, 42, 5003–5012. [Google Scholar] [CrossRef] [PubMed]
- Holton, N.W.; Larson, E.D. G-Quadruplex DNA Structures Can Interfere with Uracil Glycosylase Activity in Vitro. Mutagenesis 2016, 31, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A.M.; Howpay Manage, S.A.; Burrows, C.J. Binding of AP Endonuclease-1 to G-Quadruplex DNA Depends on the N-Terminal Domain, Mg 2+, and Ionic Strength. ACS Bio. Med. Chem. Au. 2021, 1, 44–56. [Google Scholar] [CrossRef]
- Theruvathu, J.A.; Darwanto, A.; Hsu, C.W.; Sowers, L.C. The Effect of Pot1 Binding on the Repair of Thymine Analogs in a Telomeric DNA Sequence. Nucleic Acids Res. 2014, 42, 9063–9073. [Google Scholar] [CrossRef]
- Lindahl, T.; Andersson, A. Rate of Chain Breakage at Apurinic Sites Double-Stranded Deoxyribonucleic Acid. Biochemistry 1972, 11, 3618–3623. [Google Scholar] [CrossRef] [PubMed]
- Simonsson, T.; Sjöback, R. DNA Tetraplex Formation Studied with Fluorescence Resonance Energy Transfer. J. Biol. Chem. 1999, 274, 17379–17383. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.D.; Trent, J.O.; Chaires, J.B. Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex. J. Mol. Biol. 2014, 426, 1629–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Maiti, S. The Effect of Osmolytes and Small Molecule on Quadruplex-WC Duplex Equilibrium: A Fluorescence Resonance Energy Transfer Study. Nucleic Acids Res. 2005, 33, 6723–6732. [Google Scholar] [CrossRef]
- Li, M.H.; Wang, Z.F.; Kuo, M.H.J.; Hsu, S.T.D.; Chang, T.C. Unfolding Kinetics of Human Telomeric G-Quadruplexes Studied by NMR Spectroscopy. J. Phys. Chem. B 2014, 118, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Rangan, A.; Fedoroff, O.Y.; Hurley, L.H. Induction of Duplex to G-Quadruplex Transition in the c-Myc Promoter Region by a Small Molecule. J. Biol. Chem. 2001, 276, 4640–4646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulian, M.; Bleile, B.; Tseng, B.Y. Methotrexate-Induced Misincorporation of Uracil into DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 1956–1960. [Google Scholar] [CrossRef] [Green Version]
- Kunz, C.; Focke, F.; Saito, Y.; Schuermann, D.; Lettieri, T.; Selfridge, J.; Schär, P. Base Excision by Thymine DNA Glycosylase Mediates DNA-Directed Cytotoxicity of 5-Fluorouracil. PLoS Biol. 2009, 7, e1000091. [Google Scholar] [CrossRef]
- An, Q.; Robins, P.; Lindahl, T.; Barnes, D.E. 5-Fluorouracil Incorporated into DNA Is Excised by the Smug1 DNA Glycosylase to Reduce Drug Cytotoxicity. Cancer Res. 2007, 67, 940–945. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, H.S.; Visnes, T.; Vågbø, C.B.; Svaasand, E.K.; Doseth, B.; Slupphaug, G.; Kavli, B.; Krokan, H.E. UNG-Initiated Base Excision Repair Is the Major Repair Route for 5-Fluorouracil in DNA, but 5-Fluorouracil Cytotoxicity Depends Mainly on RNA Incorporation. Nucleic Acids Res. 2011, 39, 8430–8444. [Google Scholar] [CrossRef]
- Rogstad, D.K.; Darwanto, A.; Herring, J.L.; Rogstad, K.N.; Burdzy, A.; Hadley, S.R.; Neidigh, J.W.; Sowers, L.C. Measurement of the Incorporation and Repair of Exogenous 5-Hydroxymethyl-2′-Deoxyuridine in Human Cells in Culture Using Gas Chromatography-Negative Chemical Ionization-Mass Spectrometry. Chem. Res. Toxicol. 2007, 20, 1787–1796. [Google Scholar] [CrossRef] [Green Version]
- Pospíšil, Š.; Panattoni, A.; Gracias, F.; Sýkorová, V.; Hausnerová, V.V.; Vítovská, D.; Šanderová, H.; Krásný, L.; Hocek, M. Epigenetic Pyrimidine Nucleotides in Competition with Natural dNTPs as Substrates for Diverse DNA Polymerases. ACS Chem. Biol. 2022, 17, 2781–2788. [Google Scholar] [CrossRef] [PubMed]
- Boorstein, R.J.; Chiu, L.; Teebor, G.W. A Mammalian Cell Line Deficient in Activity of the DNA Repair Enzyme 5-Hydroxymethyluracil-DNA Glycosylase Is Resistant to the Toxic Effects of the Thymidine Analog 5-Hydroxymethyl-2’-Deoxyuridine. Mol. Cell. Biol. 1992, 12, 5536–5540. [Google Scholar] [PubMed] [Green Version]
- Dianov, G.L.; Timehenko, T.V.; Sinitsina, O.I.; Kuzminov, A.V.; Medvedev, O.A.; Salganik, R.I. Repair of Uracil Residues Closely Spaced on the Opposite Strands of Plasmid DNA Results in Double-Strand Break and Deletion Formation. Mol. Gen. Genet. 1991, 225, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Miller, K.M.; Forment, J.V.; Bradshaw, C.R.; Nikan, M.; Britton, S.; Oelschlaegel, T.; Xhemalce, B.; Balasubramanian, S.; Jackson, S.P. Small-Molecule-Induced DNA Damage Identifies Alternative DNA Structures in Human Genes. Nat. Chem. Biol. 2012, 8, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Roychoudhury, S.; Pramanik, S.; Harris, H.L.; Tarpley, M.; Sarkar, A.; Spagnol, G.; Sorgen, P.L.; Chowdhury, D.; Band, V.; Klinkebiel, D.; et al. Endogenous Oxidized DNA Bases and APE1 Regulate the Formation of G-Quadruplex Structures in the Genome. Proc. Natl. Acad. Sci. USA 2020, 117, 11409–11420. [Google Scholar] [CrossRef]
- Meier-Stephenson, V. G4-Quadruplex-Binding Proteins: Review and Insights into Selectivity. Biophys. Rev. 2022, 14, 635–654. [Google Scholar] [CrossRef]
- Palumbo, S.M.L.; Ebbinghaus, S.W.; Hurley, L.H. Formation of a Unique End-to-End Stacked Pair of G-Quadruplexes in the HTERT Core Promoter with Implications for Inhibition of Telomerase by G-Quadruplex-Interactive Ligands. J. Am. Chem. Soc. 2009, 131, 10878–10891. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowers, M.L.; Conrad, J.W.; Chang-Gu, B.; Cherryhomes, E.; Hackfeld, L.C.; Sowers, L.C. DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium. Molecules 2023, 28, 970. https://doi.org/10.3390/molecules28030970
Sowers ML, Conrad JW, Chang-Gu B, Cherryhomes E, Hackfeld LC, Sowers LC. DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium. Molecules. 2023; 28(3):970. https://doi.org/10.3390/molecules28030970
Chicago/Turabian StyleSowers, Mark L., James W. Conrad, Bruce Chang-Gu, Ellie Cherryhomes, Linda C. Hackfeld, and Lawrence C. Sowers. 2023. "DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium" Molecules 28, no. 3: 970. https://doi.org/10.3390/molecules28030970
APA StyleSowers, M. L., Conrad, J. W., Chang-Gu, B., Cherryhomes, E., Hackfeld, L. C., & Sowers, L. C. (2023). DNA Base Excision Repair Intermediates Influence Duplex–Quadruplex Equilibrium. Molecules, 28(3), 970. https://doi.org/10.3390/molecules28030970