Mesoporous Silica Nanoparticles Coated with Carboxymethyl Chitosan for 5-Fluorouracil Ocular Delivery: Characterization, In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Formulation Development Encapsulation and Loading Efficiencies
2.2. Particle Morphology by SEM and TEM
2.3. Zeta Potential
2.4. Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy
2.5. Thermogravimetric Analysis (TGA)
2.6. Powder X-ray Diffraction Patterns (PXRD)
2.7. Fourier Transform Infrared Spectroscopy (FTIR)
2.8. Evaluation of the Mucoadhesive Strength Using Mucin (Particle Method)
2.9. In Vitro Drug Release Study
2.10. Ex Vivo Corneal Permeation
2.11. In Vivo Pharmacokinetic Study
2.12. Ocular Irritation and Tolerability Study
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Aminated Mesoporous Silica Nanoparticle (AMSN)
3.3. O-Carboxymethyl Chitosan (CMC) Coating of AMSN
3.4. Loading of 5-FU into AMSN-CMC
3.5. Preparation of Gel Formulations
3.6. Particle Morphology
3.6.1. Transmission Electron Microscope (TEM)
3.6.2. Scanning Electron Microscopy (SEM)
3.7. Particle Size, Polydispersity, and Zeta Potential Measurements
3.8. Proton Nuclear Magnetic Resonance (1H-NMR)
3.9. Thermogravimetric Analyses (TGA)
3.10. Powder X-ray Diffraction (PXRD)
3.11. Fourier Transform Infrared Spectroscopy (FTIR)
3.12. Evaluation of the Mucoadhesive Strength Using Mucin (Particle Method)
3.13. In Vitro Drug Release
3.14. Ex Vivo Corneal Permeation
3.15. In Vivo Pharmacokinetic (PK) Studies
3.16. UPLC-MS/MS Analysis of 5-FU
3.16.1. Chromatographic and Mass Spectrometric Conditions
3.16.2. Sample Preparation in Aqueous Humor (AqH)
3.17. Ocular Irritation and Tolerability Study
3.18. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Barrag, A.; Al-Shaer, M.; Al-Matary, N.; Al-Hamdani, M. 5-Fluorouracil for the treatment of intraepithelial neoplasia and squamous cell carcinoma of the conjunctiva, and cornea. Clin. Ophthalmol. 2010, 4, 801. [Google Scholar] [CrossRef] [Green Version]
- Venkateswaran, N.; Mercado, C.; Galor, A.; Karp, C.L. Comparison of topical 5-fluorouracil and interferon alfa-2b as primary treatment modalities for ocular surface squamous neoplasia. Am. J. Ophthalmol. 2019, 199, 216–222. [Google Scholar] [CrossRef]
- Patel, U.; Karp, C.L.; Dubovy, S.R. Update on the management of ocular surface squamous neoplasia. Curr. Ophthalmol. Rep. 2021, 9, 7–15. [Google Scholar]
- Fuhrman, L.C.; Godwin, D.A.; Davis, R.A. Stability of 5-Fluorouracil in an extemporaneously compounded ophthalmic solution. Int. J. Pharm. Compd. 2000, 4, 320–323. [Google Scholar]
- Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev. 1995, 16, 61–73. [Google Scholar] [CrossRef]
- Sanghi, D.; Rakesh, T. An overview and current status on ocular drug delivery system and its formulation aspects. J. Adv. Pharm. Res. 2013, 4, 56–63. [Google Scholar]
- Kim, S.-N.; Ko, S.A.; Park, C.G.; Lee, S.H.; Huh, B.K.; Park, Y.H.; Kim, Y.K.; Ha, A.; Park, K.H.; Choy, Y.B. Amino-functionalized mesoporous silica particles for ocular delivery of brimonidine. Mol. Pharm. 2018, 15, 3143–3152. [Google Scholar] [CrossRef]
- Zamboulis, A.; Nanaki, S.; Michailidou, G.; Koumentakou, I.; Lazaridou, M.; Ainali, N.M.; Xanthopoulou, E.; Bikiaris, D.N. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers 2020, 12, 1519. [Google Scholar] [CrossRef]
- Nagarwal, R.C.; Kumar, R.; Pandit, J. Chitosan coated sodium alginate–chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur. J. Pharm. Sci. 2012, 47, 678–685. [Google Scholar] [CrossRef]
- Kalam, M.A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules 2022, 27, 2326. [Google Scholar] [CrossRef]
- Mohamed, H.B.; Attia Shafie, M.A.; Mekkawy, A.I. Chitosan Nanoparticles for Meloxicam Ocular Delivery: Development, In Vitro Characterization, and In Vivo Evaluation in a Rabbit Eye Model. Pharmaceutics 2022, 14, 893. [Google Scholar] [CrossRef] [PubMed]
- Alshememry, A.; Alkholief, M.; Abul Kalam, M.; Raish, M.; Ali, R.; Alhudaithi, S.S.; Iqbal, M.; Alshamsan, A. Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits. Molecules 2022, 27, 4619. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, M.K.; Dhiman, A.; Sawant, K.K. Transbuccal delivery of 5-fluorouracil: Permeation enhancement and pharmacokinetic study. Aaps Pharmscitech 2009, 10, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Al Bayyat, G.; Arreaza-Kaufman, D.; Venkateswaran, N.; Galor, A.; Karp, C.L. Update on pharmacotherapy for ocular surface squamous neoplasia. Eye Vis. 2019, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Almomen, A.; El-Toni, A.M.; Badran, M.; Alhowyan, A.; Abul Kalam, M.; Alshamsan, A.; Alkholief, M. The design of anionic surfactant-based amino-functionalized mesoporous silica nanoparticles and their application in transdermal drug delivery. Pharmaceutics 2020, 12, 1035. [Google Scholar] [CrossRef]
- Tataurova, Y.N. Proton NMR Studies of Functionalized Nanoparticles in Aqueous Environments. Doctoral Dissertation, University of Iowa, Iowa City, IA, USA, 2014. [Google Scholar]
- Hughes, S.; Dasary, S.S.; Begum, S.; Williams, N.; Yu, H. Meisenheimer complex between 2, 4, 6-trinitrotoluene and 3-aminopropyltriethoxysilane and its use for a paper-based sensor. Sens. Bio-Sens. Res. 2015, 5, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wang, J.; Zhang, Y.; Wang, L.; Zhang, X. Autocatalytic synthesis of molecular-bridged silica aerogels with excellent absorption and super elasticity. RSC Adv. 2015, 5, 91407–91413. [Google Scholar] [CrossRef]
- Riehle, N.; Götz, T.; Kandelbauer, A.; Tovar, G.E.; Lorenz, G. Data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers prepared from amino-terminated polydimethylsiloxanes and polydimethyl-methyl-phenyl-siloxane-copolymers. Data Brief 2018, 18, 1784–1794. [Google Scholar] [CrossRef]
- Allahkarami, E.; Igder, A.; Fazlavi, A.; Rezai, B. Prediction of Co (II) and Ni (II) ions removal from wastewater using artificial neural network and multiple regression models. Physicochem. Probl. Miner. Process. 2017, 53, 1105–1118. [Google Scholar]
- Valmikinathan, C.M.; Mukhatyar, V.J.; Jain, A.; Karumbaiah, L.; Dasari, M.; Bellamkonda, R.V. Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 2012, 8, 1964–1976. [Google Scholar] [CrossRef]
- Chen, X.-G.; Park, H.-J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr. Polym. 2003, 53, 355–359. [Google Scholar] [CrossRef]
- Peretti, E.; Miletto, I.; Stella, B.; Rocco, F.; Berlier, G.; Arpicco, S. Strategies to obtain encapsulation and controlled release of pentamidine in mesoporous silica nanoparticles. Pharmaceutics 2018, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravian, P.; Ardestani, M.S.; Khoobi, M.; Ostad, S.N.; Dorkoosh, F.A.; Javar, H.A.; Amanlou, M. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets Ther. 2016, 9, 7315. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; He, J.; Liu, R.; Liu, Z.; Cheng, J. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydr. Polym. 2020, 231, 115706. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Vasantha, C.S.; Sasidharan, A.V. Layer-by-layer assembly of hyaluronic acid/carboxymethylchitosan polyelectrolytes on the surface of aminated mesoporous silica for the oral delivery of 5-fluorouracil. Eur. Polym. J. 2017, 93, 572–589. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Bawazir, A.O.; Alharbi, W.S.; Safo, M.K. Enhancement of Simvastatin ex vivo Permeation from Mucoadhesive Buccal Films Loaded with Dual Drug Release Carriers. Int. J. Nanomed. 2020, 15, 4001. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Badr-Eldin, S.M.; Ahmed, O.A.; Aldawsari, H. Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. J. Drug Deliv. Sci. Technol. 2018, 48, 499–508. [Google Scholar] [CrossRef]
- Thongborisute, J.; Takeuchi, H. Evaluation of mucoadhesiveness of polymers by BIACORE method and mucin-particle method. Int. J. Pharm. 2008, 354, 204–209. [Google Scholar] [CrossRef]
- Takeuchi, H.; Thongborisute, J.; Matsui, Y.; Sugihara, H.; Yamamoto, H.; Kawashima, Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv. Drug Deliv. Rev. 2005, 57, 1583–1594. [Google Scholar] [CrossRef]
- Shariatinia, Z. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol. 2018, 120, 1406–1419. [Google Scholar] [CrossRef]
- Hillery, A.M.; Lloyd, A.W.; Swarbrick, J. Drug Delivery and Targeting: For Pharmacists and Pharmaceutical Scientists; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Djebli, N.; Khier, S.; Griguer, F.; Coutant, A.-L.; Tavernier, A.; Fabre, G.; Leriche, C.; Fabre, D. Ocular drug distribution after topical administration: Population pharmacokinetic model in rabbits. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Wielińska, J.; Nowacki, A.; Liberek, B. 5-fluorouracil—Complete insight into its neutral and ionised forms. Molecules 2019, 24, 3683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.N.; Singh, R.B.; Singh, J. Effects of ionization and penetration enhancers on the transdermal delivery of 5-fluorouracil through excised human stratum corneum. Int. J. Pharm. 2005, 298, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.; Suhail, F.S.A.; Al-Hakeim, H.K. Stability of anticancer drug 5-fluorouracil in aqueous solution: An assessment of kinetic behavior. Nano Biomed. Eng. 2018, 10, 224–234. [Google Scholar] [CrossRef]
- Alkholief, M.; Albasit, H.; Alhowyan, A.; Alshehri, S.; Raish, M.; Kalam, M.A.; Alshamsan, A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm. J. 2019, 27, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Kalam, M.A. The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 559–568. [Google Scholar] [CrossRef]
- Abraham, L.M.; Selva, D.; Casson, R.; Leibovitch, I. The clinical applications of fluorouracil in ophthalmic practice. Drugs 2007, 67, 237–255. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Zhou, Z.; Valiaeva, N.; Beadle, J.R.; Hostetler, K.; Freeman, W.R.; Hu, D.-N.; Chen, H.; Cheng, L. Antiproliferative property of hexadecyloxypropyl 9-[2-(phosphonomethoxy) ethyl] guanine (HDP-PMEG) for unwanted ocular proliferation. Mol. Vis. 2011, 17, 627. [Google Scholar]
- Kennah II, H.E.; Hignet, S.; Laux, P.; Dorko, J.; Barrow, C. An objective procedure for quantitating eye irritation based upon changes of corneal thickness. Fundam. Appl. Toxicol. 1989, 12, 258–268. [Google Scholar] [CrossRef]
- Diebold, Y.; Jarrín, M.; Sáez, V.; Carvalho, E.L.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M.J. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007, 28, 1553–1564. [Google Scholar] [CrossRef]
- Falahee, K. Eye Irritation Testing: An Assessment of Methods and Guidelines for Testing Materials for Eye Irritancy; Office of Pesticides and Toxic Substances, US Environmental Protection Agency: Washington, DC, USA, 1981. [Google Scholar]
- Kay, J. Interpretation of eye irritation test. J. Soc. Cosmet. Chem. 1962, 13, 281–289. [Google Scholar]
- Binkhathlan, Z.; Alomrani, A.H.; Hoxha, O.; Ali, R.; Kalam, M.A.; Alshamsan, A. Development and Characterization of PEGylated Fatty Acid-Block-Poly (ε-caprolactone) Novel Block Copolymers and Their Self-Assembled Nanostructures for Ocular Delivery of Cyclosporine A. Polymers 2022, 14, 1635. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, F.K.; Yassin, A.E.; El-Badry, M.; Mowafy, H.A.; Alsarra, I.A. Validated high-performance liquid chromatographic technique for determination of 5-fluorouracil: Applications to stability studies and simulated colonic media. J. Chromatogr. Sci. 2009, 47, 558–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, M.; Ezzeldin, E.; Herqash, R.N.; Alam, O. Ultra-performance hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for simultaneous determination of allopurinol, oxypurinol and lesinurad in rat plasma: Application to pharmacokinetic study in rats. PLoS ONE 2019, 14, e0213786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draize, J.H. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390. [Google Scholar]
- Lee, M.; Hwang, J.-H.; Lim, K.-M. Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicol. Res. 2017, 33, 191–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Formulations | EE% | LC% |
---|---|---|
AMSN-FU | 18 ± 3.7 | 15.3 ± 3.1 |
AMSN-CMC-FU (F1) | 10.3 ± 3.3 | 1.9 ± 0.6 |
AMSN-CMC-FU (F2) | 25.8 ± 5.8 | 5.2 ± 1.2 |
Formulations | Flux (J) (μg·cm2h−1) | Lag Time (h) | Cumulative Amount Permeated After 6 h (μg·cm−2) | Permeability Coefficient (cm·h−1) |
---|---|---|---|---|
AMSN-FU gel | 19.4 ± 0.8 | 0.3 ± 0.087 | 110.5 ± 3.4 | 7.8 × 10−3 ± 2.9 × 10−4 |
AMSN-CMC-FU gel | 30.8 ± 2.4 | 0.1 ± 0.03 | 182.2 ± 11.4 | 12.3 × 10−3 ± 1 × 10−3 |
5-FU gel (initial rate) | 12.5 ± 2.5 | 0.6± 0.03 | - | 5 × 10−3 ± 9 × 10−4 |
5-FU gel (overall all permeation rate) | 23.6 ± 0.1 | 0.7 ± 0.06 | 136 ± 2.5 | 9.4 × 10−3 ± 3 × 10−4 |
Pharmacokinetic Parameters | Formulations | ||
---|---|---|---|
5-FU gel | AMSN-CMC-FU gel | AMSN-FU | |
Mean ± SD | Mean ± SD | Mean ± SD | |
t1/2 (h) | 3.0 ± 0.2 | 7.6 ± 1.4 * | 6.6 ± 0.5 * |
Tmax (h) | 2.0 ± 0.0 | 4.0 ± 0.0 * | 4.0 ± 0.0 * |
Cmax (μg/mL) | 15.6 ± 1.0 | 30.8 ± 1.1 *# | 23.8 ± 1.0 * |
AUC0–24 h (μg/mL·h−1) | 80.6± 13.3 | 440.1 ± 21.1 *# | 298 ± 4.0 * |
AUC0-inf (μg/mL·h−1) | 81.0 ± 13.3 | 497.6 ± 44.2 *# | 327.1 ± 8.5 * |
AUMC0-inf (μg/mL·h−2) | 413.9 ± 105.9 | 5835.7 ± 1292.1 *# | 3393.2 ± 304.1 * |
MRT0-inf (h) | 5.1 ± 0.5 | 11.6 ± 1.6 * | 10.4 ± 0.7 * |
Vz/F (mL) | 5.5 ± 1.0 * | 2.2 ± 0.2 | 2.9 ± 0.1 # |
Cl/F (mL/h) | 1.3 ± 0.2 * | 0.2 ± 0.02 | 0.31 ± 0.01 # |
Lesions in the Treated Eyes | Individual Scores for Eye Irritation by | |||||
---|---|---|---|---|---|---|
5 FU Gel | Normal Saline (0.9% NaCl) | |||||
In Rabbit Number | In Rabbit Number | |||||
1st | 2nd | 3rd | 1st | 2nd | 3rd | |
Cornea | ||||||
a. Opacity | 1 | 0 | 0 | 0 | 0 | 0 |
b. Involved area of cornea | 4 | 4 | 4 | 4 | 4 | 4 |
Total scores = (a × b × 5) = | 20 | 0 | 0 | 0 | 0 | 0 |
Iris | ||||||
a. Lesion values | 1 | 0 | 0 | 0 | 0 | 0 |
Total scores = (a × 5) = | 5 | 0 | 0 | 0 | 0 | 0 |
Conjunctiva | ||||||
a. Redness | 1 | 0 | 0 | 0 | 0 | 0 |
b. Chemosis | 0 | 0 | 0 | 0 | 0 | 0 |
c. Mucoidal discharge | 1 | 0 | 0 | 0 | 0 | 0 |
Total scores = (a + b + c) × 2 = | 4 | 0 | 0 | 0 | 0 | 0 |
AMSN-CMC-FU gel | Normal saline (0.9% NaCl) | |||||
Cornea | ||||||
a. Opacity | 0 | 0 | 1 | 0 | 0 | 0 |
b. Involved area of cornea | 4 | 4 | 4 | 4 | 4 | 4 |
Total scores = (a × b × 5) = | 0 | 0 | 20 | 0 | 0 | 0 |
Iris | ||||||
a. Lesion values | 0 | 0 | 0 | 0 | 0 | 0 |
Total scores = (a × 5) = | 0 | 0 | 0 | 0 | 0 | 0 |
Conjunctiva | ||||||
a. Redness | 0 | 0 | 1 | 0 | 0 | 0 |
b. Chemosis | 0 | 0 | 0 | 0 | 0 | 0 |
c. Mucoidal discharge | 0 | 0 | 0 | 0 | 0 | 0 |
Total scores = (a + b + c) × 2 = | 0 | 0 | 2 | 0 | 0 | 0 |
AMSN-FU gel | Normal saline (0.9% NaCl) | |||||
Cornea | ||||||
a. Opacity | 0 | 1 | 0 | 0 | 0 | 0 |
b. Involved area of cornea | 4 | 4 | 4 | 4 | 4 | 4 |
Total scores = (a × b × 5) = | 0 | 20 | 0 | 0 | 0 | 0 |
Iris | ||||||
a. Lesion values | 0 | 0 | 0 | 0 | 0 | 0 |
Total scores = (a × 5) = | 0 | 0 | 0 | 0 | 0 | 0 |
Conjunctiva | ||||||
a. Redness | 0 | 1 | 0 | 0 | 0 | 0 |
b. Chemosis | 0 | 0 | 0 | 0 | 0 | 0 |
c. Mucoidal discharge | 0 | 0 | 0 | 0 | 0 | 0 |
Total scores = (a + b + c) × 2 = | 0 | 2 | 0 | 0 | 0 | 0 |
5-FU Gel | |||||
---|---|---|---|---|---|
In rabbit | 1st | 2nd | 3rd | SUM | Average (SUM/3) |
Cornea | 0 | 0 | 20 | 20 | 6.67 |
Iris | 5 | 0 | 0 | 0 | 5.00 |
Conjunctiva | 0 | 0 | 4 | 4 | 1.33 |
SUM total = | 5 | 0 | 24 | 24 | 13.00 |
AMSN-CMC-FU gel | |||||
In rabbit | 1st | 2nd | 3rd | SUM | Average (SUM/3) |
Cornea | 0 | 0 | 20 | 20 | 6.67 |
Iris | 0 | 0 | 0 | 0 | 0.00 |
Conjunctiva | 0 | 0 | 2 | 2 | 0.67 |
SUM total = | 0 | 0 | 22 | 22 | 7.34 |
AMSN-FU gel | |||||
In rabbit | 1st | 2nd | 3rd | SUM | Average (SUM/3) |
Cornea | 0 | 20 | 0 | 20 | 6.67 |
Iris | 0 | 0 | 0 | 0 | 0.00 |
Conjunctiva | 0 | 2 | 0 | 2 | 0.67 |
SUM total = | 0 | 22 | 0 | 22 | 7.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhowyan, A.A.; Kalam, M.A.; Iqbal, M.; Raish, M.; El-Toni, A.M.; Alkholief, M.; Almomen, A.A.; Alshamsan, A. Mesoporous Silica Nanoparticles Coated with Carboxymethyl Chitosan for 5-Fluorouracil Ocular Delivery: Characterization, In Vitro and In Vivo Studies. Molecules 2023, 28, 1260. https://doi.org/10.3390/molecules28031260
Alhowyan AA, Kalam MA, Iqbal M, Raish M, El-Toni AM, Alkholief M, Almomen AA, Alshamsan A. Mesoporous Silica Nanoparticles Coated with Carboxymethyl Chitosan for 5-Fluorouracil Ocular Delivery: Characterization, In Vitro and In Vivo Studies. Molecules. 2023; 28(3):1260. https://doi.org/10.3390/molecules28031260
Chicago/Turabian StyleAlhowyan, Adel Ali, Mohd Abul Kalam, Muzaffar Iqbal, Mohammad Raish, Ahmed M. El-Toni, Musaed Alkholief, Aliyah A. Almomen, and Aws Alshamsan. 2023. "Mesoporous Silica Nanoparticles Coated with Carboxymethyl Chitosan for 5-Fluorouracil Ocular Delivery: Characterization, In Vitro and In Vivo Studies" Molecules 28, no. 3: 1260. https://doi.org/10.3390/molecules28031260
APA StyleAlhowyan, A. A., Kalam, M. A., Iqbal, M., Raish, M., El-Toni, A. M., Alkholief, M., Almomen, A. A., & Alshamsan, A. (2023). Mesoporous Silica Nanoparticles Coated with Carboxymethyl Chitosan for 5-Fluorouracil Ocular Delivery: Characterization, In Vitro and In Vivo Studies. Molecules, 28(3), 1260. https://doi.org/10.3390/molecules28031260