UHPLC-MS Phytochemical Profiling and Insight into Bioactivity of Rabelera holostea (Greater Stitchwort) Extract
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Profile of R. holostea
2.2. In Vitro Biological Activities of R. holostea
2.3. In Silico Examination of Anti-Inflammatory Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Plant Material and Extract Preparation
4.3. LC/MS Analysis
4.3.1. UHPLC/MS-MS Orbitrap Analysis
4.3.2. UHPLC/(-)HESI-MS2 Quantification of Major Phenolics
4.4. Antioxidant Activity
4.4.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free-Radical Scavenging Potential
4.4.2. 2,2′-Azinobis-(3-Ethylbenzothiazoline-6-Sulfonic Acid) Diammonium (ABTS) Radical-Cation Scavenging Potential
4.4.3. Inhibition of Lipid Peroxidation
4.4.4. Total Antioxidant Capacity
4.5. Antimicrobial Activity
4.5.1. Tested Microorganisms
4.5.2. Antimicrobial Activity Assays
4.6. Anti-Inflammatory Activity
4.6.1. In Vitro Analysis of Anti-Inflammatory Activity
4.6.2. In Silico Analysis of Anti-Inflammatory Activity
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ancheeva, E.; Daletos, G.; Muharini, R.; Lin, W.H.; Teslov, L.; Proksch, P. Flavonoids from Stellaria nemorum and Stellaria holostea. Nat. Prod. Commun. 2015, 10, 437–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77205026-1 (accessed on 10 September 2022).
- Šilić, Č. Šumske Zeljaste Biljke; Svjetlost: Sarajevo, Yugoslavia, 1987. [Google Scholar]
- Slavokhotova, A.A.; Odintsova, T.I.; Rogozhin, E.A.; Musolyamov, A.K.; Andreev, Y.A.; Grishin, E.V.; Egorov, T.A. Isolation, Molecular Cloning and Antimicrobial Activity of Novel Defensins from Common Chickweed (Stellaria media L.) Seeds. Biochimie 2011, 93, 450–456. [Google Scholar] [CrossRef]
- Oladeji, O.S.; Oyebamiji, A.K. Stellaria media (L.) Vill.—A Plant with Immense Therapeutic Potentials: Phytochemistry and Pharmacology. Heliyon 2020, 6, e04150. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Vasudeva, N.; Sharma, S.K. Quality Assessment and Anti-Obesity Activity of Stellaria media (Linn.) Vill. BMC Complement. Altern. Med. 2012, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Song, J.; Shi, Y.; Wang, C.; Chen, B.; Xie, D.; Jia, X. Anti-Hepatitis B Virus Activity of Chickweed [Stellaria media (L.) Vill.] Extracts in HepG2.2.15 Cells. Molecules 2012, 17, 8633–8646. [Google Scholar] [CrossRef]
- Rogowska, M.; Lenart, M.; Srečec, S.; Ziaja, M.; Parzonko, A.; Bazylko, A. Chemical Composition, Antioxidative and Enzyme Inhibition Activities of Chickweed Herb (Stelaria Media L., Vill.) Ethanolic and Aqueous Extracts. Ind. Crop. Prod. 2017, 97, 448–454. [Google Scholar] [CrossRef]
- Sharples, M.T.; Tripp, E.A. Phylogenetic Relationships Within and Delimitation of the Cosmopolitan Flowering Plant Genus Stellaria L. (Caryophyllaceae): Core Stars and Fallen Stars. Syst. Bot. 2019, 44, 857–876. [Google Scholar] [CrossRef]
- Stojković, D.; Gašić, U.; Drakulić, D.; Zengin, G.; Stevanović, M.; Rajčević, N.; Soković, M. Chemical Profiling, Antimicrobial, Anti-Enzymatic, and Cytotoxic Properties of Phlomis Fruticosa L. J. Pharm. Biomed. Anal. 2021, 195, 113884. [Google Scholar] [CrossRef]
- Geng, P.; Sun, J.; Zhang, M.; Li, X.; Harnly, J.M.; Chen, P. Comprehensive Characterization of C-Glycosyl Flavones in Wheat (Triticum aestivum L.) Germ Using UPLC-PDA-ESI/HRMSn and Mass Defect Filtering. J. Mass Spectrom. 2016, 51, 914–930. [Google Scholar] [CrossRef] [Green Version]
- Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Grosso, C.; Valentão, P.; Andrade, P.B. Approach to the Study of C-Glycosyl Flavones Acylated with Aliphatic and Aromatic Acids from Spergularia Rubra by High-Performance Liquid Chromatography-Photodiode Array Detection/Electrospray Ionization Multi-Stage Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 700–712. [Google Scholar] [CrossRef]
- Sait, S.; Hamri-Zeghichi, S.; Boulekbache-Makhlouf, L.; Madani, K.; Rigou, P.; Brighenti, V.; Pio Prencipe, F.; Benvenuti, S.; Pellati, F. HPLC-UV/DAD and ESI-MSn Analysis of Flavonoids and Antioxidant Activity of an Algerian Medicinal Plant: Paronychia Argentea Lam. J. Pharm. Biomed. Anal. 2015, 111, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Katanić, J.; Boroja, T.; Mihailović, V.; Nikles, S.; Pan, S.-P.; Rosić, G.; Selaković, D.; Joksimović, J.; Mitrović, S.; Bauer, R. In Vitro and In Vivo Assessment of Meadowsweet (Filipendula ulmaria) as Anti-Inflammatory Agent. J. Ethnopharmacol. 2016, 193, 627–636. [Google Scholar] [CrossRef]
- Vecchio, A.J.; Malkowski, M.G. The Structure of NS-398 Bound to Cyclooxygenase-2. J. Struct. Biol. 2011, 176, 254–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.A.; Akarasereenont, P.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Selectivity of Nonsteroidal Antiinflammatory Drugs as Inhibitors of Constitutive and Inducible Cyclooxygenase. Proc. Natl. Acad. Sci. USA 1993, 90, 11693–11697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman, C.A.; Turman, M.V.; Kozak, K.R.; Marnett, L.J.; Smith, W.L.; Garavito, R.M. Structural Basis of Enantioselective Inhibition of Cyclooxygenase-1 by S-α-Substituted Indomethacin Ethanolamides. J. Biol. Chem. 2007, 282, 28096–28105. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Bouillant, M.L.; de Arce, F.F.; Favre-Bonvin, J.; Chopin, J.; Zoll, A.; Mathieu, G. Structural Determination of 6-C-Diglycosyl-8-C-Glycosyl-Flavones and 6-C-Glycosyl-8-C-Diglycosylflavones by Mass Spectrometry of Their Permethyl Ethers. Phytochemistry 1984, 23, 2653–2657. [Google Scholar] [CrossRef]
- Mikšátková, P.; Ancheeva, E.; Hejtmánková, K.; Teslov, L.; Lapčík, O. Determination of Flavonoids in Stellaria by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Anal. Lett. 2014, 47, 2317–2331. [Google Scholar] [CrossRef]
- Garnova, N.; Filippova, A.; Kasatkin, M.; Tikhonova, Y. Biologically Active Substances in the Aboveground Part of Three Stellaria Species. Res. J. Pharm. Technol. 2022, 15, 3153–3158. [Google Scholar] [CrossRef]
- Jakimiuk, K.; Wink, M.; Tomczyk, M. Flavonoids of the Caryophyllaceae; Springer Netherlands: Berlin/Heidelberg, Germany, 2022; Volume 21, ISBN 0123456789. [Google Scholar]
- Miere, F.; Teușdea, A.C.; Laslo, V.; Cavalu, S.; Fritea, L.; Dobjanschi, L.; Zdrinca, M.; Zdrinca, M.; Ganea, M.; Pașc, P.; et al. Evaluation of In Vitro Wound-Healing Potential, Antioxidant Capacity, and Antimicrobial Activity of Stellaria media (L.) Vill. Appl. Sci. 2021, 11, 11526. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening Seeds of Scottish Plants for Antibacterial Activity. J. Ethnopharmacol. 2002, 83, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the Anti-Inflammatory and Antioxidant Activities of Luteolin, Kaempferol, Apigenin and Quercetin. South Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Vane, J.R.; Bakhle, Y.S.; Botting, R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 72, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Mićović, T.; Katanić Stanković, J.S.; Bauer, R.; Nöst, X.; Marković, Z.; Milenković, D.; Jakovljević, V.; Tomović, M.; Bradić, J.; Stešević, D.; et al. In Vitro, In Vivo and In Silico Evaluation of the Anti-Inflammatory Potential of Hyssopus officinalis L. subsp aristatus (Godr.) Nyman (Lamiaceae). J. Ethnopharmacol. 2022, 293, 115201. [Google Scholar] [CrossRef]
- Aboulaghras, S.; Sahib, N.; Bakrim, S.; Benali, T.; Charfi, S.; Guaouguaou, F.E.; El Omari, N.; Gallo, M.; Montesano, D.; Zengin, G.; et al. Health Benefits and Pharmacological Aspects of Chrysoeriol. Pharmaceuticals 2022, 15, 973. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.; Barreiro, M.; Ferreira, I. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef]
- Bellik, Y.; Boukraâ, L.; Alzahrani, H.A.; Bakhotmah, B.A.; Abdellah, F.; Hammoudi, S.M.; Iguer-Ouada, M. Molecular Mechanism Underlying Anti-Inflammatory and Anti-Allergic Activities of Phytochemicals: An Update. Molecules 2012, 18, 322–353. [Google Scholar] [CrossRef] [Green Version]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic Acid-Human Pharmacokinetics and Health Benefits. Planta Med. 2021, 87, 273–282. [Google Scholar] [CrossRef]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Budzianowski, J.; Pakulski, G. Two C, O-Glycosylflavones from Stellaria media L. Planta Med. 1991, 57, 290–291. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, M.V.; Vodoslavskyi, V.M.; Obodianskyi, M.A. Research of Phenolic Compounds of Ruta graveolens L. and Stellaria media (L.) Vill. Asian J. Pharm. Clin. Res. 2018, 11, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Jakimiuk, K.; Strawa, J.W.; Granica, S.; Locatelli, M.; Tartaglia, A.; Tomczyk, M. Determination of Flavonoids in Selected Scleranthus Species and Their Anti-Collagenase and Antioxidant Potential. Molecules 2022, 27, 2015. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.; Matos, R.P.; Silva, S.T.; Andrade, P.B.; Ferreres, F.; Gil-Izquierdo, A.; Meireles, S.; Brandão, T.M.; Valentão, P. A New Iced Tea Base Herbal Beverage with Spergularia rubra Extract: Metabolic Profile Stability and in vitro Enzyme Inhibition. J. Agric. Food Chem. 2013, 61, 8650–8656. [Google Scholar] [CrossRef] [PubMed]
- Zheleva-Dimitrova, D.; Zengin, G.; Balabanova, V.; Voynikov, Y.; Lozanov, V.; Lazarova, I.; Gevrenova, R. Chemical Characterization with in vitro Biological Activities of Gypsophila Species. J. Pharm. Biomed. Anal. 2018, 155, 56–69. [Google Scholar] [CrossRef]
- Banjanac, T.; Dragićević, M.; Šiler, B.; Gašić, U.; Bohanec, B.; Nestorović Živković, J.; Trifunović, S.; Mišić, D. Chemodiversity of Two Closely Related Tetraploid Centaurium Species and Their Hexaploid Hybrid: Metabolomic Search for High-Resolution Taxonomic Classifiers. Phytochemistry 2017, 140, 27–44. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening Seeds of Some Scottish Plants for Free Radical Scavenging Activity. Phyther. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef]
- Katanić Stanković, J.S.; Srećković, N.; Mišić, D.; Gašić, U.; Imbimbo, P.; Monti, D.M.; Mihailović, V. Bioactivity, Biocompatibility and Phytochemical Assessment of Lilac Sage, Salvia verticillata L. (Lamiaceae)—A Plant Rich in Rosmarinic Acid. Ind. Crop. Prod. 2020, 143, 111932. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Hsu, C.-K.; Chiang, B.-H.; Chen, Y.-S.; Yang, J.-H.; Liu, C.-L. Improving the Antioxidant Activity of Buckwheat (Fagopyrum tataricm Gaertn) Sprout with Trace Element Water. Food Chem. 2008, 108, 633–641. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre Plate-Based Antibacterial Assay Incorporating Resazurin as an Indicator of Cell Growth, and Its Application in the In Vitro Antibacterial Screening of Phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume 32. [Google Scholar]
- NCCLS. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Second Edition, Document M27-A2; NCCLS: Wayne, PA, USA, 2002; ISBN 1-56238-469-4. [Google Scholar]
- NCCLS. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. NCCLS Document M38-A; NCCLS: Wayne, PA, USA, 2002; ISBN 1-56238-470-8. [Google Scholar]
- Srećković, N.; Mišić, D.; Gašić, U.; Matić, S.L.; Katanić Stanković, J.S.; Mihailović, N.; Monti, D.M.; Elia, L.D.; Mihailović, V. Meadow Sage (Salvia pratensis L.): A Neglected Sage Species with Valuable Phenolic Compounds and Biological Potential. Ind. Crop. Prod. 2022, 189, 115841. [Google Scholar] [CrossRef]
- Fiebich, B.L.; Grozdeva, M.; Hess, S.; Hüll, M.; Danesch, U.; Bodensieck, A.; Bauer, R. Petasites hybridus Extracts In Vitro Inhibit COX-2 and PGE2 Release by Direct Interaction with the Enzyme and by Preventing P42/44 MAP Kinase Activation in Rat Primary Microglial Cells. Planta Med. 2005, 71, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision D.1; Wallingford Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Biovia Dassault Systèmes. Discovery Studio Modeling Environment; Biovia Dassault Systèmes: San Diego, CA, USA, 2017. [Google Scholar]
- Zhang, Y.; Forli, S.; Omelchenko, A.; Sanner, M.F. AutoGridFR: Improvements on AutoDock Affinity Maps and Associated Software Tools. J. Comput. Chem. 2019, 40, 2882–2886. [Google Scholar] [CrossRef] [PubMed]
No | Compound Name | tR, min | Molecular Formula, [M–H]− | Calculated Mass, [M–H]− | Exact Mass, [M–H]− | Δ mDa | MS2 Fragments, (% Base Peak) | MS3 Fragments, (% Base Peak) | MS4 Fragments, (% Base Peak) |
---|---|---|---|---|---|---|---|---|---|
Hydroxybenzoic acids | |||||||||
1 | Gallic acida | 4.69 | C7H5O5− | 169.01425 | 169.01217 | 2.08 | 69(5), 84(7), 123(8), 124(7), 125(100), 126(8), 127(3) | 53(58), 81(100), 83(6), 97(85), 98(21), 125(9) | ND |
2 | Dihydroxybenzoic acid hexoside I | 5.65 | C13H15O9− | 315.07216 | 315.06992 | 2.23 | 108(8), 109(12), 152(50), 153(100), 163(9), 165(12), 268(8) | 109(100), 123(3) | ND |
3 | Dihydroxybenzoic acid hexoside II | 5.97 | C13H15O9− | 315.07216 | 315.07002 | 2.14 | 109(9), 135(3), 151(4), 153(100), 154(6) | 109(100), 123(6) | 53(18), 81(100) |
4 | p-Hydroxybenzoic acida | 6.70 | C7H5O3− | 137.02442 | 137.02354 | 0.88 | 93(100) | ND | ND |
Hydrocinnamic acids | |||||||||
5 | Coumaroylquinic acid I | 6.20 | C16H17O8− | 337.09289 | 337.09048 | 2.42 | 119(21), 145(100), 163(56), 219(20), 277(50), 293(17), 319(35) | 117(100), 145(3) | ND |
6 | Coumaric acid dihexoside | 6.52 | C21H27O13− | 487.14572 | 487.14282 | 2.90 | 145(7), 163(100), 187(20), 221(4), 323(14), 397(5), 427(8) | 119(100) | ND |
7 | Coumaroylquinic acid II | 6.81 | C16H17O8− | 337.09289 | 337.09043 | 2.47 | 117(6), 119(16), 145(100), 146(8), 163(58), 277(52), 291(6) | 117(100) | ND |
8 | 5-O-Caffeoylquinic acid (Chlorogenic acid)a | 6.95 | C16H17O9− | 353.08781 | 353.08502 | 2.79 | 179(3), 191(100), 192(6) | 85(100), 87(19), 111(33), 127(83), 171(24), 173(57) | 53(100) |
9 | Caffeic acida | 7.76 | C9H7O4− | 179.03498 | 179.03400 | 0.98 | 89(23), 133(24), 134(12), 135(100), 136(14), 143(17), 161(18) | 78(7), 91(27), 93(6), 106(19), 107(100) | ND |
10 | Verbascoside | 8.12 | C29H35O15− | 623.19814 | 623.19537 | 2.78 | 315(3), 461(100), 462(14) | 135(66), 143(6), 161(13), 297(16), 315(100) | 119(11), 135(100), 143(4), 161(3), 179(3) |
11 | p-Coumaric acida | 8.57 | C9H7O3− | 163.04007 | 163.03920 | 0.87 | 119(100), 120(8), 121(5), 131(6), 133(5), 135(6), 136(4) | 91(100), 92(11), 168(9) | ND |
12 | Sinapic acida | 9.02 | C11H11O5− | 223.06120 | 223.05900 | 2.20 | 164(18), 179(31), 208(100) | 149(13), 164(100), 193(9) | 135(34), 149(100) |
13 | Ferulic acida | 9.14 | C10H9O4− | 193.05063 | 193.04956 | 1.08 | 111(57), 134(34), 147(100), 148(10), 149(95), 150(10), 178(71) | 57(4), 85(6), 99(4), 103(100), 119(3), 129(41) | 59(100) |
14 | Rosmarinic acid | 9.22 | C18H15O8− | 359.07517 | 359.07724 | −2.07 | 161(100), 297(63), 313(40), 341(26), 197(23) | 133(100) | ND |
15 | Coumaric acid methyl ester | 11.32 | C10H9O3− | 177.05572 | 177.05467 | 1.05 | 117(13), 118(43), 119(3), 145(100), 146(9), 162(36), 177(8) | 83(3), 117(100) | ND |
Flavonoid C-glycosides | |||||||||
16 | Luteolin 6-C-pentoside-8-C-(6”-hexosyl)-hexoside | 6.45 | C32H37O20− | 741.18249 | 741.18096 | 1.53 | 369(22), 399(34), 429(11), 441(11), 459(100), 460(19), 489(38) | 369(100), 381(4), 399(88), 423(3), 441(30) | 298(31), 312(4), 313(40), 341(100) |
17 | Apigenin 6-C-hexoside-8-C-(6”-hexosyl)-hexoside | 6.52 | C33H39O20− | 755.19814 | 755.19914 | −1.00 | 353(71), 354(14), 383(42), 473(100), 474(19), 635(34), 665(23) | 353(100), 354(5), 383(31), 455(5) | 282(3), 297(53), 307(3), 325(100), 326(3) |
18 | Apigenin 6-C-(6”-hexosyl)-hexoside 8-C-pentoside I | 6.70 | C32H37O19− | 725.18758 | 725.18392 | 3.66 | 353(64), 383(60), 443(100), 444(19), 635(34), 665(31), 707(15) | 353(100), 354(6), 365(5), 383(55), 384(3), 425(18) | 233(3), 297(54), 325(100), 335(3) |
19 | Luteolin 8-C-(6”-hexosyl)-hexoside | 6.95 | C27H29O16− | 609.14024 | 609.14037 | −0.14 | 297(6), 327(100), 328(12), 357(100), 358(14), 369(12), 393(7) | 133(3), 191(3), 255(4), 284(20), 299(100), 300(11) | 213(55), 231(27), 240(39), 255(100), 257(26) |
20 | Apigenin 6-C-(6”-hexosyl)-hexoside 8-C-pentoside II | 6.98 | C32H37O19− | 725.19345 | 725.19138 | 2.07 | 353(47), 383(30), 443(100), 444(19), 473(38), 527(16), 635(18) | 353(100), 354(5), 383(26), 425(3) | 282(3), 297(49), 325(100), 326(3) |
21 | Apigenin 6,8-di-C-hexoside | 7.11 | C27H29O15− | 593.15119 | 593.14703 | 4.16 | 353(44), 354(10), 383(23), 473(100), 474(20), 503(30), 575(9) | 353(100), 354(4), 383(16) | 282(3), 297(53), 325(100) |
22 | Luteolin 6-C-pentoside-8-C-hexoside | 7.18 | C26H27O15− | 579.12967 | 579.13175 | −2.08 | 369(21), 399(30), 459(53), 489(100), 490(20), 519(19), 561(14) | 369(100), 370(5), 399(67), 411(4), 429(17), 471(12) | 298(28), 312(5), 313(33), 341(100) |
23 | Apigenin 8-C-(6”-hexosyl)-hexoside | 7.27 | C27H29O15− | 593.15119 | 593.14849 | 2.71 | 246(3), 283(11), 311(100), 312(10), 341(19), 353(4), 473(7) | 283(100), 284(10) | 163(88), 211(30), 224(28), 239(100), 283(50) |
24 | Apigenin 6-C-hexoside 8-C-pentoside | 7.46 | C26H27O14− | 563.14063 | 563.13740 | 3.23 | 353(29), 383(22), 443(100), 444(21), 473(59), 474(14), 545(11) | 353(100), 354(13), 383(23), 384(3), 425(3) | 297(47), 298(4), 323(3), 325(100) |
25 | Luteolin 8-C-hexoside | 7.78 | C21H19O11− | 447.09329 | 447.09015 | 3.13 | 172(3), 327(100), 328(8), 357(48), 358(3), 369(3), 429(10) | 284(9), 298(3), 299(100), 300(7) | 199(33), 213(65), 231(33), 240(46), 255(100) |
26 | Chrysoeriol (3′-Methyl luteolin) 6-C-hexoside | 8.36 | C22H21O11− | 461.10894 | 461.10556 | 3.37 | 341(100), 342(8), 371(16), 443(3) | 298(100), 313(29), 326(5) | 253(49), 255(38), 269(88), 270(100), 298(94) |
27 | Luteolin 6-C-hexoside-8-C-(2”-coumaroyl)-hexoside | 8.57 | C36H35O18− | 755.18289 | 755.18424 | −1.35 | 297(10), 327(100), 328(14), 357(67), 358(11), 369(10), 609(12) | 255(3), 284(18), 285(3), 298(5), 299(100), 300(9) | 213(62), 227(43), 240(46), 255(100), 257(40) |
Flavonoid O-glycosides | |||||||||
28 | Quercetin 3-O-(6”-rhamnosyl)-hexoside (Rutin)a | 8.00 | C27H29O16− | 609.14611 | 609.14506 | 1.05 | 255(5), 271(8), 285(5), 300(41), 301(100), 302(17), 343(8) | 151(66), 179(100), 229(6), 256(13), 272(15), 273(19) | 151(100) |
29 | Quercetin 3-O-galactoside (Hyperoside)a | 8.50 | C21H19O12− | 463.08233 | 463.08276 | −0.44 | 299(3), 300(22), 301(100), 302(15) | 151(81), 179(100), 255(12), 257(14), 271(19), 273(18) | 151(100) |
30 | Naringin 7-O-(2”-rhamnosyl)-hexoside (Naringin)a | 8.85 | C27H31O14− | 579.16606 | 579.16645 | −0.39 | 235(13), 271(48), 272(7), 313(17), 357(5), 459(100), 460(17) | 151(22), 235(68), 271(49), 339(28), 357(100), 441(23) | 125(14), 151(79), 168(24), 169(17), 339(100) |
31 | Jaceosidin 7-O-hexoside (Jaceoside) | 8.99 | C23H23O12− | 491.11363 | 491.11550 | −1.87 | 314(13), 328(15), 329(58), 330(8), 343(9), 476(100), 477(23) | 313(38), 314(99), 315(33), 343(100), 357(10), 461(63) | 315(32), 328(100), 329(4) |
32 | Jaceosidin 7-O-hexuronide | 9.08 | C23H21O13− | 505.09877 | 505.09558 | 3.18 | 175(4), 315(4), 329(100), 330(15) | 299(4), 314(100), 315(9) | 285(9), 299(100) |
Flavonoid aglycones | |||||||||
33 | Catechina | 7.22 | C15H13O6− | 289.07176 | 289.06838 | 3.38 | 179(12), 203(12), 205(37), 231(7), 245(100), 246(16), 247(8) | 161(18), 187(24), 188(14), 203(100), 227(25), 230(5) | 161(53), 173(15), 175(100), 185(35), 188(77) |
34 | Eriodictyol a | 10.63 | C15H11O6− | 287.05024 | 287.05213 | −1.90 | 151(100), 152(8), 199(8), 241(9), 253(5), 257(8), 269(4) | 65(4), 83(5), 107(100) | 65(100) |
35 | Luteolin a | 10.71 | C15H9O6− | 285.04046 | 285.03692 | 3.54 | 151(37), 175(79), 199(80), 217(65), 241(100), 243(53), 285(45) | 197(81), 198(100), 199(51), 212(18), 213(39), 226(31) | ND |
36 | Naringenin a | 11.57 | C15H11O5− | 271.06120 | 271.05761 | 3.59 | 107(5), 149(8), 151(100), 152(7), 177(21), 225(19), 227(5) | 65(4), 83(5), 107(100) | 65(100) |
37 | Apigenin a | 11.61 | C15H9O5− | 269.04950 | 269.04810 | 1.39 | 149(38), 151(100), 181(18), 201(27), 225(93), 227(20), 269(34) | 83(3), 107(100) | 63(12), 65(100) |
38 | Kaempferol a | 11.78 | C15H9O6− | 285.04046 | 285.03693 | 3.53 | 229(15), 241(16), 255(67), 256(100), 257(45), 284(19), 285(46) | 211(36), 212(71), 227(100), 228(51), 229(20), 256(17) | ND |
39 | Chrysoeriol a | 11.82 | C16H11O6− | 299.05024 | 299.05222 | −1.98 | 284(100), 285(13) | 256(100), 284(6) | 211(17), 212(16), 227(100), 228(33), 239(15) |
Phenolic Compound | tR, min | Linearity Equations (A + BX) × 105 | Correlation R2 | LOD, µg/mL | LOQ, µg/mL | Parent Ion, m/z | Product Ion, m/z (Collision Energy, eV) | Content (mg/kg d.e.) |
---|---|---|---|---|---|---|---|---|
Gallic acid | 2.14 | Y = −0.23 + 5.19X | 0.9905 | 0.12 | 0.41 | 169.032 | 79.11 (31); 125.04 (16) | 1.04 |
Chlorogenic acid | 4.99 | Y = −0.48 + 34.94X | 0.9923 | 0.13 | 0.43 | 353.103 | 191.28 (25) | 46.35 |
p-Hydroxybenzoic acid | 5.23 | Y = −0.25 + 2.70X | 0.9916 | 0.21 | 0.70 | 137.057 | 93.19 (19); 108.33 (22) | 6.54 |
Catechin | 5.46 | Y = −0.11 + 3.23X | 0.9937 | 0.08 | 0.26 | 289.050 | 245.10 (16); 123.08 (34) | 0.47 |
Caffeic acid | 5.51 | Y = −1.18 + 55.82X | 0.9917 | 0.11 | 0.38 | 179.004 | 134.00 (13); 135.00 (16) | 2.09 |
Rutin | 6.04 | Y = 0.63 + 38.76X | 0.9939 | 0.14 | 0.46 | 609.197 | 299.98 (42); 301.20 (32) | 3.41 |
p-Coumaric acid | 6.15 | Y = −0.41 + 36.64X | 0.9923 | 0.10 | 0.33 | 163.031 | 93.12 (39); 119.09 (16) | 81.18 |
Hyperoside | 6.40 | Y = 0.63 + 60.91X | 0.9927 | 0.10 | 0.32 | 463.002 | 271.01 (44); 300.02 (29) | 0.84 |
Ferulic acid | 6.55 | Y = 0.08 + 10.07X | 0.9978 | 0.04 | 0.13 | 193.057 | 134.00 (18); 178.00 (15) | 42.98 |
Sinapic acid | 6.68 | Y = −0.02 + 0.69X | 0.9941 | 0.09 | 0.31 | 223.082 | 149.21 (36) | 4.20 |
Naringin | 6.84 | Y = 0.02 + 1.41X | 0.9915 | 0.11 | 0.35 | 579.241 | 271.36 (33); 151.42 (43) | 1.16 |
Eriodictyol | 8.12 | Y = −0.87 + 38.38X | 0.9974 | 0.06 | 0.19 | 286.974 | 150.93 (19); 135.02 (22) | 0.34 |
Luteolin | 8.21 | Y = −2.09 + 54.69X | 0.9977 | 0.05 | 0.17 | 285.035 | 151.03 (18); 133.06 (36) | 0.35 |
Naringenin | 8.88 | Y = −0.54 + 36.66X | 0.9990 | 0.04 | 0.12 | 271.036 | 151.01 (20); 107.07 (26) | 0.15 |
Apigenin | 8.89 | Y = −1.16 + 45.10X | 0.9973 | 0.06 | 0.20 | 269.032 | 151.00 (26); 117.07 (43) | 0.18 |
Kaempferol | 8.91 | Y = −0.08 + 2.64X | 0.9913 | 0.12 | 0.39 | 285.074 | 211.00 (32); 227.00 (32) | 0.86 |
Chrysoeriol | 9.15 | Y = −0.40 + 7.19X | 0.9946 | 0.07 | 0.24 | 298.933 | 210.89 (43); 159.17 (26) | 3.83 |
Sample and Standards | IC50 Values (μg/mL) | Total Antioxidant Capacity (mg AAE/g) | ||
---|---|---|---|---|
DPPH· Scavenging Activity | ABTS·+ Scavenging Activity | Inhibition of Lipid Peroxidation | ||
R. holostea extract | 246.7 ± 6.8 c | 420.4 ± 9.3 b | 570.4 ± 9.9 | 192.0 ± 3.9 |
CA | 2.97 ± 0.31 a | 12.16 ± 2.04 a | - | - |
QU | 1.41 ± 0.19 a | 8.37 ± 1.12 a | - | - |
BHT | 13.61 ± 1.74 b | 26.09 ± 2.84 a | 3.92 ± 0.76 | - |
Bacteria (ATCC and Isolates) | MIC Values | Fungi | MIC Values | ||
---|---|---|---|---|---|
R. holostea Extract | Chloramphenicol | R. holostea Extract | Ketoconazole | ||
Micrococcus lysodeikticus ATCC 4698, G+ | 10 × 103 | 2.5 | Fusarium oxysporum FSB 91 | 1250 | 0.31 |
Enterococcus faecalis ATCC 29212, G+ | 10 × 103 | 10 | Trichoderma longibrachiatum FSB 13 | 20 × 103 | 1.25 |
Enterococcus faecalis FSB 24, G+ | 5 × 103 | 2.5 | Phialophora fastigiata FSB 81 | 5 × 103 | 10 |
Bacillus mycoides FSB 1, G+ | 20 × 103 | 10 | Alternaria alternata FSB 51 | 10 × 103 | 5 |
Escherichia coli ATCC 25922, G- | 10 × 103 | 10 | Penicillium verrucosum FSB 21 | 10 × 103 | 2.5 |
Klebsiella pneumoniae ATCC 70063, G- | 10 × 103 | 10 | Penicillium canescens FSB 24 | 5 × 103 | 1.25 |
Pseudomonas aeruginosa ATCC 10145, G- | >20 × 103 | 10 | Aspergillus glaucus FSB 32 | 20 × 103 | 2.5 |
Azobacter chroococcum FSB 14, G- | 5 × 103 | 5 | Aspergillus brasiliensis FSB 31 | 20 × 103 | 0.62 |
Complexes | ∆Gbind(kcal/mol) | Ki (µM) | FIE (kcal/mol) | vdW + Hbond + Desolv Energy (kcal/mol) | Electrostatic Energy (kcal/mol) | FTIE (kcal/mol) | TFE (kcal/mol) | USE (kcal/mol) |
---|---|---|---|---|---|---|---|---|
COX-1-IND | −9.64 | 0.08 | −11.31 | −10.25 | −1.06 | −0.53 | +1.49 | −0.71 |
COX-1-p-CA | −5.46 | 99.17 | −6.77 | −5.89 | −0.88 | +0.05 | +1.19 | −0.06 |
COX-1-FA | −6.00 | 40.21 | −6.89 | −6.05 | −0.83 | −0.84 | +1.49 | −0.24 |
COX-1-CA | −10.03 | 0.04 | −9.75 | −8.79 | −0.96 | −4.93 | +3.28 | −1.37 |
COX-1-p-HBA | −4.94 | 239.52 | −5.84 | −5.59 | −0.25 | −0.01 | +0.89 | −0.01 |
COX-1-SIN | −6.32 | 23.24 | −7.57 | −6.95 | −0.62 | −1.12 | +1.79 | −0.58 |
COX-1-CHR | −9.36 | 0.14 | −9.62 | −9.49 | −0.13 | −1.63 | +1.49 | −0.40 |
COX-1-NAR | −4.66 | 382.65 | −4.37 | −4.31 | −0.07 | −6.55 | +4.18 | −2.09 |
COX-1-RU | −6.41 | 20.04 | −8.16 | −7.99 | −0.17 | −5.20 | +4.77 | −2.17 |
Complexes | ∆Gbind (kcal/mol) | Ki (µM) | FIE (kcal/mol) | vdW + Hbond + Desolv Energy (kcal/mol) | Electrostatic Energy (kcal/mol) | FTIE (kcal/mol) | TFE (kcal/mol) | USE (kcal/mol) |
---|---|---|---|---|---|---|---|---|
COX-2-NS398 | −8.26 | 0.88 | −9.75 | −9.08 | −0.67 | −0.94 | +1.49 | −0.93 |
COX-2-p-CA | −5.08 | 188.97 | −6.28 | −5.40 | −0.88 | −0.06 | +1.19 | −0.06 |
COX-2-FA | −5.96 | 42.42 | −6.90 | −6.20 | −0.70 | −0.80 | +1.49 | −0.24 |
COX-2-CA | −10.93 | 0.01 | −11.52 | −11.04 | −0.49 | −4.06 | +3.28 | −1.37 |
COX-2-p-HBA | −4.52 | 488.92 | −5.41 | −4.50 | −0.91 | −0.01 | +0.89 | −0.01 |
COX-2-SIN | −6.21 | 28.03 | −7.47 | −6.77 | −0.70 | −1.11 | +1.79 | −0.58 |
COX-2-CHR | −9.51 | 0.12 | −9.79 | −9.73 | −0.06 | −1.61 | +1.49 | −0.40 |
COX-2-NAR | −5.53 | 88.88 | −6.57 | −6.62 | +0.04 | −5.23 | +4.18 | −2.10 |
COX-2-RU | −4.13 | 937.71 | −6.74 | −6.72 | −0.02 | −4.36 | +4.77 | −2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katanić Stanković, J.S.; Đorović Jovanović, J.; Mišić, D.; Gašić, U.; Nikles, S.; Marković, Z.; Bauer, R. UHPLC-MS Phytochemical Profiling and Insight into Bioactivity of Rabelera holostea (Greater Stitchwort) Extract. Molecules 2023, 28, 1274. https://doi.org/10.3390/molecules28031274
Katanić Stanković JS, Đorović Jovanović J, Mišić D, Gašić U, Nikles S, Marković Z, Bauer R. UHPLC-MS Phytochemical Profiling and Insight into Bioactivity of Rabelera holostea (Greater Stitchwort) Extract. Molecules. 2023; 28(3):1274. https://doi.org/10.3390/molecules28031274
Chicago/Turabian StyleKatanić Stanković, Jelena S., Jelena Đorović Jovanović, Danijela Mišić, Uroš Gašić, Stefanie Nikles, Zoran Marković, and Rudolf Bauer. 2023. "UHPLC-MS Phytochemical Profiling and Insight into Bioactivity of Rabelera holostea (Greater Stitchwort) Extract" Molecules 28, no. 3: 1274. https://doi.org/10.3390/molecules28031274
APA StyleKatanić Stanković, J. S., Đorović Jovanović, J., Mišić, D., Gašić, U., Nikles, S., Marković, Z., & Bauer, R. (2023). UHPLC-MS Phytochemical Profiling and Insight into Bioactivity of Rabelera holostea (Greater Stitchwort) Extract. Molecules, 28(3), 1274. https://doi.org/10.3390/molecules28031274