Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation of Phenol-Degrading Bacteria
2.2. Identification and Characterization of Phenol-Degrading Bacterial Isolates
2.3. 16S rDNA Gene Sequence Analysis of the Three Isolates
2.4. Evaluation of the Bacterial Isolates for Phenol Degradation
2.5. Effect of K. variicola on Soybean Seedlings
3. Material and Methods
3.1. Methods
3.2. Sample Collection and Sources of Bacterial Isolates
3.3. Isolation of Phenol-Degrading Bacteria
3.4. Characterization of the Most Effective Bacterial Isolates by 16S rDNA and Phylogenetic Analysis
3.5. Preparing for Bacterial Inoculation
3.6. Evaluation of the Three Bacterial Isolates on Phenol Degradation
3.7. Phenol Degradation Assay by HPLC Analysis
3.8. Effect of Pseudomonas Aeruginosa (S3) and Klebsiella Variicola (S18) on Soybean Seed Germination
3.9. Statistical Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Deng, T.; Wang, H.; Yang, K. Phenol biodegradation by isolated Citrobacter strain under hypersaline conditions. Water Sci. Technol. 2018, 77, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Govindarajalu, K.; Govindarajalu, K. Industrial effluent and health status: A case study of Noyyal river basin. In Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December 2003; pp. 150–157. [Google Scholar]
- Naresh, B.; Honey, P.; Vaishali, S. Biodegradation of phenol by a bacterial strain isolated from a phenol contaminated site in India. Res. J. Environ. Sci. 2012, 1, 46–49. [Google Scholar]
- McCall, I.C.; Betanzos, A.; Weber, D.A.; Nava, P.; Miller, G.W.; Parkos, C.A. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization. Toxicol. Appl. Pharmacol. 2009, 241, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-S.; Brown, M.T.; Han, T. Phenol toxicity to the aquatic macrophyte Lemna paucicostata. Aquat. Toxicol. 2012, 106, 182–188. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Basha, K.M.; Rajendran, A.; Thangavelu, V. Recent advances in the biodegradation of phenol: A review. Asian J. Exp. Biol. Sci. 2010, 1, 219–234. [Google Scholar]
- Tay, S.T.-L.; Moy, B.Y.-P.; Maszenan, A.M.; Tay, J.-H. Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation. Appl. Microbiol. Biotechnol. 2005, 67, 708–713. [Google Scholar] [CrossRef]
- Carmona, M.; De Lucas, A.; Valverde, J.L.; Velasco, B.; Rodriguez, J.F. Combined adsorption and ion exchange equilibrium of phenol on Amberlite IRA-420. Chem. Eng. J. 2006, 117, 155–160. [Google Scholar] [CrossRef]
- Lazarova, Z.; Boyadzhieva, S. Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafiltration modules. Chem. Eng. J. 2004, 100, 129–138. [Google Scholar] [CrossRef]
- Lin, S.; Chuang, T. Combined treatment of phenolic wastewater by wet air oxidation and activated sludge. Toxicol. Environ. Chem. 1994, 44, 243–258. [Google Scholar] [CrossRef]
- Wu, Z. Study on degrading phenol by immobilized Ralstonia metallidurans CH34. Microbiology 1992, 32, 31–36. [Google Scholar]
- Yan, J.; Jianping, W.; Jing, B.; Daoquan, W.; Zongding, H. Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem. Eng. J. 2006, 29, 227–234. [Google Scholar] [CrossRef]
- Zhai, Z.; Wang, H.; Yan, S.; Yao, J. Biodegradation of phenol at high concentration by a novel bacterium: Gulosibacter sp. YZ4. J. Chem. Technol. Biotechnol. 2012, 87, 105–111. [Google Scholar] [CrossRef]
- Loh, K.-C.; Chua, S.-S. Ortho pathway of benzoate degradation in Pseudomonas putida: Induction of meta pathway at high substrate concentrations. Enzyme Microb. Technol. 2002, 30, 620–626. [Google Scholar] [CrossRef]
- Geng, A.; Soh, A.E.W.; Lim, C.J.; Loke, L.C.T. Isolation and characterization of a phenol-degrading bacterium from an industrial activated sludge. Appl. Microbiol. Biotechnol. 2006, 71, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Tuah, P.M.; Rashid, N.A.A.; Salleh, M.M. Degradation Pathway of Phenol Through-Cleavage by RETL-Cr1. Borneo Sci. 2009, 24, 432–567. [Google Scholar]
- Nair, C.I.; Jayachandran, K.; Shashidhar, S. Biodegradation of phenol. Afr. J. Biotechnol. 2008, 7, 25. [Google Scholar]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Alkhatib, F.; Abumelha, H.M.; El-Dabea, T.; Ali El-Remaily, M.A.E.A.A. Structural, conformational and therapeutic studies on new thiazole complexes: Drug-likeness and MOE-simulation assessments. Res. Chem. Intermed. 2021, 47, 1979–2002. [Google Scholar] [CrossRef]
- Abumelha, H.M.; Alkhatib, F.; Alzahrani, S.; Abualnaja, M.; Alsaigh, S.; Alfaifi, M.Y.; Althagafi, I.; El-Metwaly, N. Synthesis and characterization for pharmaceutical models from Co (II), Ni (II) and Cu (II)-thiophene complexes; apoptosis, various theoretical studies and pharmacophore modeling. J. Mol. Liq. 2021, 328, 115483. [Google Scholar] [CrossRef]
- Adam, M.S.S.; Abu-Dief, A.M.; Makhlouf, M.; Shaaban, S.; Alzahrani, S.O.; Alkhatib, F.; Masaret, G.S.; Mohamed, M.A.; Alsehli, M.; El-Metwaly, N.M. Tailoring, structural inspection of novel oxy and non-oxy metal-imine chelates for DNA interaction, pharmaceutical and molecular docking studies. Polyhedron 2021, 201, 115167. [Google Scholar] [CrossRef]
- Xu, N.; Qiu, C.; Yang, Q.; Zhang, Y.; Wang, M.; Ye, C.; Guo, M. Analysis of Phenol Biodegradation in Antibiotic and Heavy Metal Resistant Acinetobacter lwoffii NL1. Front. Microbiol. 2021, 10, 2670. [Google Scholar] [CrossRef]
- Kujur, R.R.A.; Das, S.K. Pseudomonas phenolilytica sp. nov., a novel phenol-degrading bacterium. Arch. Microbiol. 2022, 204, 320. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ghosh, A. Fractional-order identification and synthesis of equivalent circuit for electrochemical system based on pulse voltammetry. In Fractional-Order Design; Elsevier: Amsterdam, The Netherlands, 2022; pp. 373–402. [Google Scholar]
- Malhotra, M.; Gupta, D.; Sahani, J.; Singh, S. Microbial Degradation of Phenol and Phenolic Compounds. In Recent Advances in Microbial Degradation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 297–312. [Google Scholar]
- Liu, Z.; Xie, W.; Li, D.; Peng, Y.; Li, Z.; Liu, S. Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int. J. Environ. Res. Public Health 2016, 13, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Kumar, S.; Kumar, S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem. Eng. J. 2005, 22, 151–159. [Google Scholar] [CrossRef]
- Arutchelvan, V.; Kanakasabai, V.; Nagarajan, S.; Muralikrishnan, V. Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mater. 2005, 127, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Nogina, T.; Fomina, M.; Dumanskaya, T.; Zelena, L.; Khomenko, L.; Mikhalovsky, S.; Podgorskyi, V.; Gadd, G.M. A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent. Appl. Microbiol. Biotechnol. 2020, 104, 3611–3625. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.; Yang, G.; Du, Y. Immobilized Mutants M1 of Rhodococcus ruber SD3 and Its Application in Phenol Degradation. CN Patent CN103160491A, 15 April 2013. [Google Scholar]
- Aisami, A.; Yasid, N.; Johari, W.; Ahmad, S.; Shukor, M. Effect of temperature and ph on phenol biodegradation by a newly identified Serratia sp. AQ5-03. Open J. Biosci. Res. 2020, 1, 28–43. [Google Scholar] [CrossRef]
- Shawabkeh, R.; Khleifat, K.M.; Al-Majali, I.; Tarawneh, K. Rate of biodegradation of phenol by Klebsiella oxytoca in minimal medium and nutrient broth conditions. Bioremediat. J. 2007, 11, 13–19. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Gupta, A.; Kaur, A.; Malik, D. Remediation of phenol using microorganisms: Sustainable way to tackle the chemical pollution menace. Curr. Org. Chem. 2018, 22, 370–385. [Google Scholar] [CrossRef]
- Sachan, P.; Madan, S.; Hussain, A. Isolation and screening of phenol-degrading bacteria from pulp and paper mill effluent. Appl. Water Sci. 2019, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Ahmed, I.; Shahzad, A.; Khalid, N.; Mehboob, F.; Ahad, K.; Muhammad Ali, G. Molecular identification and characterization of Pseudomonas sp. NCCP-407 for phenol degradation isolated from industrial waste. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 341–346. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Shamaan, N.A.; Arif, N.M.; Koon, G.B.; Shukor, M.Y.A.; Syed, M.A. Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World J. Microbiol. Biotechnol. 2012, 28, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Auma, E.O. Anaerobic Co-Digestion of Water Hyacinth (Eichhornia crassipes) with Ruminal Slaughterhouse Waste under Mesophilic Conditions. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2020. [Google Scholar]
- Heilbuth, N.M.; Linardi, V.R.; Monteiro, A.S.; da Rocha, R.A.; Mimim, L.A.; Santos, V.L. Estimation of kinetic parameters of phenol degradation by bacteria isolated from activated sludge using a genetic algorithm. J. Chem. Technol. Biotechnol. 2015, 90, 2066–2075. [Google Scholar] [CrossRef]
- Samimi, M.; Shahriari Moghadam, M. Phenol biodegradation by bacterial strain O-CH1 isolated from seashore. Glob. J. Environ. Sci. Manag. 2020, 6, 109–118. [Google Scholar]
- Tengku-Mazuki, T.A.; Subramaniam, K.; Zakaria, N.N.; Convey, P.; Khalil, K.A.; Lee, G.L.Y.; Zulkharnain, A.; Shaharuddin, N.A.; Ahmad, S.A. Optimization of phenol degradation by Antarctic bacterium Rhodococcus sp. Antarct. Sci. 2020, 32, 486–495. [Google Scholar] [CrossRef]
- Sreeja Mole, S.S.; Vijayan, D.; Anand, M.; Ajona, M.; Jarin, T. Biodegradation of P-nitro phenol using a novel bacterium Achromobacter denitrifacians isolated from industrial effluent water. Water Sci. Technol. 2021, 84, 3334–3345. [Google Scholar]
- Kotresha, D.; Vidyasagar, G. Degradation of phenol by novel strain Pseudomonas aeruginosa MTCC 4997 isolated from petrochemical industrial effluent. Int. J. Microbiol. Res. Technol. 2014, 2, 7–15. [Google Scholar]
- Rajani, V. Microbial degradation of phenol: A review. Int. J. Res. Rev. 2015, 2, 46–54. [Google Scholar]
- Stover, C.K.; Pham, X.Q.; Erwin, A.; Mizoguchi, S.; Warrener, P.; Hickey, M.; Brinkman, F.; Hufnagle, W.; Kowalik, D.; Lagrou, M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Mahiudddin, M.; Fakhruddin, A. Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol. 2012, 2012, 741820. [Google Scholar] [CrossRef] [Green Version]
- Shourian, M.; Noghabi, K.A.; Zahiri, H.S.; Bagheri, T.; Karbalaei, R.; Mollaei, M.; Rad, I.; Ahadi, S.; Raheb, J.; Abbasi, H. Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters. Desalination 2009, 246, 577–594. [Google Scholar] [CrossRef]
- Kadiyala, V.; Spain, J.C. A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl. Environ. Microbiol. 1998, 64, 2479–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasantharaj, K.; Jerold, M.; Deepanraj, B.; Velan, M.; Sivasubramanian, V. Assessment of a sulfidogenic system utilizing microalgal biomass of Chlorella pyrenoidosa as an electron donor: Taguchi based grey relational analysis. Int. J. Hydrogen Energy 2017, 42, 26545–26554. [Google Scholar] [CrossRef]
- Jain, R.K.; Dreisbach, J.H.; Spain, J.C. Biodegradation of p-nitrophenol via 1, 2, 4-benzenetriol by an Arthrobacter sp. Appl. Environ. Microbiol. 1994, 60, 3030–3032. [Google Scholar] [CrossRef] [Green Version]
- Zylstra, G.J.; Bang, S.-W.; Newman, L.M.; Perry, L.L. Microbial degradation of mononitrophenols and mononitrobenzoates. In Biodegradation of Nitroaromatic Compounds and Explosives; Lewis Publishers: Boca Raton, FL, USA, 2000; pp. 145–160. [Google Scholar]
- Sivasubramanian, S.; Namasivayam, S.K.R. Phenol degradation studies using microbial consortium isolated from environmental sources. J. Environ. Chem. Eng. 2015, 3, 243–252. [Google Scholar] [CrossRef]
- Mishra, V.K.; Kumar, N. Microbial degradation of phenol: A review. J. Water Pollut. Purif. Res. 2017, 4, 17–22. [Google Scholar]
- Shahryari, S.; Zahiri, H.S.; Haghbeen, K.; Adrian, L.; Noghabi, K.A. High phenol degradation capacity of a newly characterized Acinetobacter sp. SA01: Bacterial cell viability and membrane impairment in respect to the phenol toxicity. Ecotoxicol. Environ. Saf. 2018, 164, 455–466. [Google Scholar] [CrossRef]
- Sarnaik, S.; Kanekar, P. Bioremediation of colour of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. J. Appl. Bacteriol. 1995, 79, 459–469. [Google Scholar] [CrossRef]
- Shahriari, M.M.; Safaei, N.; Ebrahimipour, G. Optimization of phenol biodegradation by efficient bacteria isolated from petrochemical effluents. Glob. J. Environ. Sci. Manag. 2016, 2, 249–256. [Google Scholar]
- Khleifat, K.M. Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem. 2006, 41, 2010–2016. [Google Scholar] [CrossRef]
- Lin, L.-X.; Liu, H.; Zhou, N.-Y. MhbR, a LysR-type regulator involved in 3-hydroxybenzoate catabolism via gentisate in Klebsiella pneumoniae M5a1. Microbiol. Res. 2010, 165, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Aksu, Z.; Gönen, F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochem. 2004, 39, 599–613. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alkhatib, F.M.; Alzahrani, S.O.; Shafi, M.E.; Abdel-Hamid, S.E.; Taha, T.F.; Ahmed, N.H. Im-pact of mycogenic zinc nanoparticles on performance, behavior, immune response, and microbial load in Oreo-chromis niloticus. Saudi J. Biol. Sci. 2021, 28, 4592–4604. [Google Scholar] [CrossRef]
- El-Beeh, M.E.; El-Badawi, A.A.; Amin, A.H.; Qari, S.H.; Ramadan, M.F.; Filfilan, W.M.; El-Sayyad, H.I. Anti-aging trait of whey protein against brain damage of senile rats. J. Umm Al-Qura Uni. Appl. Sci. 2022, 8, 8–20. [Google Scholar] [CrossRef]
- Rodgers-Vieira, E.A.; Zhang, Z.; Adrion, A.C.; Gold, A.; Aitken, M.D. Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 2015, 81, 3775–3781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.; Wang, W.; Zhu, M.; Liao, Y.; Yao, Y. Screening and characterization of aroma yeast with thermo-tolerant and salt-tolerance. Food Ferment. Ind. 2016, 42, 92–96. [Google Scholar]
- Veenagayathri, K.; Vasudevan, N. Effect of pH, nitrogen sources and salts on the degradation of phenol by the bacterial consortium under saline conditions. Int. J. Biotechnol. Biochem. 2010, 6, 783–792. [Google Scholar]
- Yang, L.; Yang, K. Biological function of Klebsiella variicola and its effect on the rhizosphere soil of maize seedlings. PeerJ 2020, 8, e9894. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Cocetta, G.; Bulgari, R.; Francini, A.; Romano, D.; Ferrante, A. Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front. Plant Sci. 2019, 10, 1212. [Google Scholar] [CrossRef] [Green Version]
- Timmusk, S.; Abd El-Daim, I.A.; Copolovici, L.; Tanilas, T.; Kännaste, A.; Behers, L.; Nevo, E.; Seisenbaeva, G.; Stenström, E.; Niinemets, Ü. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 2014, 9, e96086. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Teramoto, M.; Harayama, S. An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Appl. Environ. Microbiol. 1999, 65, 2813–2819. [Google Scholar] [CrossRef] [Green Version]
- Kloos, W.E.; Tornabene, T.G.; Schleifer, K.H. Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. Int. J. Syst. Evol. Microbiol. 1974, 24, 79–101. [Google Scholar] [CrossRef] [Green Version]
- Lanyi, B. Classical and rapid identification methods for medically important bacteria. In Methods in Microbiology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 19, pp. 1–67. [Google Scholar]
- Klibanov, A.M.; Alberti, B.; Morris, E.; Felshin, L. Enzymatic removal of toxic phenols and anilines from waste waters. J. Appl. Biochem. 1980, 2, 5. [Google Scholar]
- Freitas, D.B.; Reis, M.P.; Lima-Bittencourt, C.I.; Costa, P.S.; Assis, P.S.; Chartone-Souza, E.; Nascimento, A. Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Res. Notes 2008, 1, 92. [Google Scholar] [CrossRef] [Green Version]
- Obaid, R.J. Synthesis and biological evaluation of some new imidazo[1,2-c]pyrimido [5,4-e]pyrimidin-5-amine de-rivatives. J. Umm Al-Qura Uni. Appl. Sci. 2021, 7, 16–22. [Google Scholar]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, A.M.; Mohamed, A.S.; El-Saadony, M.T.; Sitohy, M.Z. Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts. LWT Food Sci. Technol. 2021, 148, 111668. [Google Scholar] [CrossRef]
Samples | Concentrations of Phenol (mg/L) | |||||
---|---|---|---|---|---|---|
Control | 500 | 750 | 1000 | 1500 | 2000 | |
*SS1 | 1.34 ± 0.41 | 0.75 ± 0.23 | 0.43 ± 0.37 | 0.22 ± 0.28 | − | − |
SS2 | 1.38 ± 0.43 | 0.96 ± 0.26 | 0.77 ± 0.36 | 0.42 ± 0.26 | − | − |
SS3 | 1.45 ± 0.42 | 1.38 ± 0.34 | 1.29 ± 0.35 | 1.12 ± 0.22 | 0.89 ± 0.23 | 0.37 ± 0.32 |
SS4 | 1.22 ± 0.39 | 0.87 ± 0.33 | 0.67 ± 0.34 | 0.31 ± 0.21 | − | − |
SS5 | 0.98 ± 0.43 | 0.76 ± 0.35 | 0.43 ± 0.32 | − | − | − |
SS6 | 0.87 ± 0.37 | 0.49 ± 0.34 | 0.47 ± 0.37 | 0.33 ± 0.28 | − | − |
SS7 | 0.93 ± 0.36 | 0.47 ± 0.37 | 0.31 ± 0.31 | − | − | − |
SS8 | 0.95 ± 0.37 | 0.43 ± 0.38 | 0.29 ± 0.38 | − | − | − |
SS9 | 0.99 ± 0.35 | 0.51 ± 0.35 | 0.32 ± 0.33 | − | − | − |
SS10 | 1.57 ± 0.35 | 1.45 ± 0.38 | 1.31 ± 0.32 | 1.14 ± 0.12 | 0.79 ± 0.27 | 0.47 ± 0.22 |
SS11 | 0.97 ± 0.34 | 0.61 ± 0.37 | 0.42 ± 0.38 | 0.22 ± 0.18 | − | − |
SS12 | 0.89 ± 0.23 | 0.63 ± 0.36 | 0.34 ± 0.36 | − | − | − |
SS13 | 0.87 ± 0.31 | 0.39 ± 0.36 | 0.21 ± 0.32 | − | − | − |
SS14 | 0.79 ± 0.29 | 0.42 ± 0.39 | 0.27 ± 0.34 | − | − | − |
SS15 | 0.76 ± 0.26 | 0.31 ± 0.35 | − | − | − | − |
SS16 | 0.85 ± 0.27 | 0.65 ± 0.32 | 0.19 ± 0.11 | − | − | − |
SS17 | 0.88 ± 0.29 | 0.74 ± 0.31 | 0.34 ± 0.13 | − | − | − |
SS18 | 1.49 ± 0.28 | 1.41 ± 0.33 | 1.32 ± 0.21 | 1.15 ± 0.19 | 0.91 ± 0.21 | 0.56 ± 0.21 |
SS19 | 1.32 ± 0.22 | 1.09 ± 0.35 | 0.57 ± 0.22 | 0.23 ± 0.17 | − | − |
SS20 | 1.25 ± 0.25 | 0.97 ± 0.38 | 0.45 ± 0.23 | 0.26 ± 0.15 | − | − |
Isolates | Concentrations of Phenol (mg/L) | |||||
---|---|---|---|---|---|---|
Control | 500 | 750 | 1000 | 1500 | 2000 | |
S-1 | +++ | ++ | + | − | − | − |
S-2 | +++ | ++ | ++ | + | − | − |
S-3 | +++ | +++ | +++ | +++ | ++ | + |
S-4 | +++ | ++ | + | − | − | − |
S-5 | +++ | + | + | − | − | − |
S-6 | +++ | ++ | ++ | + | − | − |
S-7 | +++ | + | + | − | − | − |
S-8 | +++ | + | + | − | − | − |
S-9 | +++ | + | + | − | − | − |
S-10 | +++ | +++ | +++ | +++ | ++ | + |
S-11 | +++ | ++ | ++ | + | − | − |
S-12 | +++ | + | + | − | − | − |
S-13 | +++ | + | + | − | − | − |
S-14 | +++ | ++ | + | − | − | − |
S-15 | +++ | + | − | − | − | − |
S-16 | +++ | ++ | + | − | − | − |
S-17 | +++ | + | + | − | − | − |
S-18 | +++ | +++ | +++ | +++ | ++ | + |
S-19 | +++ | ++ | + | − | − | − |
S-20 | +++ | + | + | − | − | − |
Characteristics | Bacterial Isolates | ||
---|---|---|---|
S3 | S10 | S18 | |
Colonial Characteristics | Circular, White | White Milk | White |
Morphological characters | |||
Gram’s reaction | − | − | − |
Shape cell | Rod | Rod | Rod |
Spore staining | − | − | − |
Motility test (36 °C) | + | − | − |
Biochemical characters | |||
Indole (convert Trp to indole) | − | − | − |
Methyl red (Glu fermentation) | − | − | − |
Voges–Proskauer (Glu fermentation) | − | + | + |
Citrate utilization | − | + | + |
Catalase | − | + | + |
Oxidase | − | − | − |
Nitrate reduction | − | + | + |
Urease test | − | + | + |
Lysine | +/− | + | + |
Arginine | + | − | − |
Glucose fermentation | + | + | + |
Lactose fermentation | + | + | + |
Maltose fermentation | + | + | + |
Sucrose fermentation | + | + | + |
Soybean | Faba Bean | Bean | |||||
---|---|---|---|---|---|---|---|
Treatment | Phenol Concentration (mg/L) | Germ. of Seeds (%) | Seedling Length (cm) | * Germ. of Seeds (%) | Seedling Length (cm) | Germ. of Seeds (%) | Seedling Length (cm) |
Water | 0.0 | 100 | 2.83 ± 0.65 | 100 | 1.88 ± 0.45 | 100 | 1.95 ± 0.23 |
Control | 250 | 0 | 0 | 0 | 0 | 0 | 0 |
500 | 0 | 0 | 0 | 0 | 0 | 0 | |
750 | 0 | 0 | 0 | 0 | 0 | 0 | |
1000 | 0 | 0 | 0 | 0 | 0 | 0 | |
P. aeruginosa | |||||||
250 | 100 | 2.83 ± 0.45 | 100 | 1.78 ± 0.37 | 100 | 1.94 ± 0.68 | |
500 | 100 | 2.68 ± 0.34 | 100 | 1.58 ± 0.65 | 100 | 1.74 ± 0.48 | |
750 | 100 | 2.52 ± 0.35 | 100 | 1.48 ± 0.35 | 100 | 1.64 ± 0.28 | |
1000 | 60 | 2.41 ± 0.24 | 60 | 1.41 ± 0.41 | 60 | 1.45 ± 0.37 | |
K. variicola | |||||||
250 | 100 | 2.98 ± 0.32 | 100 | 1.98 ± 0.23 | 100 | 1.84 ± 0.26 | |
500 | 100 | 2.77 ± 0.24 | 100 | 1.92 ± 0.31 | 100 | 1.74 ± 0.29 | |
750 | 100 | 2.68 ± 0.61 | 100 | 1.91 ± 0.36 | 100 | 1.64 ± 0.23 | |
1000 | 100 | 2.58 ± 0.22 | 100 | 1.82 ± 0.52 | 100 | 1.54 ± 0.26 | |
K. pneumoniae | |||||||
250 | 100 | 1.88 ± 0.25 | 100 | 1.28 ± 0.42 | 100 | 1.34 ± 0.52 | |
500 | 100 | 1.85 ± 0.61 | 100 | 1.22 ± 0.47 | 100 | 1.32 ± 0.45 | |
750 | 60 | 1.81 ± 0.35 | 60 | 1.08 ± 0.25 | 60 | 1.31 ± 0.43 | |
1000 | 40 | 1.23 ± 0.25 | 50 | 1.01 ± 0.62 | 50 | 1.21 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahgoub, S.A.; Qattan, S.Y.A.; Salem, S.S.; Abdelbasit, H.M.; Raafat, M.; Ashkan, M.F.; Al-Quwaie, D.A.; Motwali, E.A.; Alqahtani, F.S.; Abd El-Fattah, H.I. Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination. Molecules 2023, 28, 1203. https://doi.org/10.3390/molecules28031203
Mahgoub SA, Qattan SYA, Salem SS, Abdelbasit HM, Raafat M, Ashkan MF, Al-Quwaie DA, Motwali EA, Alqahtani FS, Abd El-Fattah HI. Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination. Molecules. 2023; 28(3):1203. https://doi.org/10.3390/molecules28031203
Chicago/Turabian StyleMahgoub, Samir A., Shaza Y. A. Qattan, Salma S. Salem, Howaida M. Abdelbasit, Mohamed Raafat, Mada F. Ashkan, Diana A. Al-Quwaie, Ebtihal Abdullah Motwali, Fatimah S. Alqahtani, and Hassan I. Abd El-Fattah. 2023. "Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination" Molecules 28, no. 3: 1203. https://doi.org/10.3390/molecules28031203
APA StyleMahgoub, S. A., Qattan, S. Y. A., Salem, S. S., Abdelbasit, H. M., Raafat, M., Ashkan, M. F., Al-Quwaie, D. A., Motwali, E. A., Alqahtani, F. S., & Abd El-Fattah, H. I. (2023). Characterization and Biodegradation of Phenol by Pseudomonas aeruginosa and Klebsiella variicola Strains Isolated from Sewage Sludge and Their Effect on Soybean Seeds Germination. Molecules, 28(3), 1203. https://doi.org/10.3390/molecules28031203